
Supplement to ‘Computation for Latent Variable Model

Estimation: A Unified Stochastic Proximal Framework’

In this supplement, we provide proofs of theoretical results in the main manuscript. We

define some notations:

• F pβq � hpβq � gpβq

• Bfpxq �  
z P Rp : fpyq ¥ fpxq � zJpy � xq � op}y � x}q as y Ñ x

(
• Gβpξq � BHpξ,βq{Bβ

• β�
γ pξq � argmin

xPB

!
GβpξqJpx� βq � gpxq � 1

2γ
}x� β}2D

)

• Uγpξ;βq � 1
γ
pβ � β�

γ pξqq

• Ep� | βq � ³ �πβpξqdξ, πβpξq is the posterior density for ξ given y and β

• Ft�1 � σpβp0q, ξpkq, 0 ¤ k ¤ t� 1q is a filtration of σ-field

• CpR�,Rpq denotes the continuous functions from R� to Rp

• ProxD
γ,gpβq � arg min

xPRn

!
gpxq � 1

2γ
}x� β}2D

)

A Proof of Lemma 1

Our stochastic updates can be re-formated as

βptq � βpt�1q � γtUγtpξptq;βpt�1qq. (A.1)
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Let Upξ;βq � BHpξ,βq{Bβ � Bgpβq and εγpξ;βq � Uγpξ;βq �ErUγpξ;βq | βs. By Lemma

7 of Duchi & Ruan (2018), for β P B and ε ¡ 0,

}Uγpξ;βq} ¤ }U pξ;βq}, and

Er}εγpξ;βq}2 | βs ¤ Er}Uγpξ;βqs}2 | βs

¤ ErL2
εpβ; ξq | βs

� Lεpβq2,

where Lεpβ; ξq � supβ1PB,}β1�β}¤ε }U pξ;βq} , Lεpβq � E rLεpβ; ξq2 | βs 12 . And Lεpβq   8 for

all β P B by Lemma 8 of Duchi & Ruan (2018).

So we have

Erεγtpξptq;βpt�1qq | Ft�1s � 0, Er}εγtpξptq;βpt�1qq}2 | Ft�1s ¤ Lεpβpt�1qq2, (A.2)

since βpt�1q P Ft�1, and given βpt�1q, ξptq is independent of ξpsq, s   t. Note that the in-

dependence holds true for exact sampling; For MCMC sampling, independence can also be

achieved for any precision after applying ‘thinning’ procedure.

Further since B is compact, there is a random variable B which is finite with probability

1, such that for t P N, }βptq} ¤ B. Together with step size condition in H5, we have

8̧

t�1

E
�
γ2t }εγtpξptq;βpt�1qq}2 | Ft�1

� ¤ 8̧

t�1

γ2t sup
}β}¤B,βPB

Lεpβq2 ¤ 8.

Thus γtεγtpξptq,βpt�1qq is a l2-summable martingale difference sequence adpated to Ft�1. By

standard martingale convergence result (e.g., Thm. 5.3.33, Dembo, 2016), we have with

probability 1, limn

°n
t�1 γtεγtpξptq,βpt�1qq exist and is finite.
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B Proof of Theorem 1

In Theorem 1, we establish the convergence of βptq to a stationary point β8 P B� using

differential inclusion techniques in Duchi & Ruan (2018). The proposed method can be

viewed as a special case of the general stochastic method discussed in Duchi & Ruan (2018)

with a few differences.

With additional assumptions, a similar convergence result can be derived. In what fol-

lows, we first show the linear interpolation process of our stochastic updates is asymptotically

equivalent to a differential inclusion, by verifying that conditions of Theorem 2 in Duchi &

Ruan (2018) hold for our case. Then, cluster points of any trajectory of the limiting differ-

ential inclusion are proved to be stationary points. Lastly, the convergence properties of our

original sequence can be shown from the functional convergence.

First we define the linear interpolation of the iterates βpkq:

βptq � βpkq� t� tk
tk�1 � tk

pβpk�1q�βpkqq and yptq � ErUγkpξpkq;βpk�1qq | βpk�1qs for t P rtk, tk�1q,

and βtp�q � βpt� �q, t P R� be the time-shifted process.

In order to use Theorem 2 of Duchi & Ruan (2018), which is a general functional con-

vergence theorem, conditions (i)-(iv) of Theorem 2 need to be verified for our case. Firstly,

the boundness condition (i) holds as B is compact given H1; Non-summable but square-

summable steps size condition (ii) holds given H5; And we have verified (iii), which is the

convergence of the summation of the weighted noise sequence, holds by Lemma 1; Lastly,

condition (iv) holds similarly in our case for the close-value mapping �Upβq � NBpβq
(see Lemma 10 in Duchi & Ruan (2018)), where Upβq � ∇hpβq � Bgpβq and NBpβq �
tv P Rp : xv,β1 � βy, for all β1 P Bu is the normal cone for B at β.

Based on Theorem 2 and Theorem 3 of Duchi & Ruan (2018), for any sequences tτku8k�1,

the function sequence βτkp�q is relatively compact in CpR�,Rpq and for any τk Ñ 8, any
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limit point of tβτkp�qu in CpR�,Rpq satisfies

β̄ptq � β̄p0q �
» t

0

ypτqdτ, where ypτq P �Upβpτqq �NBpβpτqq.

So the sample path of our algorithm is asymptotically equivalent to the differential inclusion

9β P �Upβq �NBpβq. (B.1)

and the converged differential inclusion have uniqueness and convergence properties (see

Theorem 4 of Duchi & Ruan (2018)).

Finally, according to Theorem 1 of Duchi & Ruan (2018), with probability 1,

rlim inf
t

F pβptqq, lim sup
t

F pβptqqs � F pB�q.

Consequently, given assumption H1, B is compact and B� contains finite points, we have the

objective value F pβptqq converges and all cluster points of the sequence tβptqu belong to B�.

By further assumption that different stationary points in B� have different objective

values, we have βptq converges to a stationary point in B�, with probability 1.

C Proof of Theorem 2

Follow the proofs in Section 6 of Atchadé et al. (2017), we first prove several lemmas, then

prove Theorem 2.

Lemma C.1. If g is convex and Lipschitz on B1 with Lipschitz constant K, or g � IBp�q. For
β,β1 P B1, any γ ¡ 0, and diagonal matrix D with diagonal entries δi P rc1, c2s, c2 ¥ c1 ¡ 0,

the following conditions hold.

(i) g
�
ProxD

γ,gpβq
�� g pβ1q ¤ � 1

γ

@
ProxD

γ,gpβq � β1,ProxD
γ,gpβq � β

D
D
.

(ii)
��ProxD

γ,gpβq � ProxD
γ,g pβ1q��2

D
����ProxD

γ,gpβq � β
�� �

ProxD
γ,g pβ1q � β1

���2
D
¤ }β � β1}2D.
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(iii) supγPp0,c1{Ls supβPB1
γ�1

��ProxD
γ,gpβq � β

��   8.

Proof of Lemma C.1.

If g � IBp�q, then for β P B1 � B, ProxD
γ,gpβq � β, so (i)-(iii) hold.

If g is Lipschitz (thus lower semi-continuous) and convex, given β,β1 P B1, γ ¡ 0,

Let p � ProxD
γ,gpβq � arg min

xPRn

!
gpxq � 1

2γ
}x� β}2D

)
, set pα � αβ1 � p1 � αqp, for

α P p0, 1q. We have

gppq � 1

2γ
}p� β}2D ¤ gppαq � 1

2γ
}pα � β}2D

Due to the convexity of g,

gppq ¤ αgpβ1q � p1 � αqgppq � 1

2γ
}αβ1 � αp� p� β}2D � 1

2γ
}p� β}2D

¤ αgpβ1q � p1 � αqgppq � α

γ
xp� β1,p� βyD � α2

2γ
}β1 � p}2D.

So

gppq � gpβ1q ¤ �1

γ
xp� β1,p� βyD � α

2γ
}β1 � p}2D

Let α Ó 0, we have the desired inequality (i).

Further let q � ProxD
γ,gpβ1q, by (i), we have

gppq � 1

γ
xp� q,p� βyD ¤ gpqq

gpqq � 1

γ
xq � p, q � β1yD ¤ gppq

So

0 ¤ xp� q,β � β1 � p� qqyD,
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and

}p� q}2D ¤ xp� q,β � β1yD
}pp� βq � pq � β1q}2D ¤ xpβ � pq � pβ1 � qq,β � β1yD

Summation of the above two inequations yeilds (ii).

Given g is proper convex, Lipschitz on B1 with Lipschitz constant is K and (i), we have

0 ¤ γ�1
��ProxD

γ,gpβq � β
��2
D
¤ gpβq � gpProxD

γ,gpβqq ¤ K
��ProxD

γ,gpβq � β
��
D
.

Thus (iii) holds.

Lemma C.2. Assume H7 and γ P p0, c1{Ls, for β,β1, ξ P B1,

�2γ
�
F
�
ProxD

γ,gpβq
�� F pβ1q� ¥ ��ProxD

γ,gpβq � β1
��2
D

� 2
@
ProxD

γ,gpβq � β1, ξ � γD�1∇hpξq � βD
D
� }β1 � ξ}2D

(C.1)

Proof of Lemma C.2.

Using descent lemma of Lipschitz function ∇h, for any γ�1 ¥ L{c1,

hppq � h pξq ¤ @
D�1∇h pξq ,p� ξD

D
� 1

2γ
}p� ξ}2D

Since h is convex, so hpξq � x∇hpξq,β1 � ξy ¤ hpβ1q,

hppq � hpβ1q ¤ @
D�1∇hpξq,p� β1

D
D
� 1

2γ
}p� ξ}2D

And

gppq � gpβ1q ¤ �1

γ
xp� β1,p� βyD
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Summation of the above two, we have,

F ppq � F pβ1q ¤ �1

γ

@
p� β1, ξ � γD�1∇hpξq � βD

D
� 1

2γ
}β1 � ξ}2D � 1

2γ
}p� β1}2D

Lemma C.3. Let

Tγpβq � ProxD
γ,gpβ � γD�1∇hpβqq,

Sγpβq � ProxD
γ,gpβ � γD�1Gβpξqq,

η � D�1Gβpξq �D�1∇hpβq.

Then for β P B1, and γ ¡ 0,

}Tγpβq � Sγpβq}D ¤ γ}η}D (C.2)

Proof of Lemma C.3.

}Tγpβq � Sγpβq}D � }ProxD
γ,gpβ � γD�1∇hpβqq � ProxD

γ,gpβ � γD�1Gq}D
¤ }γD�1G� γD�1∇hpβq}D
¤ γ}η}D,

where the first inequality follows from Lemma C.1-(ii).

Lemma C.4. Assume H4 and H8. Then supt ErW ppξtqs   8.

Proof of Lemma C.4. As the conditional distribution of ξt given Ft�1 is Pβpt�1qpξt�1, �q, so

ErW ppξtqs � ErErW ppξtq|Ft�1ss � ErPβpt�1qW ppξt�1qs ¤ λErW ppξt�1qs � b.
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And by induction the proof is concluded.

Lemma C.5. Assume H1, H4, H7-(ii) and H8. There exist a constant C such that w.p.1,

for all t ¥ 0, }ηt} ¤ CW pξptqq.

Proof of Lemma C.5. By definition,

}ηt} � }pDptqq�1Gβpt�1qpξptqq�pDptqq�1∇hpβpt�1qq} ¤ 1

c1
psup
βPB1

|Gβ|W qW pξptqq� 1

c1
sup
βPB1

}∇hpβq}.

And the result follows as ∇h is Lipschitz and W ¥ 1.

Lemma C.6. Assume H1, H4, H5 and H8. If at ¥ 0, for t ¥ 1, there exist a constant C

such that �����
ņ

t�1

at}ηt}2Dptq

�����
L2

¤ C
ņ

t�1

at (C.3)

Proof of Lemma C.6. By Minkowski inequality,

�����
ņ

t�1

at}ηt}2Dptq

�����
L2

¤ C sup
t
}ηt}2L4

ņ

t�1

at ¤ C
ņ

t�1

at,

as the supremum is finite based on Lemma C.4 and Lemma C.5.

Lemma C.7. Assume H1, H4, and H6. Then

sup
γPp0,c1{Ls

sup
βPB1

}Tγpβq}   8. (C.4)

If additional H7-(ii) holds, then there exist a constant C such that for any β,β1 P B1,
γ, γ1 P p0, c1{Ls,

}Tγpβq � Tγ1pβ1q} ¤ Cpγ � γ1 � }β � β1}q (C.5)
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Proof of Lemma C.7. As β� � Tγpβ�q for any γ ¡ 0. And

}Tγpβq � β�} � }Tγpβq � Tγpβ�q}

� }ProxD
γ,gpβ � γD�1∇hpβqq � ProxD

γ,gpβ� � γD�1∇hpβ�qq}

¤ 1

c1
}β � γD�1∇hpβq � β� � γD�1∇hpβ�q}D

¤ p1 � c2
c1
q p}β} � }β�}q   8,

where the first and second inequality comes from Lipschitz proporty of ProxD
γ,g (see H7-(ii))

and ∇h, respectively. So we have (C.4) holds.

To prove (C.5), decompose Tγpβq � Tγ1pβ1q � Tγpβq � Tγ1pβq � Tγ1pβq � Tγ1pβ1q.

}Tγ1pβq � Tγ1pβ1q} ¤ 1

c1
}β � γ1D�1∇hpβq � β1 � γ1D�1∇hpβ1q}D

¤ c2
c1
}β � β1} � 2 supβPB1

}∇hpβq}
c1

γ1

¤ Cpγ1 � }β � β1}q.

Since H6 and B1 is compact, supβPB1
}∇hpβq}   8.

}Tγpβq � Tγ1pβq} � }ProxD
γ,gpβ � γD�1∇hpβqq � Proxγ1,gpβ � γ1D�1∇hpβqq}

� }ProxD
γ,gpβ � γD�1∇hpβqq � ProxD

γ,gpβq}

� }ProxD
γ1,gpβ � γ1D�1∇hpβqq � ProxD

γ1,gpβq}

� }ProxD
γ,gpβq � ProxD

γ1,gpβq}

¤ 1

c1

�
sup
βPB1

}∇hpβq}pγ � γ1q � }ProxD
γ,gpβq � β}D � }ProxD

γ1,gpβq � β}D



¤ 1

c1

�
sup
βPB1

}∇hpβq} � c2 sup
γPp0,c1{Ls

sup
βPB1

}Proxγ,gpβq � β}
�
pγ � γ1q ¤ Cpγ � γ1q.

The above inequality follows from assumption H7-(ii).
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Proof of Theorem 2.

By assumption β� P B1, and β� � arg minβPB1
F pβq :� minF. Apply (C.1) with β Ð

βptq � γt�1

�
Dpt�1q

��1
Gβptqpξpt�1qq, ξ Ð βptq, β1 Ð β�, γ Ð γt�1,D Ð Dpt�1q, we have

}βpt�1q�β�}2Dpt�1q ¤ }βptq�β�}2Dpt�1q�2γt�1

�
F pβpt�1qq � F pβ�q

��2γt�1

@
βpt�1q � β�,ηt�1

D
Dpt�1q .

(C.6)

By rearranging (C.6), we have

F pβpt�1qq � F pβ�q ¤ 1

2γt�1

�}βptq � β�}2Dpt�1q � }βpt�1q � β�}2Dpt�1q

�� @
βpt�1q � β�,ηt�1

D
Dpt�1q

¤ 1

2

�
1

γt�1

� 1

γt



}βptq � β�}2Dpt�1q � 1

2γt�1

}βpt�1q � β�}2Dpt�1q

� 1

2γt
}βptq � β�}2Dpt�1q �

@
βpt�1q � β�,ηt�1

D
Dpt�1q

Sum from t � 0, . . . , n� 1, and decompose

xβptq � β�,ηtyDptq � @
βptq � Tγt

�
βpt�1q

�
,ηt

D
Dptq �

@
Tγt

�
βpt�1q

�� β�,ηtDDptq .

By (C.2), we have
��@βptq � Tγt

�
βpt�1q

�
,ηt

D
Dptq

�� ¤ γt }ηt}2Dptq , so

ņ

t�1

�
F pβptqq � minF

� ¤ ņ

t�1

1

2

�
1

γt
� 1

γt�1



}βpt�1q � β�}2Dptq � 1

2γ0
}βp0q � β�}2Dp1q

�
n�1̧

t�1

1

2γt
}βptq � β�}2Dpt�1q�Dptq �

ņ

t�1

@
Tγt

�
βpt�1q

�� β�, ηtDDptq �
ņ

t�1

γt }ηt}2Dptq

(C.7)

Under the assumptions H6, the function F is convex so that

F pβ̄nq ¤ 1

n

ņ

t�1

F pβptqq. (C.8)

Denote } � }L2 � pE} � }2q1{2 . By (C.7) and Minkowski inequality, we have there exists a

10



constant C ¡ 0, such that

}F pβ̄nq � minF }L2 ¤
C

n

� ņ

t�1

���� 1

γt
� 1

γt�1

����� 1

γ0
�

n�1̧

t�1

1

γt

��Dpt�1q �Dptq
��
L2

�
�����
ņ

t�1

@
Tγtpβptqq,ηt

D
Dptq

�����
L2

�
�����
ņ

t�1

xβ�,ηtyDptq

�����
L2

�
�����
ņ

t�1

γt}ηt}2Dptq

�����
L2



.

By assumption, we assume γt � Ct�α, α P p1{2, 1s,

ņ

t�1

���� 1

γt
� 1

γt�1

���� � Opnαq,
n�1̧

t�1

1

γt

��Dpt�1q �Dptq
��
L2

� Opnαq

Apply at � γt, in Lemma C.6

�����
ņ

t�1

γt}ηt}2Dpt�1q

�����
L2

¤ C
ņ

t�1

γt, (C.9)

and
°n
t�1 γt � Opn1�αq for α P p1{2, 1q, and

°n
t�1 γt � Oplnnq for α � 1.

When ξptq are sampled exactly, i.e., unbiased case, combine Lemma C.7 and Proposition

18 of Atchadé et al. (2017), there exists a constant C such that

�����
ņ

t�0

@
Aγt�1pβptqq,ηt

D
Dptq

�����
L2

¤ C
?
n.

Similarly, for the case of biased approximation, combine Lemma C.7, and Proposition 19

of Atchadé et al. (2017), there exists a constant C such that

�����
ņ

t�0

@
Aγt�1pβptqqηt

D
Dptq

�����
L2

¤ C

�
1 �?

n�
ņ

t�0

γt

�
.

In both cases, let Aγtpβpt�1qq � Tγtpβpt�1qq and Aγtpβpt�1qq � I, we have

�����
ņ

t�1

@
Tγtpβpt�1qq,ηt

D
Dpt�1q

�����
L2

� Op?nq and

�����
ņ

t�1

xβ�,ηtyDpt�1q

�����
L2

� Op?nq
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Combine the above results and as h is strongly convex, so there exist a µ ¡ 0, such that

F pβ̄nq � F pβ�q ¥ µ
2
}β̄n � β�}2, so we have

E}β̄n � β�}2 ¤
�
E}β̄n � β�}4

�1{2 ¤ C}F pβ̄nq � minF }L2 ¤ Cnα�1.

As α P p1{2, 1s, by choosing α � 1{2 � ε, ε ¡ 0, we have the lowest bound Cn�
1
2
�ε.

D Additional Simulation Results

We provide an additional simulation study to (1) assess the estimation of the asymptotic variances of

parameter estimates and (2) assess the point estimation of the covariance between latent variables.

We consider a similar confirmatory IFA setting as in the simulation study I, with two factors,

twenty items (i.e., K � 2, J � 20), and the same design matrix Q. The intercept parameters and

non-zero loading parameters are drawn i.i.d. from the standard normal and a uniform distribution

over the interval p0.5, 1.5q, respectively. The variances of two factors are set to be 1 and the

covariance is set to be 0.4. For each of the three sample sizes N � 1000, 2000, 4000, 50 independent

datasets are generated. We then apply the proposed USP method with 1000 burn-in size, and 4000

total iterations. Note that we use a larger burn-in size and a larger number of iterations here to

ensure accurate computation of the asymptotic variances, because they tend to be more difficult to

compute than the point estimates. The results from the UPS algorithm are compared with those

from a standard EM algorithm that uses 31 quadrature points for each dimension.

We approximate the observed Fisher information matrix using the approach given in Remark 8.

Based on the approximated Fisher information matrix, we obtain the standard errors of parameter

estimates. The obtained standard errors are compared with those given by the EM algorithm.

The results are given in Figure D.1. Each panel of Figure D.1 corresponds to a combination of

a sample size and a type of parameters (loadings/intercepts/covariance). For each dataset and

each parameter, we obtain the standard errors of the parameter estimate from the UPS and EM

algorithms, respectively. These standard errors are shown as a point in the scatter plot, where the

x-axis gives the standard error from the EM algorithm and the y-axis gives the standard error from
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the USP method. As we can see, all the points concentrate along the diagonal line, suggesting that

the standard errors from the two algorithms are very close to each other.

We further assess the estimation of the covariance between the latent variables. The results are

given in Figure D.2. For each sample size, we compute the squared difference between the estimate

given by the USP algorithm and the true value (σ12 � 0.4) and visualize the squared errors from the

50 datasets using a box plot. We see that all the squared errors are quite small and they decrease

when the sample size increases.
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Figure D.1: Scatter plots of standard error estimates for loading parameters A, intercept
parameters d, and correlation parameter σ, from the EM method and the USP method
under different sample sizes. The x-axis and y-axis represent standard error estimates from
the EM and the USP method respectively. Each row corresponds to one sample size and
each column corresponds to one type of parameter.
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Figure D.2: Box plots of squared errors for estimated correlation parameter σ12 from the
USP method.
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