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This online supplement contains additional analytical and numerical results that could

not be part of the main text due to space limitations.

1 Supplement A: Information properties of ordinal cumulative models

In this section, I will study some Fisher information properties of ordinal cumulative

models (Bürkner & Vuorre, 2019; OCMs, Tutz, 2000). OCMs can be understood as a special

case of graded response models (Samejima, 1997) with item parameters assumed to be known

and with person parameters modeled as fixed effects. As they share the same underlying

structure, OCMs are closely related to binary ordinal and binary comparative judgments

models (Brown & Maydeu-Olivares, 2018), and thus also the binary TIRT models (Brown &

Maydeu-Olivares, 2011). Thus, understanding OCMs also improves our understanding of the

related comparative judgments models. I will establish mathematically that OCMs bridge

the gap between binary and continuous (uncategorized) models, in the sense that the

information obtainable from OCMs is greater than or equal to binary models (Theorem 1.4)

but lower than or equal to continuous models (Theorem 1.5). This may be intuitively clear

but is still worthwhile to put into mathematical terms so that the investigation of ordinal

TIRT models performed later in the paper rests on solid theoretical grounds.

1.1 The ordinal cumulative models

The OCM assumes that the observed response y is the categorization of a latent

continuous variable ỹ with a vector τ = (τ1, . . . , τK) of ordered inner thresholds that

partition the values of ỹ into the K + 1 observed categories of y:

y = k ⇔ τk−1 < ỹ ≤ τk for 1 ≤ k ≤ K + 1. (1)

For notational convenience, the outer thresholds are set to τ0 = −∞ and τK+1 =∞. A

regression model is imposed on ỹ via

ỹ = h(η) + ε, (2)
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where h : RT → R, η → h(η) is a once-differentiable function of the (person) parameters η

(i.e., the predictor term in a regression model), and ε is a random error following a continuous

distribution with cumulative distribution function F . For the purposes of this paper, only

the person parameter η are of interest, while the item parameters, including the thresholds

τk, are considered to be known. The category probabilities pk(η) := p(Y = k | η) evaluate to

pk(η) = F (τk − h(η))− F (τk−1 − h(η)). (3)

The log-likelihood l(y | η) of an OCM for a single observation is equal to the log-likelihood of

a categorical model with category probabilities pk(η) chosen as per Equation (3):

l(y | η) =
K+1∑
k=1

yk log(pk(η)), (4)

where yk = 1 if y = k and yk = 0 otherwise (one-hot encoding). Assuming conditional

independence of observations, the log-likelihood of multiple observations is simply the sum of

the log-likelihood values of the individual observations.

Evidently, an OCM with K = 1 inner thresholds reduces to binary regression with

probabilities p1(η) and p2(η) = 1− p1(η). For example, logistic regression is a special case of

the OCM with one threshold if F is the standard logistic distribution, as is probit regression

if F is the standard normal distribution (Bürkner & Vuorre, 2019).

1.2 Fisher Information of ordinal cumulative models

For the purpose of studying the information obtained from OCMs, we need to assume

that (a) F is fully specified (i.e., has no unknown parameters); (b) F is twice continuously

differentiable such that the corresponding density function f exists and is itself continuously

differentiable; (c) the density f has unbounded support (i.e., f(x) > 0 for all x ∈ R).

Assumption (a) ensures that the model is identified (Tutz, 2000), (b) ensures that the Fisher

information can be computed in all relevant cases (see below), and (c) ensures that the

predictor term h(η) can take on all real values. In the following, I will assume that F
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satisfies the conditions (a) to (c) above. For practical purposes, these assumptions are not

limiting because all common distributions applied in OCMs, most notably standard normal,

logistic, and extreme value distributions satisfy the assumptions.

The information contained in data y about model parameters η is captured by the

Fisher information matrix, which is generally defined as

I(η) = Ey
[
d l(η)
d η

d l(η)
d ηT

]
. (5)

In words, the Fisher information is the square of the log-likelihood’s gradient with respect to

the parameters in expectation over possible data (Lehmann & Casella, 2006). The Fisher

information plays a crucial role in both frequentist and Bayesian statistics and constitutes an

important tool to study theoretical properties of models. For example, in frequentist

statistics, the Fisher information is the inverse of the covariance matrix of an

(asymptotically) efficient estimator (Lehmann & Casella, 2006). Thus, understanding the

Fisher information of a model provides insights about how accurately parameters can be

estimated from a given study design.

Proposition 1.1. Define snk := τnk − hn(η) for every observation n ∈ {1, . . . , N} and every

threshold k ∈ {1, . . . , K}, where τnk denotes the kth threshold of the nth observation and

hn(η) denotes the predictor term of the nth observation. Then, for N conditionally

independent observations, an OCM with distribution F and number of inner thresholds K

has the Fisher information

INK(η) =
N∑
n=1

(
K+1∑
k=1

(f(sk)− f(sk−1))2

F (sk)− F (sk−1)

)
d h(η)
d η

d h(η)
d ηT

. (6)

Proof. Due to additivity of the Fisher information for conditionally independent observations,

it is sufficient to show the proposition for a single observation and so we drop the index n

below for readability. Set sk := τk − h(η) so that pk(η) = F (sk)− F (sk−1), then we have

d log(pk(η))
dη

= − f(sk)− f(sk−1)
F (sk)− F (sk−1)

dh(η)
dη

(7)
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from which we obtain

I1K(η) = Ey
[(
−

K+1∑
k=1

yk
f(sk)− f(sk−1)
F (sk)− F (sk−1)

dh(η)
dη

)(
−

K+1∑
k=1

yk
f(sk)− f(sk−1)
F (sk)− F (sk−1)

dh(η)
dηT

)]
(8)

= Ey
[
K+1∑
k=1

yk
(f(sk)− f(sk−1))2

(F (sk)− F (sk−1))2
dh(η)
dη

dh(η)
dηT

]
(9)

= Ey
[
K+1∑
k=1

yk
(f(sk)− f(sk−1))2

(F (sk)− F (sk−1))2

]
dh(η)
dη

dh(η)
dηT

, (10)

with the second equality following from the one-hot encoding of y = (y1, . . . , yK+1). Taking

the expectation with respect to y and again using pk(η) = F (sk)− F (sk−1), we conclude

I1K(η) =
(
K+1∑
k=1

(f(sk)− f(sk−1))2

F (sk)− F (sk−1)

)
dh(η)
dη

dh(η)
dηT

. (11)

The conclusion for N > 1 observation follows immediately from the additivity of the Fisher

information.

In the following, we will drop the observation index n and only work with a single

observation to improve readability. Due to additivity of the Fisher information, all the

statement and proofs remain correct with arbitrary number of (conditionally independent)

observations. We can now study what happens to the information on η as we increase the

number of thresholds K. Intuitively, the information should increase as well, and this is

indeed what happens if we restrict ourselves to OCM refinements in the following sense:

Definition 1.2. (Refinement) Let OCMK be an OCM with K inner thresholds

τ = (τ1, . . . , τK) and let OCMK+M be another OCM with K +M inner thresholds

τ ′ = (τ ′1, . . . , τ ′K+M). OCMK+M is called a refinement of OCMK if τ ⊂ τ ′. Further, if

τ ′m−1 < τ ′m < τ ′m+1 for any τ ′m ∈ τ ′ \ τ , OCMK+M is called a strict refinement of OCMK .

Refining an OCM simply means adding new thresholds while leaving the existing

thresholds untouched. In theory, the new thresholds may be the same as some of the existing

thresholds. Such a case may arise in practice if one response category is never chosen at all

so that the two corresponding thresholds ‘surrounding’ that category cannot be distinguished
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without prior information. To rule out this pathological case, strictly refining means adding

new thresholds so that at least one new threshold is not part of the set of existing thresholds.

In order to prove Theorem 1.4 below, I make use of a small, somewhat technical lemma.

Lemma 1.3. Let F be a continuous distribution function with density function f and let

s0, s1, s2 ∈ support(F ) with s0 < s2 and s1 ∈ [s0, s2]. Then, the following inequality holds:

(f(s1)− f(s0))2

F (s1)− F (s0) + (f(s2)− f(s1))2

F (s2)− F (s1) ≥
(f(s2)− f(s0))2

F (s2)− F (s0) . (12)

Moreover, the inequality holds strictly if and only if s1 is in the interior of [s0, s2].

Proof. Consider an ordinal model with latent distribution function G being equal to the

distribution F truncated at s0 from below and at sK+1 from above, such that

G(s) = F (s)− F (s0)
F (sK+1)− F (s0) (13)

with corresponding density function g(s) = f(s)(F (sK+1)− F (s0))−1 for s ∈ [s0, sK+1]. Let

sk := τk − h(η) for 0 ≤ k ≤ K + 1 with an ordered threshold vector (τ0, . . . , τK+1) of which

τ0 and τK+1 constitute the outer thresholds. This construction of sk comes without loss of

generality, as for every ordered vector (s0, . . . , sK+1), there is an ordered vector

(τ0, . . . , τK+1) such that the imposed equality holds. Using the same approach as in the proof

of Proposition 1.1, a lengthy but elementary calculation of the Fisher information leads to

IG,K(η) = IG,K(η)dh(η)
dη

dh(η)
dηT

, (14)

with scalar factor

IG,K(η) :=
K+1∑
k=1

(
f(sk)− f(sk−1)
F (sk)− F (sk−1) −

f(sK+1)− f(s0)
F (sK+1)− F (s0)

)2 (
F (sk)− F (sk−1)
F (sK+1)− F (s0)

)
. (15)

Assuming a single parameter η ∈ R with identity predictor term h(η) = η, the positive

semi-definiteness of the Fisher information IG,K(η) implies IG,K(η) ≥ 0. In the special case of

K = 1, again a lengthy but elementary calculation reveals

IG,1(η) = 1
F (s2)− F (s0)

(
(f(s1)− f(s0))2

F (s1)− F (s0) + (f(s2)− f(s1))2

F (s2)− F (s1) −
(f(s2)− f(s0))2

F (s2)− F (s0)

)
. (16)
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Since s2 > s0, we have 1
F (s2)−F (s0) > 0 and thus

(f(s1)− f(s0))2

F (s1)− F (s0) + (f(s2)− f(s1))2

F (s2)− F (s1) −
(f(s2)− f(s0))2

F (s2)− F (s0) ≥ 0 (17)

due to IG,K(η) ≥ 0. Because we imposed no restrictions on (s0, . . . , sK+1) other than it being

ordered, this inequality holds for arbitrary real values s0 ≤ s1 ≤ s2 such that s0 < s2.

Moreover, as IG,1(η) is positive definite if and only if s1 is in the interior of [s0, s2], Inequality

(17) holds strictly under exactly this condition.

On the basis of Lemma 1.3, proving that the Fisher information increases through

refinement is comparably straightforward.

Theorem 1.4. Refining an OCM increases its Fisher information. That is, if OCMK+M is

a refinement of OCMK, we have IK+M(η) = c(η) IK(η) with a constant c(η) ≥ 1. Moreover,

if OCMK+M is a strict refinement of OCMK, the inequality on c(η) even holds strictly.

Proof. of Theorem 1.4. I will prove the theorem for M = 1 from which the more general case

of M ≥ 1 directly follows by induction. Without loss of generality, assume that the refined

model with K +M = K + 1 thresholds has its additional threshold τ ? between the first and

second threshold of the base model, that is,

(τ̃1, . . . , τ̃K+1) = (τ1, τ
?, τ2, . . . , τK), (18)

where (τ1, . . . , τK) is the vector of K ordered thresholds of the base model. We set

sk := τk − h(η) and s? := τ ? − h(η). The two Fisher information matrices IK+1(η) and IK(η)

only differ in the their multiplicative scalar factors IK+1(η) and IK(η) whose difference

evaluates to

IK+1(η)− IK(η) = (f(s?)− f(s1))2

F (s?)− F (s1) + (f(s2)− f(s?))2

F (s2)− F (s?) −
(f(s2)− f(s1))2

F (s2)− F (s1) (19)

with all other terms canceling out. From Lemma 1.3, we know the above expression is

non-negative in case of τ1 ≤ τ ? ≤ τ2 (refinement) or even strictly positive in case of
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τ1 < τ ? < τ2 (strict-refinement). Accordingly, the constant c(η) given by

c(η) =
(

(f(s?)− f(s1))2

F (s?)− F (s1) + (f(s2)− f(s?))2

F (s2)− F (s?)

)
/

(
(f(s2)− f(s1))2

F (s2)− F (s1)

)
(20)

satisfies c(η) ≥ 1 (refinement) or even c(η) > 1 (strict refinement).

In particular, Theorem 1.4 implies that binary models, that is, ordinal models with a

single inner threshold are the worst case scenario information-wise provided that all other

aspects of the test design remain the same. Conversely, when increasing the number of

thresholds, one can show (Theorem 3.1 in Schmidt & Schwabe, 2015) that in the limit of

infinite response categories, the OCM looses no information compared to modeling the latent

variable ỹ directly via the corresponding continuous model. Formulating this result in

here-used notation, it reads as follows:

Theorem 1.5. Let Iỹ(η) denote the Fisher information of the continuous model on

ỹ = h(η) + ε. Then, limK→∞ IK(η) = Iỹ(η) for any series (OCMK)K≥1 of refinements such

that limK→∞ pk(η) = 0 for all k ∈ {1, . . . , K}.

Proof. Under the OCM assumptions stated in Section 1.2, the proof proceeds as the proof of

Theorem 3.1 in Schmidt and Schwabe (2015).

Together with Theorem 1.4, this establishes that the OCM fully bridges the

information gap between binary and continuous models. Of course, the truly continuous

model is unachievable in practice, but we can at least aim to approximate it well enough

using ordinal models with sufficient number of categories. Here, I have studied the

information obtainable from OCMs for a general class of distribution functions F and

arbitrary predictor terms h(η). In the following sections, I will focus more narrowly on the

important special case of comparative judgments expressed via Thurstonian IRT models.
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2 Supplement B: Bayesian Optimal Test Designs

In Section 3.1 in the main text, I have investigated optimal test designs from a purely

frequentist perspective by minimizing optimality criteria that only consider the Fisher

information matrix M . Although the obtained results are highly useful already, a drawback

of these criteria is that they do not take into account other central aspects of TIRT trait

score estimation, most importantly the sampling correlation matrix Ση and prior correlation

matrix Σprior. Incorporating these aspects into optimal design criteria is part of the field of

Bayesian optimal design. There are several perspectives from which one can approach

Bayesian optimality (for an overview see Chaloner & Verdinelli, 1995). Below, I will consider

and discuss three Bayesian perspectives, two of which are of general nature while the third is

specifically tailored to estimation accuracy in the here-considered Bayesian linear models for

comparative judgments.

The first perspective on Bayesian optimal design is to take the sampling distribution

p(η) (and thus Ση) into account while still performing frequentist inference. This approach is

most common in the classical optimal design literature and often referred to as

pseudo-Bayesian optimal design, because no prior is used for inference (Bürkner, Schwabe, &

Holling, 2019). Formally, pseudo-Bayesian optimal designs are derived by optimizing the

integral of a frequentist criterion over the parameters’ sampling distribution. For example, a

pseudo-Bayesian D-optimality criterion can be defined as

CpB
D (λ) :=

∫
CD(λ, η) p(η) dη, (21)

where CD(λ, η) is the D-optimality criterion and p(η) is the assumed person parameters’

sampling distribution. A Pseudo-Bayesian A-optimality criterion CpB
A (λ) can be defined

analogously. For linear TIRT models, pseudo-Bayesian optimal designs are straightforward

to derive as CD(λ, η) = CD(λ) does not depend on the parameters η. Accordingly an optimal

design is globally optimal for all η and thus CpB
D (λ) = CD(λ) independently of p(η). When

considering ordinal TIRT models, M(λ, τ, η) and hence the corresponding pseudo-Bayesian
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optimality criteria depend on η only through the information factor (Equqation 8 in the

main text). And we know from Theorem 3.1 that the (frequentist) optimal factor loadings λ

are globally optimal also in the ordinal case. Hence, they will remain the same when

considering pseudo-Bayesian optimality. Only the optimal thresholds τ a likely to change

under a pseudo-Bayesian perspective (see Bürkner, Schwabe, & Holling, 2019 for related

work) but a closer investigation is out of scope of this paper.

The second perspective is to optimize the Bayesian Fisher information, which is defined

as the Fisher information plus the prior information (e.g., Gill & Levit, 1995). From

Equation (23) in the main text, we see that the inverse of the posterior covariance matrix

Mpost := Σ−1
post = M + Σ−1

prior, (22)

of a Bayesian linear model is nothing else than the Bayesian Fisher information. I define

CB
D(λ) := CB

D(Mpost(λ)) := det(M−1
post)1/T = det(Mpost)−1/T , (23)

as the Bayesian D-optimality criterion and

CB
A (λ) := CB

A (Mpost(λ)) :=

√√√√ 1
T

T∑
i=1

(M−1
post)ii (24)

as the Bayesian A-optimality criterion, analogously to their frequentist counterparts. Both of

these Bayesian criteria can be justified by Bayesian decision theoretical considerations

(Chaloner & Verdinelli, 1995). Again, it is sensible to ask how item parameters should be

chosen in order to optimize these criteria. If the prior Σprior is diagonal, its inverse Σ−1
prior is

also diagonal. It follows that the optimal design is the same as if we did not add any prior

information due to the properties of the frequentist optimal designs discussed in Section 3.1

in the main text. If Σprior (and correspondingly Σ−1
prior) is not diagonal, the Bayesian

D-optimal and A-optimal designs are not necessarily available in closed form and one needs

to resort to numerical optimization methods for a given prior.

Below, I will illustrate Bayesian D- and A-optimal designs for T = 5 traits under
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selected design and prior conditions, by varying the following factors in a fully crossed

manner:

• The design type: Either a mixed keyed design (half equally and half unequally keyed

pairs) denoted as (+/-) or a fully equally keyed design denoted as (+).

• The number of item pairs per trait combination R = 2, 6, 10. For T = 5 traits, this

implies N = 20, 60, 100 number of item pairs in total.

• The prior correlation matrix Σprior: One of two choices taken from the NEO-PI-R

(Costa & McCrae, 1992; Ostendorf & Angleitner, 2004). Either the correlation matrix

of neuroticism, extraversion, conscientiousness, agreeableness, and openness to

experiences as also used in other TIRT-related papers (Brown & Maydeu-Olivares,

2011; Bürkner, Schulte, & Holling, 2019), or the same correlation matrix but with

neuroticism inverted so that higher values indicate more emotional stability. The

former correlation matrix contains a mix of negative, positive, and zero correlations

and we will be denoted as NEO(+/-). The latter correlation matrix contains only

non-negative correlation and will be denoted as NEO(+).

For the resulting design and prior conditions, the Bayesian D- and A-optimality

criteria are displayed in Figure 1 and 2, respectively, as a function of the mean factor loading

λ̄ and the factor loading difference λ∆ (compare Section 3.1 in the main text). For mixed

keyed designs, using maximal factor loadings λ̄ and λ∆ = 0 is both Bayesian D- and

A-optimal (see the right-hand sides of Figures 1 and 2). This is unsurprising given how

informative these mixed keyed designs are as compared to alternatives. We would need to

have an extreme prior and very few item pairs to induce another design to be optimal.

However, maximal factor loadings λ̄ and λ∆ = 0 are also Bayesian D-optimal for equally

keyed designs (see the left-hand side of Figure 1). This result is counter-intuitive as such

choices of factor loadings imply zero information on the within-person parameter mean and

hence non-identified person parameters (Brown, 2016). Unfortunately, I do not have a
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satisfactory explanation for this result at this point in time but in any case, the sensibility of

such Bayesian D-optimal designs for comparative judgments should be called into question.

In contrast, Bayesian A-optimal designs in the equally keyed case are more sensible as they

imply a balance between high factor loadings and high factor loading differences, as one

would expect. This balance depends on the number of item pairs and on the prior

correlation matrix (see the left-hand side of Figure 2). Specifically, more positively correlated

traits imply higher factor loading differences to be optimal, up to a point where λ∆ = λ̄/2

such that one of two factor loadings per item pair is zero (see top row of Figure 2).

Using optimality criteria based on the Bayesian Fisher information has two main

drawbacks. First, such criteria have no notion of a true sampling distribution but only of a

prior. Hence, potential misspecification of the prior cannot be accounted for by these criteria.

Second, in the reliability and expected RMSE measures, the Fisher information M does not

only appear in the context of the Bayesian Fisher information Mpost but also independently

thereof (see Section 3.3 in the main text). Accordingly, optimizing Mpost may leave M itself

to be highly non-optimal thus reducing the actual person parameter accuracy.

This naturally leads to the third perspective on Bayesian optimal designs for

comparative judgments, which is to consider designs that maximize reliability or minimize

expected RMSE. Such designs are not only most directly related to what we are aiming to

achieve in the end, but also incorporate both prior and sampling correlation matrix and

hence potential prior misspecification. Below, I illustrate reliability and expected RMSE for

the same conditions as for Bayesian D- and A-optimal designs but add another factor to

account for prior misspecification: The prior correlation matrix Σprior may either be equal to

Ση or diagonal, that is, with all correlations set to zero. The latter is the maximum entropy

choice in the absence of any prior knowledge about the correlations between traits.

As displayed in Figure 3 optimal designs for the reliability closely resemble the

Bayesian A-optimal designs: For mixed keyed designs maximal factor loadings are optimal
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Figure 1 . Bayesian D-optimality criterion for T = 5 traits as a function of the mean factor

loading λ̄ and factor loading difference λ∆. Brighter colors indicate better values. Black dots

indicate the location of the optimal design. Abbreviations: DT = design type; R = number

of comparisons per trait combination; Σprior = prior correlation matrix.

Figure 2 . Bayesian A-optimality criterion for T = 5 traits as a function of the mean factor

loading λ̄ and factor loading difference λ∆. Brighter colors indicate better values. Black dots

indicate the location of the optimal design. Abbreviations: DT = design type; R = number

of pairs per trait combination; Σprior = prior correlation matrix.
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throughout while for equally keyed designs, there is a trade-off between high mean factor

loadings and high factor loading differences. In particular, for more positively correlated

traits, a maximal factor loading difference is optimal which implies one of the two factor

loadings per item pair to be zero. At least for T = 5 traits, using a misspecified diagonal

prior does not change the optimal design noticeably. The optimal designs for the expected

RMSE are highly similar to those of the reliability within a given condition (see Figure 4).

Figure 3 . Reliability criterion for T = 5 traits as a function of the mean factor loading λ̄ and

factor loading difference λ∆. Brighter colors indicate better values. Black dots indicate the

location of the optimal design. Abbreviations: DT = design type; R = number of pairs per

trait combination; Ση = true sampling correlation matrix; Σprior = prior correlation matrix.
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Figure 4 . RMSE criterion for T = 5 traits as a function of the mean factor loading λ̄ and

factor loading difference λ∆. Brighter colors indicate better values. Black dots indicate

the location of the optimal design. The left-most part of the grids are not shown to avoid

obfuscating the color scale. Abbreviations: DT = design type; R = number of pairs per trait

combination; Ση = true sampling correlation matrix; Σprior = prior correlation matrix.
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3 Supplement C: Varying the total number of item pairs

Here, I present additional results obtained in the numerical experiments described in

Section 4.2 in the main text, where I systematically varied the total number of item pairs B.

Figure 5 . Person-trait-specific RMSEs (dots) for B = 270 number of comparisons as a function

of the true trait scores η. Expected RMSEs are shown as horizonal lines. Abbreviations:

T = number of traits; λ̄ = mean factor loading; λ∆ = factor loading difference; Ση = true

sampling correlation matrix.

The shrinkage of parameter estimates induced by the prior is not the cause for any of

the RMSE patterns identified in the main text, as all figures display the RMSE of δpost, an

estimate of η from which prior shrinkage was removed already. In comparison, the

corresponding results for µpost, which still contains prior shrinkage, show an even stronger

dependency on η̄ (see Figure 8). In contrast to the within-person mean η̄, the within-person

root mean squared difference (RMSD) of the η values cannot explain much of the RMSE

variation in any of the conditions (see Figure 9). This clearly demonstrates that differences

in between traits of the same person can be estimated well as long as equally keyed item

pairs are present confirming theoretical results (see also Brown & Maydeu-Olivares, 2011).
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Figure 6 . Person-trait-specific RMSE differences (dots) between using the true prior (Σprior =

Ση) and a diagonal prior. Results are displayed for B = 90 number of comparisons as a function

of the true trait scores η. Expected RMSEs are shown as horizonal lines. Abbreviations:

T = number of traits; λ̄ = mean factor loading; λ∆ = factor loading difference; Ση = true

sampling correlation matrix.
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Figure 7 . Person-trait-specific RMSEs (dots) for B = 90 number of comparisons as a function

of the simulation trial. Expected RMSEs are shown as horizonal lines. Abbreviations: T

= number of traits; λ̄ = mean factor loading; λ∆ = factor loading difference; Ση = true

sampling correlation matrix.
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Figure 8 . Person-trait-specific RMSEs (dots) for the original posterior mean estimate µpost

which is affected by prior shrinkage. Results are shown for B = 90 number of comparisons

as a function of the true trait scores η. Expected RMSEs are shown as horizonal lines.

Abbreviations: T = number of traits; λ̄ = mean factor loading; λ∆ = factor loading difference;

Ση = true sampling correlation matrix.
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Figure 9 . Person-specific RMSEs (dots; averaged over traits) for B = 90 number of compar-

isons as a function of the true within-person root mean-squared differences RMSDη. Expected

RMSEs are shown as horizonal lines. Abbreviations: T = number of traits; λ̄ = mean factor

loading; λ∆ = factor loading difference; Ση = true sampling correlation matrix.
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As a third, somewhat indirect measure of estimation accuracy, let us consider the

inter-trait correlation matrix, which is a scaled version of the covariance matrix Varỹ,η(µpost):

Corỹ,η(µpost) = S̃Varỹ,η(µpost)S̃, (25)

where S̃ is a diagonal scaling matrix with diagonal elements S̃ii = (Varỹ,η(µpost)ii)−1/2. This

correlation matrix is interesting to study as the factors influencing Corỹ,η(µpost) will also

naturally influence estimates of Σprior, if the latter is estimated. Remember that, in this

paper, I consider Σprior known for the purpose of the mathematical analysis; but in practice,

the prior correlation matrix will represent a hyperparameter to be estimated from the data

(Brown & Maydeu-Olivares, 2011). From Equation 41 in the main text, we see that

Corỹ,η(µpost)⇒ Ση as the test information approaches infinity. However, as is clear from

Equation 43 in the main text, the finite sample behavior of Corỹ,η(µpost) may be very

different depending on the test design.

For the same selected conditions shown for reliability and RMSE in the main text,

Figure 10 illustrates the expected absolute bias of the trait estimates’ correlation matrix

Corỹ,η(µpost) with respect to true trait score correlation matrix Ση. This correlation bias is

particularly strong for equally keyed designs with smaller number of traits (T ≤ 5) and small

factor loading differences (λ∆ = 0.1). Under these conditions, trait score estimates show the

strongest partial ipsativity as within-person trait scores means cannot be estimated well

from such designs. In most other conditions, biases are relatively small (bias < 0.1) except in

cases with a misspecified (diagonal) prior Σprior where biases may be much larger, in

particular for equally keyed designs.
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Figure 10 . Expected absolute bias of the estimated trait scores’ inter-correlations for B = 90

number of item pairs as a function of the number of traits T . Abbreviations: λ̄ = mean

factor loading; λ∆ = factor loading difference; Ση = true sampling correlation matrix; Σprior

= prior correlation matrix.

4 Supplement D: Varying the number of item pairs per trait

Here, I present results obtained from additional numerical experiments comparable to

those described Section 4.2 in the main text. However, instead of systematically varying the

total number of item pairs B, I systematically varied the number of item pairs per trait BT ,

which took on values of BT = 12, 24. Figures 11, 12, and 13 display the same conditions as

Figures 8, 9, and 10 in the main text, except that BT = 12 instead of B = 90 was used.
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Figure 11 . Expected reliability for BT = 12 number of comparisons per trait combination as

a function of the number of traits T . Abbreviations: λ̄ = mean factor loading; λ∆ = factor

loading difference; Ση = true sampling correlation matrix; Σprior = prior correlation matrix.

5 Supplement E: Increasing test information by measuring more traits

In addition to the two mechanisms identified in the main text of the paper, there is a

third mechanism related to the true sampling correlation matrix Ση. This is was first

identified by Baron (1996) and is discussed in some more detail below for reasons of

completeness. As the number of traits increases, the variance of the within-person mean η̄

across individuals decreases. In Figure 10 in the main text, we had seen that the strikingly

high RMSEs for individuals with overall low or high η̄ appear much less frequently when

increasing the number of traits to T ≥ 10. This can be explained as follows: When

increasing the number of traits measured within a test, more extreme within-person means η̄

become less likely as the variance of η̄ reduces with increasing T . In the most simple case,

for T uncorrelated traits each with Varη(ηi) = 1, we have Varη(η̄) = 1
T
. This variance further

decreases through negative correlations between traits, while it increases through positive

correlations, essentially explaining the differences between the conditions Ση = Neo(+/−)
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Figure 12 . Person-trait-specific RMSEs (dots) for BT = 12 number of comparisons per trait

combination as a function of the true trait scores η. Expected RMSEs are shown as horizonal

lines. Abbreviations: T = number of traits; λ̄ = mean factor loading; λ∆ = factor loading

difference; Ση = true sampling correlation matrix.
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Figure 13 . Person-specific RMSEs (dots; averaged over traits) for BT = 12 number of

comparisons per trait combination as a function of the true within-person trait score mean η̄.

Expected RMSEs are shown as horizonal lines. Abbreviations: T = number of traits; λ̄ =

mean factor loading; λ∆ = factor loading difference; Ση = true sampling correlation matrix.
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and Ση = Neo(+), as shown in the top panel of Figure 14. However, if there was a person

with an extreme average trait score, their estimates would still have show comparably high

RMSE even for a large number of traits, as shown in the bottom panel of Figure 14.

Figure 14 . Density (top) and expected RMSE (bottom) as a function of the true within-

person trait score mean η̄. Abbreviations: Ση = true sampling correlation matrix; C(0.3) =

correlation matrix with all off-diagonal elements set to 0.3.
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