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Appendix A

We here provide the general model in matrix formulation. Matrix formulation is more general

than a scalar version and particularly useful for discussing model identification discussed in

Section 3.8. We write the general model (Equation (2) in the manuscript) for person p, assuming

K = 2 and n = 1 as follows (subscript p will be dropped for conciseness):

y = β + Λθ′ + ϵ, (1)

where y is a I = (S1 × S2) dimensional vector of observed responses, β is a I dimensional

vector of the means (or intercepts), Λ is a I × (1 + S1 + S2) matrix of factor loadings, θ is a

(1 + S1 + S2) vector of all factors, θ = (θG, θS1

1 , ..., θ
S1
s1 , ..., θ

S1

S1
, θS2

1 , ..., θ
S2
s2 , ..., θ

S2

S2
)′, and ϵ is a I

dimensional vector of residuals. We set E(θ) = 0, E(ϵ) = 0, θ ∼ N(0,Φ) and ϵ ∼ N(0,Ψ),

where Φ is a (1 + S1 + S2) × (1 + S1 + S2) identity matrix (if all factor loadings are freely

estimated) and Ψ is a I×I diagonal matrix with free diagonal elements, ψii (i = 1, ..., I). Hence,

Cov(y) = Σ = ΛΦΛ′ +Ψ.

The factor loading matrix Λ can be partitioned as

Λ =
[
ΛG|ΛS1 |ΛS2

]
,

=



AG
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1 AS2

1 0 · · · 0

AG
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2 0 AS2

2 · · · 0

...
...

...
...

...
...

AG
M AS1
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, (2)

where ΛG is I × 1, ΛS1 is I ×S1, and ΛS2 is I ×M = S2. A
G
s1 is a S1 dimensional column vector,

AS1
s2 is a S1 × S1 diagonal submatrix, and AS2

s2 is a S1 dimensional column vector.

The factor covariance matrix Φ can be partitioned as

Φ =


ΦGG ΦGS1

ΦGS2

ΦS1G ΦS1S1
ΦS1S2

ΦS2G ΦS2S1
ΦS2S2

 . (3)
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Along the diagonal, ΦGG is a 1×1 submatrix of Φ that contains the general factor variance, ΦS1S1

is a S1 × S1 submatrix of Φ that contains the covariance matrix of θS2 = (θS1

t , . . . , θ
S1

T )′, and

ΦS2S2
is a S2 × S2 submatrix of Φ that contains the covariance matrix of θS2 = (θS2

1 , . . . , θ
S2

S2
)′.

The diagonals of these matrices and therefore of Φ is constrained to 1 by Assumption 3. The

three off-diagonal submatrices have all elements equal to zero by Assumption 4; specifically,

ΦS1G and ΦS2G are S1 × 1 and S2 × 1 covariance matrices between θS1 and θG and between θS2

and θG, respectively, and ΦS1S2
is the S1 × S2 matrix of covariances between θS1 and θS2 .

A matrix form of the proportional model (Equation (3) in the manuscript) can be obtained

in a straightforward way by imposing equality constraints on the factor loadings of the model

and by freeing the diagonal elements of the covariance matrices ΦS1S1
and ΦS2S2

in (3) above.

Appendix B

We show that the proportional model (Equation (3) in the manuscript) is not equivalent to

the second-order version where the general factor has direct effects on the two sets of specific

factors. To derive a second-order factor version, we first write the model for two sets of specific

(first-order) factors as follows:

yip = βi + αS1

is1
θS1
s1p + αS2

is2
θS2
s2p + ϵip. (4)

The first-order factors θS1
s1p and θS2

s2p have the the second-order (general) factor θGp as a regressor:

θS1
s1p = αG

s1θ
G
p + ξS1

s1p, (5)

θS2
s2p = αG

s2θ
G
p + ξS2

s2p, (6)

where αG
s1 and αG

s2 are the factor loadings of the first-order factors (θS1
s1p and θS2

s2p) on the second-

order factor θGp and ξS1
s1p and ξS2

s2p are the residuals. Combining (4) with (5) and (6), we obtain

yip = βi + αS1

is1
(αG

s1θ
G
p + ξS1

s1p) + αS2

s2i
(αG

s1θ
G
p + ξS2

s2p) + ϵip. (7)
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We further parameterize (7):

yip = βi + αS1

is1
αG
s1θ

G
p + αS1

is1
ξS1
s1p + αS2

is2
αG
s1θ

G
p + αS2

is2
ξS2
s2p + ϵip, (8)

= βi + (αS1

is1
αG
s1 + αS2

is2
αG
s2)θ

G
p + αS1

is1
ξS1
s1p + αS2

is2
ξS2
s2p + ϵip, (9)

= βi + (αS1

is1
αG
s1 + αS2

is2
αG
s1)

{
θGp +

αS1

is1

(αS1

is1
αG
s1 + αS2
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s2)
ξS1
s1p +

αS2

is2

(αS1

is1
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is2
αG
s2)
ξS2
s2p

}
+ ϵip,

(10)

= βi + α∗
i
G

{
θGp +

αS1

is1

(αS1

is1
αG
s1 + αS2

is2
αG
s2)
ξS1
s1p +

αS2

is2

(αS1

is1
αG
s1 + αS2

is2
αG
s2)
ξS2
s2p

}
+ ϵip, (11)

where α∗
i
G = (αS1

is1
αG
s1 + αS2

is2
αG
s2). Equation (11) contains the common factor loadings α∗

i
G

similar to the proportional model. However, the proportionality constants
α

S1
is1

(α
S1
is1

αG
t +α

S2
is2

αG
s2
)
and

α
S2
is2

(α
S1
is1

αG
s1
+α

S2
is2

αG
s2
)
cannot be simplified to C∗

s1
S1 or C∗

s2
S2 , as in the proportional model (Equation

(3) in the manuscript), because they depend on i, s1, and s2, rather than only s1 and s2. That

is, C∗
s1

S1 ̸= α
S1
is1

(α
S1
is1

αG
s1
+α

S2
is2

αG
s2
)
and C∗

s2
S2 ̸= α

S2
is2

(α
S1
is1

αG
s1
+α

S2
is2

αG
s2
)
. Therefore, the proportional model is

not equivalent to the second-order version (11). In fact, the second-order factor version is more

complex than the proportional model as it requires (2I + S1 + S2) loading parameters while

the proportional model contains (I+S1+S2) loading parameters. In addition, the second-order

factor version cannot be reduced to the proportional by imposing constraints on the parameters.

That is, the proportional model is not nested within the second-order version.

Appendix C

We here show how the Wald rank rule can be applied to test local identification of the

proposed models. To illustrate, we first consider the general model for the mean-centered data

with S1 = S2 = 3 and n = 1 (i.e., I = 9). As indicated in the article, local identification

evaluation is based on a matrix formulation of the models (provided in Appendix A).

First, we define the factor loading matrix Λ (of size 9 × 9) and construct the covariance

matrix Σ = ΛΦΛ′+Ψ, where Φ is the identity matrix and Ψ is a 9× 9 diagonal matrix. Second,

define ϑ, a vector or nonredundant elements of the covariance matrix (Σ) and φ, a vector of

unknown model parameters. Third, compute the Jacobian matrix J(θ) as ∂ϑ
∂φ , which is the first
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derivatives of ϑ with respect to the unknown parameter vector φ. Fourth, check whether the

Jacobian matrix J(θ) is full rank (or its rank is equal to the dimension of φ).

Below is the Mathematica (Wolfram Research, Inc, 2010) code to implement the procedure

for testing local identification of the general model. For the proportional model, the same proce-

dure can be applied by simply altering the factor loading matrix (from Equation (1) to Equation

(4) in the manuscript) (i.e., by modifying lam in the code).

* Factor loading matrix Lambda

lam = {{a1m1, 0, 0, a1t1, 0, 0, a1g}, {a2m1, 0, 0, 0, a2t2, 0, a2g}, {a3m1, 0,

0, 0, 0, a3t3, a3g}, {0, a4m2, 0, a4t1, 0, 0, a4g}, {0, a5m2, 0, 0,

a5t2, 0, a5g}, {0, a6m2, 0, 0, 0, a6t3, a6g}, {0, 0, a7m3, a7t1, 0, 0,

a7g}, {0, 0, a8m3, 0, a8t2, 0, a8g}, {0, 0, a9m3, 0, 0, a9t3, a9g}}

lamT = Transpose[lam]

cov1 = lam.lamT

cov2 = DiagonalMatrix[{c1, c2, c3, c4, c5, c6, c7, c8, c9}]

* Covariance matrix Sigma

cov = cov1 + cov2

* A vector of unknown parameters

parvec = {a1m1, a2m1, a3m1, a4m2, a5m2, a6m2, a7m3, a8m3, a9m3, a1t1, a2t2,

a3t3, a4t1, a5t2, a6t3, a7t1, a8t2, a9t3, a1g, a2g, a3g, a4g, a5g, a6g,

a7g, a8g, a9g, c1, c2, c3, c4, c5, c6, c7, c8, c9 }

* A vector of nonredundant elements of the covariance matrix

\!\(\(\(reduced\)\(\ \)\(=\)\(\ \)\({\ a1g\^2 + a1m1\^2 + a1t1\^2 + c1, \

a1g\ a2g + a1m1\ a2m1, \ a1g\ a3g + a1m1\ a3m1, \

a1g\ a4g + a1t1\ a4t1, \ a1g\ a5g, \ a1g\ a6g, \

a1g\ a7g + a1t1\ a7t1, \ a1g\ a8g, \

a1g\ a9g, \[IndentingNewLine]a2g\^2 + a2m1\^2 + a2t2\^2 + c2, \

a2g\ a3g + a2m1\ a3m1, \ a2g\ a4g, \ a2g\ a5g + a2t2\ a5t2, \

a2g\ a6g, \ a2g\ a7g, \ a2g\ a8g + a2t2\ a8t2, \

a2g\ a9g, \[IndentingNewLine]a3g\^2 + a3m1\^2 + a3t3\^2 + c3, \

a3g\ a4g, \ a3g\ a5g, \ a3g\ a6g + a3t3\ a6t3, \ a3g\ a7g, \

a3g\ a8g, \

a3g\ a9g + a3t3\ a9t3, \[IndentingNewLine]a4g\^2 + a4m2\^2 + a4t1\^2 +

c4, \ a4g\ a5g + a4m2\ a5m2, \ a4g\ a6g + a4m2\ a6m2, \

a4g\ a7g + a4t1\ a7t1, \ a4g\ a8g, \

a4g\ a9g, \[IndentingNewLine]a5g\^2 + a5m2\^2 + a5t2\^2 + c5, \

a5g\ a6g + a5m2\ a6m2, \ a5g\ a7g, \ a5g\ a8g + a5t2\ a8t2, \

a5g\ a9g, \ \[IndentingNewLine]a6g\^2 + a6m2\^2 + a6t3\^2 + c6, \

a6g\ a7g, \ a6g\ a8g, \

a6g\ a9g + a6t3\ a9t3, \[IndentingNewLine]a7g\^2 + a7m3\^2 + a7t1\^2 +

c7, \ a7g\ a8g + a7m3\ a8m3, \

a7g\ a9g + a7m3\ a9m3, \[IndentingNewLine]a8g\^2 + a8m3\^2 + a8t2\^2 +

c8, \ a8g\ a9g + a8m3\ a9m3, \ \[IndentingNewLine]a9g\^2 + a9m3\^2 +

a9t3\^2 + c9\[IndentingNewLine]\ }\)\(\ \)\)\)

* Compute the Jacobian matrix

\!\(\(\(Jac\)\(=\)\(\ \)\(D[{a1g\^2 + a1m1\^2 + a1t1\^2 + c1, \

a1g\ a2g + a1m1\ a2m1, \ a1g\ a3g + a1m1\ a3m1, \

a1g\ a4g + a1t1\ a4t1, \ a1g\ a5g, \ a1g\ a6g, \

a1g\ a7g + a1t1\ a7t1, \ a1g\ a8g, \

a1g\ a9g, \[IndentingNewLine]a2g\^2 + a2m1\^2 + a2t2\^2 + c2, \

a2g\ a3g + a2m1\ a3m1, \ a2g\ a4g, \ a2g\ a5g + a2t2\ a5t2, \
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a2g\ a6g, \ a2g\ a7g, \ a2g\ a8g + a2t2\ a8t2, \

a2g\ a9g, \[IndentingNewLine]a3g\^2 + a3m1\^2 + a3t3\^2 + c3, \

a3g\ a4g, \ a3g\ a5g, \ a3g\ a6g + a3t3\ a6t3, \ a3g\ a7g, \

a3g\ a8g, \

a3g\ a9g + a3t3\ a9t3, \[IndentingNewLine]a4g\^2 + a4m2\^2 +

a4t1\^2 + c4, \ a4g\ a5g + a4m2\ a5m2, \ a4g\ a6g + a4m2\ a6m2, \

a4g\ a7g + a4t1\ a7t1, \ a4g\ a8g, \

a4g\ a9g, \[IndentingNewLine]a5g\^2 + a5m2\^2 + a5t2\^2 + c5, \

a5g\ a6g + a5m2\ a6m2, \ a5g\ a7g, \ a5g\ a8g + a5t2\ a8t2, \

a5g\ a9g, \ \[IndentingNewLine]a6g\^2 + a6m2\^2 + a6t3\^2 + c6, \

a6g\ a7g, \ a6g\ a8g, \

a6g\ a9g + a6t3\ a9t3, \[IndentingNewLine]a7g\^2 + a7m3\^2 +

a7t1\^2 + c7, \ a7g\ a8g + a7m3\ a8m3, \

a7g\ a9g + a7m3\ a9m3, \[IndentingNewLine]a8g\^2 + a8m3\^2 +

a8t2\^2 + c8, \

a8g\ a9g + a8m3\ a9m3, \ \[IndentingNewLine]a9g\^2 + a9m3\^2 +

a9t3\^2 + c9}, \ {{a1m1, \ a2m1, \ a3m1, \ a4m2, \ a5m2, \ a6m2, \

a7m3, \ a8m3, \ a9m3, \ a1t1, \ a2t2, \ a3t3, \ a4t1, \ a5t2, \

a6t3, \ a7t1, a8t2, \ a9t3, \ a1g, \ a2g, \ a3g, \ a4g, \ a5g, \

a6g, \ a7g, \ a8g, \ a9g, \ c1, c2, c3, c4, c5, c6, c7, c8,

c9\ \ }\ }]\)\(\ \)\)\)

* Check whether the rank of the Jacobian matrix is full rank

MatrixRank[Jac]

Appendix D

We describe the simulation conditions that we selected to examine the local and empirical

identification of the proposed models. For assessing identification of the proposed models, it is

impractical to consider all possible combinations of NS1
and NS2

. If a model for a given N∗
S1
, N∗

S2

is identified, then models with NS1
≥ N∗

S1
and NS2

≥ N∗
S2

will also be identified. We therefore

start with the smallest model, NS1
= 1 or NS2

= 1; however, this model type is infeasible because

the general factor is completely confounded with each of the secondary factors. Next we consider

NS1
= 2 and NS2

= 2 (or I = 4); in this instance, neither the general nor the proportional model

meet the necessary condition that I + 1
2I(I + 1) ≥ q. (For the general model, q = 5I = 20 >

I + 1
2I(I + 1) = 14; for the proportional model, q = 3I + T +M = 16 > I + 1

2I(I + 1) = 14.)

When NS1
= 2 and NS2

= 3 (or NS1
= 3 and NS2

= 2; I = 6), the general model does not satisfy

the necessary condition as q = 5I = 30 > I + 1
2I(I + 1) = 27, while the proportional model

does (q = 3I + NS1
+ NS2

= 23 < I + 1
2I(I + 1) = 27). In the case of two measurements per

condition, it is reasonable to impose equality constraints on the loadings of the corresponding

specific factor, αS1

is1
= αS1

i′s1
, where measurements i and i′ correspond to condition s1 of Source S1.

With NS1
= 2 and NS2

= 2, the number of model parameters of the general model is reduced to
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q = 3I +NS1
+NS2

= 16; that is, even with the equality constraint, the general model still does

not meet the necessary condition (q = 16 > I + 1
2I(I + 1) = 14). With NS1

= 2 and NS2
= 3,

the number of parameters of the general model is reduced to q = 4I + NS2
= 27 with the

equality constraint, thus satisfying the sample size requirement as q = I + 1
2I(I +1). Hence, we

consider NS1
= 2 and NS2

= 3 as the minimum sample size condition by permitting the equality

constraints on factor loadings for the general model. Equality constraints are not applicable for

the proportional model that does not include separate sets of specific factor loadings. We then

consider more conditions by increasing NS1
and NS2

from two to four.

Appendix E

Here we provide example Mplus code for Example 2 (Teachers’ perception on students’

academic abilities). There are three ability traits (S1 = 3) measured at three time points (S2 =

3); hence, there are in total nine observations (I = 9). The correlation matrix for sample size

N = 4, 753 is used as the input data.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! General model !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

TITLE: Fitting a general model for Example 2

! Define input data and number of observations
DATA: FILE IS academic.dat;

TYPE = CORRELATION ;
NOBSERVATIONS = 4753;

! Define variable names
VARIABLE:

NAMES ARE y1-y9;

! Define estimation method
ANALYSIS:

ESTIMATOR = ML;

! Model specification
MODEL:

! Define variables for the general factor (overall ability)
! All factor loadings are freely estimated
fg by y1-y9*;

! Define specific factors for three ability traits
! All factor loadings are freely estimated
f1 by y1 y4* y7* ;
f2 BY y2 y5* y8* ;
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f3 by y3 y6* y9* ;

! Define specific factors for three occasions
! All factor loadings are freely estimated
m1 by y1-y3* ;
m2 BY y4-y6* ;
m3 BY y7-y9* ;

! Set variances for all factors to 1
fg@1;
f1-f3@1;
m1-m3@1;

! Set covariances among all factors to 0
fg with f1-f3@0;
fg with m1-m3@0;
m1 with m2-m3@0;
m2 with m3@0;
f1 with f2-f3@0;
f2 with f3@0;
f1-f3 with m1-m3@0;

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!! Proportional model !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

TITLE: Fitting a proportional model for Example 2

! Define input data and number of observations

DATA: FILE IS academic.dat;

TYPE = CORRELATION ;

NOBSERVATIONS = 4753;

! Define variable names

VARIABLE:

NAMES ARE y1-y9;

! Define estimation method

ANALYSIS:

ESTIMATOR = ML;

! Model specification

MODEL:

! Define specific factors for the general factor (overall ability)

! All factor loadings are freely estimated

fg by y1-y9* (load1-load9);

! Define specific factors for three ability traits
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! All factor loadings are set equal to the general factor loadings

f1 by y1* y4* y7* (load1 load4 load7) ;

f2 BY y2* y5* y8* (load2 load5 load8);

f3 by y3* y6* y9* (load3 load6 load9);

! Define specific factors for three occasions

! All factor loadings are set equal to the general factor loadings

m1 by y1-y3* (load1-load3) ;

m2 BY y4-y6* (load4-load6) ;

m3 BY y7-y9* (load7-load9) ;

! Set variance for the general factor to 1

! Freely estimate the variances for the two sets of specific factors

fg@1;

! Set covariances among all factors to 0

fg with f1-f3@0;

fg with m1-m3@0;

m1 with m2-m3@0;

m2 with m3@0;

f1 with f2-f3@0;

f2 with f3@0;

f1-f3 with m1-m3@0;

Appendix F

We describe the simulation study that we conducted to evaluate parameter recovery and

scalability of the proposed models with an increasing number (K) of secondary sources. Each

secondary source was set to have 3 conditions (NSk
= 3) and there was one manifest variable

(n = 1) for each combination of conditions across the K sources. Hence, the number of secondary

factors is Ns = NSk
×K = 3K and the total number of manifest variables is I = (Nsk)

K . For

the general model, the general and secondary factor loadings were randomly sampled from a

set of [1.0, 1.1, 1.2, ..., 2.5] and of [0.5, 0.6, 0.7, ..., 2.0] (with replacement), respectively. For the

proportional model, the proportionality constants were sampled from a set of [0.5, 0.6, 0.7, 0.8]

(with replacement). For both models, the residual variances were set to 1 for all I manifest

variables. We used the empirical covariance matrices as input and did not provide corresponding

mean vectors because the intercepts are not of interest. The total number of parameters to
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estimate (excluding the intercepts) is q = 2I + I ·K for the general model and q = 2I +NSk
·K

for the proportional model.

We set the number of secondary sources to K = 2, K = 3, K = 4 and K = 5 and used

a large sample size of N = 10000. Table 1 summarizes the number of secondary sources, the

number of secondary factors, the total number of manifest variables, the number of parameters,

and the computation time.

[Table 1 about here]

The number of the model parameters grows rapidly especially for the general model as the

number of the secondary variance sources increases. However, computation is fast and occurs

within 3 seconds when K ≤ 4 and even when K = 5, which is quite an unrealistic condition

in practice, the time used for the computation is still manageable (about 90 seconds) with a

regular computer (a 64-bit operating system with a Intel Dual Xeon 2.4-GHz processor computer

with 32 GB of memory). It is worth remarking that even though the number of parameters is

markedly reduced with the proportional model, its computation time is similar to the general

model’s. This is because the proportional model is currently estimated with Mplus as a general

model with a set of linear constraints.

Next, to evaluate the parameter recovery of the proposed models (general, proportional),

we generated 50 datasets assuming a realistic condition with K = 3 and N = 1000. Figure 1

displays box plots of the error (ϱ̂−ϱ) for all model parameters of the two models in this setting.

[Figure1 about here]

Parameter recovery of the general model as well as the proportional model appears to be

satisfactory, with no obvious bias, when the full information maximum likelihood estimation is

used in Mplus.
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Table 1.
Scalability of the general and proportional models in terms of model complexity and computation time.
K is the number of secondary variance sources considered, Ns is the number of secondary factors, I is
the total number of manifest variables, q is the number of model parameters (excluding the intercepts
that are not estimated), and Time is the computation time (in seconds) with Mplus.

K Ns I q Time (sec)

General model

K = 2 6 9 63 < 1

K = 3 9 27 189 < 1

K = 4 12 81 567 3

K = 5 15 243 1701 90

Proportional model

K = 2 6 9 33 < 1

K = 3 9 27 69 < 1

K = 4 12 81 177 3

K = 5 15 243 501 90
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Figure 1: The error ϱ̂ − ϱ of the parameters of the general model (q = 162, top panel) and the

proportional model (q = 90, bottom panel) when K = 3 and N = 1000.


