Supplemental Material to “Identifiability of Latent Class Models

with Covariates”

This supplementary material contains two sections. Section A provides the proofs of propo-
sitions and theorems from Section 3 and Section 4 of the main article. Section B gives the

proofs of lemmas introduced in Section A.

A Proofs of Propositions and Theorems

In this section, we first introduce a lemma adapted from Proposition 3 in Huang and
Bandeen-Roche (2004), which is an important tool in later proofs to associate the identifia-
bility of parameters (3,7, A) with the identifiability of (n’,©") = {n.,0},.:j =1,...,J,r =
0,....M; —1,¢=0,...,C =1}, fori=1,...,N.

Lemma 1. For any subjecti = 1,..., N, we define transformed variables (€', w") = {€., Wjrc :
j=1...,J;r=0,...,.M; —1,¢=0,...,C — 1} such that (n*,©") and (€', w") are related

through the following equations,

77(1; = e}é‘li(lec> ANE) ¢ = 07 ) C - 1)
L+ 2o exp(€)
. exp(w),..) . ‘
0re = , 73 o= 1,...,J;

1+ 300 exp(wiy,)

Then (n', ©®") are identifiable if and only if (€, w') are identifiable.
The proof of Lemma 1 is presented in Section B.

Proof of Proposition 1. We first prove the second part of Proposition 1 that (A3*) is neces-
sary for the identifiability of RegLCMs without covariates under (A1) and (A2*). It is equiv-
alent to show that if 4y, - - - ,1¥c_1 are not linearly independent, (n, ®) are not identifiable.

We prove it by the method of contradiction and assume the contrary that n are identifiable.
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Recall the definitions in Section 2, 7 = (19, -+ ,nc_1)" denotes the latent class membership
probability, where n. = P(L =¢) for c =0,--- ,C — 1. And ¥ = (g, ,¥c_1) denotes
the marginal probability matrix, where each entry ,. in 1. corresponding to a response
pattern r € &’ is

J
Yre=PR=7r|L=c)=]]0pre c=0--,C—1

j=1

Based on the above definitions, we write the response probability vector as

(P(R=7r):re8) =v.n (

—_
~—

As we assume 1 are identifiable, there exist no n’ # n such that P(R=r | ¥,n) = P(R =
r | U,n’). According to (1), P(R=7r |V,n) = P(R=1r | V,n') implies ¥V-n = ¥ -n’.
However, under the condition that g, -- ,1%c_1 are not linearly independent, there could
exist ' # n such that ¥-(n—mn’) = 0, and by the contradiction, (n, ®) are not identifiable.

Next, we prove the first part of Proposition 1, the necessity of (A4) for the identifiability
of RegLCMs under (A1)—(A3). That is, if ¢, -, ¢pc—1 are not linearly independent, then

(8,7, ) are not identifiable. This proof includes three steps.

Step 1: we prove if ¢yo, -+ ,¢dc_1 are not linearly independent, then by, -+, 5,
are not linearly independent for ¢ = 1,..., N, where each 1’ is an (S — 1)-dimensional
vector in which each element corresponds to a response pattern r = (ry,--- ,r;) € &' and

is defined as 9., = P(R; = r | L; = ¢, x;,2;). Equivalently, we need to prove if there
exists subject ¢ such that g, -- ,95_, are linearly independent, then ¢y, - ,pc_1 are
linearly independent. We use similar techniques as in the Proof of Proposition 2 in Huang
and Bandeen-Roche (2004). First, we associate the linear combinations of ¢.’s with 1.’s as
follows. For any linear combination of ¢,.’s with coefficients a.’s, there exist b.’s and Y such

that the following equation holds,

Cc-1 Cc-1 ‘ ‘
> acpe = (Z bc¢;> OY" (2)
c=0 c=0



where ® denotes the element-wise multiplication and

T

i J 1 /
Y' = | | . = ce
J=1 exp(Aijr; zijit+Aqir; Zijq) T (’/’1, ’TJ) €S Sx1

M;—1
7 1+ >0 exp(Vjse + Atjszin + -+ + AgisZijq)

b = acH s=1 Y . (3)

Jj=1 1+ Z eVisc
s=1

Therefore to show ¢.’s are linearly independent, we need to show that ZCC:_Ol a.¢. = 0 implies
ap =+ =ac_1 = 0. Based on (2), we have ZCC:_OI a.¢. = 0 implies ZCC:_OI byt = 0. Under
the condition that 1)}, ..., 1% _; are linearly independent, the equation

c-1

> bl = bowpl + -+ + o1l =0 (4)

=0
implies by = - -+ = bo—; = 0. And by (3), we have ag = --- = ac—; = 0. Hence, ¢y, ..., o1
are linearly independent when )}, ..., 15 _; are linearly independent and we complete the

proof for Step 1.

Step 2: We next introduce parameters €.’s and w?,.’s and show that they are not identifi-
able when 1)}, - - - ;1% _, are not linearly independent. By the similar arguments in proving
the necessity of (A43*), we have (n', %) are not identifiable when ), -+ , 15 _, are not
linearly independent for any subject i = 1,..., N. Recall in RegLCMs, (n‘,®") are func-
tionally dependent on the linear functions ! 3 and ~;. + zg;}\j, respectively. We follow the

definitions of (1, ®%) and (3,4, A) from (3) and (4) in Section 2.1 and let
Ei = szﬁc = Boc + Bicit + - + Bpeip.
fori=1,...,N,¢c=0,...,C —1. And
erc = Vjre T Zg;)\jr = Yjre + Ajrziji + 0+ AgirZijg-

fori=1,....N,j=1,...,J,r=0,--- ,M; —1and ¢ =0,...,C — 1. Then according

i

to Lemma 1, €.’s and w},,’s are not identifiable when (7', ®") are not identifiable. Hence,

e.’s and wj, s are not identifiable when 4, - - - , % _; are not linearly independent and we

complete the proof for Step 2.



Step 3: Lastly, we prove that (3,7, A) are not identifiable when €’’s and w;-,,c’s are not
identifiable by the method of contradiction. Assume to the contrary that 3 are identifiable
given €.’s and w?,’s are not identifiable. By the definition of identifiability, P(R | 8*,5, X) =

P(R | B',v,A) implies that 8* = B’. Because X has full column rank, according to the

system of linear equations

€ Iz -0 oy Boo - 50(0—1)
€= : =\ DT : = X,

€ 1 oyt -0 2y Bpo <+ Bpc-1)

we have €* = X 3* equivalent to € = X 3. So for all subject i, P(R; | €*,4,\) = P(R,; |
€’ 7, ) would force €* = €”, which contradicts the non-identifiability of ¢.’s. Therefore 3
is not identifiable. Using similar techniques, we can prove 7, A are not identifiable.
Combining the Step 1-3, we prove the first part of Proposition 1, and thus complete the
proof of Proposition 1. O

Proof of Proposition 2. Theorem 4.4 (a) in Gu and Xu (2020) showed that binary-response
CDMs are not generically identifiable if some attribute is required by only one item. We
adapt their proof of Theorem 4.4 (a) to establish that for polytomous-response CDMs or
RegCDMs, the parameters are not generically identifiable under (P1) that some attribute is
required by only one item. Consider polytomous-response CDMs first and let the Q)-matrix

to be
1 u

0 Q*
This @Q-matrix implies that «; is required by the first item only. For any (n,®), we can
construct (7,0) # (n,®) such that P(R =7 | n,0) = P(R = r | 7,0), and hence we
show that (n, ®) are not identifiable. To better illustrate the idea, we next use a to replace
c in all parameter subscripts, i.e. 1o = 7. and 0,4 = 0j,. given a’v = c. When j # 1, we
let n. = 7., Hjmzﬁ_jm forr=0,...,M; —1and c=0,...,C —1. When j = 1, we denote

o = (Oég, s ,OéK) € {0, 1}K71 and for all r; = 0,...,M; — 1, we let 0_17,1(070[/) = 917“1((),04’)’



and

~ 1 1
glrl(l,a’) = Eelm(l,a’) + (1 - E)elm(o,a’)7

where F is a constant in a small neighborhood of 1 and F # 1. So we have 917«1(1,0/) =+

O1r1(1,0r)- We also let

77(0,0/) = 70, + (1 - E) “N(1,e)s

N,y = E'n(l,a’)-

Hence, we have

Ne) T N0,y = N,a) T 1M0,00)

O1r (1.0 + O (0,00 T0.00) = 01 (1,0 (1,00) + O1r (0.00) 0,0 -

So for any r = (ry,--- ,r;) € &,
PR=r|¥,7p)=V-7

B HR=r;) - A{Ri=r1} _ A{Ri=r1} _
o Z H Jrs (Jal jl’) (a1,a) [917“1(11 C:’l) N(1,e) + ‘9]7“1 t)of’l) 7)o, a’)]
a’c{0,1} -1 j>1

a1€{0 1}
]I Rj=r;} _ A _ A _
Za 'e{0,1}%-1 H]>1 ];{«] joq fj)"f](al,a/)[em(l,a')??(l,a') + 017'1(0,41’)77(0,&’)]7
— a1€{0,1}
]I{R =r;} _ _
Za E{O{l}K} 1 H]>1 gri( Jal (]x/)'r/(al, )[77(1,04’) + 77(0,04’)]7
\ a1€{0,1
I[{R =r;}
Za E{O{I}K} 1 H]>1 gri( Jal (;/)77(&1, [917"1(1,(1’)77(1,0:’) + 911"1(0,(1’)77(0,01’)]7
_ a1€{0,1

]I Ri=r
Za E{O{I}K} 1 H3>1 ];{«] joq (]j)n(m a’)[n(l,a’) + 77(0,04’)]7
a1€40,1

]I{R =r;} I{R1=r I{Ri=r
= Z H grj( ]al ; 0417(1 [91‘7{“1 11 a/l)}n 1,a + 9111(10,04/1)}77(0,(1/)]
a’e{0,1}K-1j5>1
a1€{0,1}

= V.n=P(R=r|V,n).

Ry

1
Ry # 1

Ry

(8]

Ry #7“1

Equation (7) is derived based on (6) as well as the assumption that 1, = 7., ;.. = éjm for all
j=2,...,J,r=0,...,M;—1land ¢=0,...,C — 1. This proves (n, ®) are not identifiable

under (P1) in Proposition 2.



For polytomous-response RegCDMs, we have similar results by following the above proof.
That is, (1%, @) are not identifiable under (P1) for i = 1,..., N. Then following the same
arguments in Step 2-3 from the Proof of Proposition 1, we show that (3,7, A) in RegCDMs
are not identifiable given (n°, ®") are not identifiable.

Next we prove the remaining part, that is, the matrix ¥ in CDMs and the matrix ® in
RegCDMs have full column ranks under (P2). Before presenting the proof, we introduce
another probability matrix 7T-matrix of size S x C', where each row corresponds to one
response pattern » € S and each column corresponds to one latent class ¢ = 0,...,C — 1.
Each entry of T-matrix is defined as T,.. = P(R > r | L = ¢), where = denotes that for any
item j =1,...,J, R; > r;. According to a similar argument in Appendix Section 4.2 in Xu
(2017), T-matrix has full column rank under the condition that the corresponding Q-matrix
contains an identity submatrix Zy.

There exists a relation between the two probability matrices, T-matrix and ¥. Because
W excludes a reference response pattern, its size is (S — 1) x C. Denote ¥’ = (@7, @] )T
where W, is the row corresponding to the reference pattern. And W¥,.; is linearly dependent
on the rows in W because ), . P(R =17 | L =c) = 1. So ¥ has full column rank if and
only if W’ has full column rank. Further, ¥’ has full column rank if and only if T-matrix
has full column rank, because W’ is bijectively corresponding to T-matrix according to their
definitions. In conclusion, ¥ in the CDMs has full column rank when (-matrix contains
an identity submatrix Zx. According to the Proof of Proposition 2 in Huang and Bandeen-
Roche (2004), the matrix ® has full column rank when the matrix ¥ has full column rank.
So for RegCDMs, ® has full column rank when @-matrix contains an identity submatrix

Tk. |

Proof of Theorem 1. Following the similar idea in Huang and Bandeen-Roche (2004) page
15, we let f(R;m, ®) to be the likelihood function, and

R ,’7’ HP ]I{R 'r}

res

J
where § = ijl{O, cee Mj—l}- Let § = {771, o Ne—1, 010, - ,91(M1—1)0, T a9J1(0—1)7 Ty



6(m,-1y(c-1)}, so the Fisher information matrix is

g | (Qlosf dlog f\"
() (55)

B {R=r}0P(R=r) {R=r}0P(R=r) !
= B <Z P(R=r) o€ > (Z P(R=) o0& )

resS resS
B Z 1 (aP(R:r)> <6P(R:r))T
< P(R=r) oE ot
P(Rlzm) 0 0
_ 7 0 P(Rlzrg) 0 J
e

Hence the Fisher information matrix is non-singular if and only if J has full column rank.
According to Theorem 1 of Rothenberg (1971), (n, ®) are locally identifiable if and only
if the Fisher information matrix is non-singular when the true values of (n, ®) are regular
point of the information matrix. Therefore (1, ®) are locally identifiable if and only if the

Jacobian matrix J has full column rank. O

Proof of Theorem 2. As introduced in Section 4, we consider a hypothetical subject with all
covariates being zeros and denote its Jacobian matrix as J°. We use the following three steps
to prove that (3,~,A) are identifiable if and only if J° has full column rank.

Step 1: We first show that for subject i = 1,..., N, the Jacobian matrices J*, containing
the derivatives of conditional response probabilities with respect to parameters in n* and ©°,
have full column rank if and only if J° has full column rank. This proof is adapted from the
Proof of Proposition 1 in Huang and Bandeen-Roche (2004).

First, we need to set up a few notations. The Jacobian matrix J¢ is written as

/L‘ P i DY i i ... Z‘ .. 1: .. Z
J' = <J771’ ) JnC’fl’ J9110’ ) J91(M1—1)o’ ’ J9J1(c-1)’ ’ J9J(MJ—1)(C—1)) :

Each entry in Jf]c is a partial derivative of response probability P(R = r) with respect to 7



at true value of 1%, which is computed to be

OP(R .
(87’/7 H 0;7“]0 H 6]7" 0 — - /l/)i'O

c

And each entry in Je is a partial derivative of response probability P(R = r) with respect

to 0% at true value of #¢ . which is computed to be

Jjre jres
né Hd;éj ef;lrdm if ry=r,
OP(R =) A
Tﬁrc < e Hd;éj ‘gdrdm if ry = 07
0, otherwise.
or summarized as
ap( = 7‘) _ 771 7 (H{TJ = T} ]I{TJ _ O})
aeérc enre 9;7“0 0;00

In addition to J?, we also define the following two sets of vectors for this proof. Denote 7=
{¢8,.. 2 Fu{n? (I{rj =r}/ JTC)®¢2 j=1,...,J,r=0,...,M;—1,¢=0,...,C—-1}
and J' = {h, .. e JU{n (Hry=r}/0, ) Ol j=1,...,J;r=0,....M; —1,c =
0,...,C — 1}, where I{r; = r} is a (S — 1)-dimensional vector containing all I{r; = r} for
r=(ry,...,r;) €S'. With the notations defined, we then introduce a useful lemma which

simplify the arguments in proving the linear independence of the columns in J° and J°.

Lemma 2. The Jacobian matriz J° has full column rank if and only if T’ are linearly
independent. The Jacobian matriz J* has full column rank if and only if T are linearly

independent.

The proof of Lemma, 2 is presented in Section B. According to Lemma 2, to prove J? has
full column rank if and only if J° has full column rank, we can equivalently show that J
are linearly independent if and only if 7’ are linearly independent. First, we associate the

linear combinations of J' to that of J° as follows. For any linear combinations of T with



coefficients ¢/, u’,,, there exist t2, uj,. and W* such that the following equation holds

S Y 3 funat (U5 o)

j=1 r=0 c=0 Jre

= Zt°¢°+2 ZCZI{ Dl (I{T;O T}) @¢2} oW, (§)

j=1 r=0 ¢=0 jre
where
. J T
i _ . _ !
W = <Hj=1 eXp()\ljerijl + 4 )\qujzijq) = (7’1, R 7TJ) S S )S><1 ’
M;—1
J 14+ 3 evise

0o _ j s=1
tc - tZH Mjfl ) (9)

=11 4+ Z eXp(’Yjsc + Aljszijl ++ )‘qjszijq)

s=1
u° _ i eXp(Blcxil + -+ ﬁpcl'ip)
Jre JTCeXp(/\ljr-Ziﬂ _|_ e + )‘qujzijq)
M;—1
{1+ E e H1+ E exp(Yjse + Mjaijt + -+ + Agjazisg) }
‘ &l M;—1

{1+ l; exp(Bo + Buxi + -+ + ﬁpl:l:ip)}{l + 2—31 eise }

M;—1
1+ Z 6'7jsc

J
< [[—— =l . (10)

J
=11 4+ Z exp(Vjse + AijsZijt + -+ + AgjsZijq)

The next two parts prove that T are linearly independent if and only if 3’ are linearly
independent in two directions.

Part (i): We prove T are linearly independent if 7’ are linearly independent. To show
T are linearly independent, we need to show that

CD +ZZWZI{M(I“;P M=) o} -0 (1)

1 r=0 c=0 Jre

implies ¢, = 0 and u},, = 0. By (8), for any t, u},. such that (11) holds, we have

J M;j—-1Cc-1

ztw DI IPRTMICL A

j=1 r=0 c¢=0 J’“C



Under the condition that J= are linearly independent, {2 = 0 and ujrc = 0. Then by (9) and
(10), we have ¢\ = 0 and ujrc—()forj: L,...,J,r=0,...,M;—land ¢=0,...,C — 1.
So J' are linearly independent.

Part (i1): We prove 7’ arc linearly independent if J' are linearly independent. This part
is similar to Part (i). To show 7’ are linearly independent, we need to show that

ZtOwO + Z Zlczl{ WyrcTle <I{ij }) ®¢0} (12)

7=1 r=0 =0

implies ¢} = 0 and uj,, = 0. By (8), for any ¢?,u),, such that (12) holds, we have

Cc-1 J Mj—-1C-1

I APIPD ;{U;mm(fﬂ{’"g}c s ®¢Z} =0
Under the condition that J' are linearly independent, ¢’ = 0 and u],,c = 0, and hence t° = 0
and u},, = 0 by (9) and (10), for j =1,...,J,7=0,...,M; =l and ¢ =0,...,C — 1. So
3’ are linearly independent.

Combining Part (i) and Part (ii), we show T are linearly independent if and only if 7
are linearly independent. And therefore J* has full column rank if and only if J° has full
column rank.

Step 2: We introduce (€', w') and prove that they are identifiable if and only if J* has full
column rank. By following similar arguments in the Proof of Theorem 1, we have (n', ©)
are identifiable if and only if J¢ has full column rank, for ¢ = 1,..., N. Next, we define
(€', w') and the remaining is to show that they are identifiable if and only if (', ©") are

identifiable. Following the same arguments as Step 2 in Proof of Proposition 1, we let
Ei = sz,@c = Boc + BicTin + - + Bpcip.
forc=0,...,C —1. And
J}c Yire zg)\jr = Yjre + Ajrziji + -+ AgjrZijg-

fory=1,...,J,r=20,--- ,M; —1and ¢ = 0,...,C — 1. Then according to Lemma 1,
(€', w') are identifiable if and only if (n°, ©") are identifiable. Hence the proof for Step 2 is

complete.
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Step 3: The final step is to show (3,4, ) are identifiable if and only if (€, w') are
identifiable. We have shown that (3,7, A) are not identifiable when (€', w?) are not identi-
fiable in the Proof of Proposition 1. So all left to show is the necessary part that (3,7, A)
are identifiable when (€’, w') are identifiable. We prove this result by the method of con-
tradiction. Assuming the contrary that 3 is not identifiable, there exist 8 # 3’ such that
P(R; | B,7,A) = P(R; | B,7,\). According to the system of linear equations

€ Iz o0 @y Boo - 50(0—1)
€= : = : DT : = X,
€ 1 oyt -0 oy Bpo + Bpc-1)
and because the full rank X is an injective mapping, we have 8 # (' implies that € = X3
is different from € = X 3 for at least one €' # €. However, since €'’s are identifiable, there
exist no €' # €' such that P(R; | €',w') = P(R; | €*,w"). By this contradiction, we prove
B is identifiable. Using similar arguments, we can show -, A are also identifiable and hence
complete the proof.
Combining Steps 1-3, we prove that (3,4, ) in RegCDMs are identifiable if and only if
J? has full column rank under (A1)—(A3). O

To prove the main results in Section 4, we next introduce other useful lemmas and
corollaries from existing works in literature. Lemma 3 and Corollaries 1-2 summarize the
conditions for the global identifiability of general restricted latent class models proposed
by Allman, Matias, and Rhodes (2009), which is based on the algebraic results in Kruskal
(1977).

Before presenting these lemmas and corollaries, we introduce the decomposition of W
and some notation definitions. The decomposition of ¥ is similar as the decomposition
of ® defined in Section 4 in the main text. We divide the total of J items into three
mutually exclusive item sets J1, J> and J3 containing .J;, Jo and J3 items respectively, with
Ji+ o+ J3=J. Fort =12 and 3, let S;, be the set containing the response patterns
from items in J; with cardinality of S;, to be r; = |S,,| = [[;c5 M;. The submatrix ¥, has

dimension x; x C'. The definition for the entries in W, is the same as in (10), except that each

11



row of W, corresponds to one response patterns r € S;, while each row of ¥ corresponds to

red.

Lemma 3. (Kruskal, 1977) Fort = 1,2 and 3, denote Oy = rankyx (W) as the Kruskal rank
of U, where ¥, is a decomposed matrix of ¥. If

Or + Oy + 03 > 2C +2,

then Wi, Wy and W3 uniquely determines the decomposition of ¥ up to simultaneous permu-

tation and rescaling of columns.

Corollary 1. (Allman et al., 2009) Consider the restricted latent class models with C' classes.
Fort=1,2 and 3, let ¥, denote a decomposed matrix of ¥ and Oy denote its Kruskal rank.

If
O1+ 03+ 03 > 20 + 2,

then the parameters of the model are uniquely identifiable, up to label swapping.

Corollary 2. (Allman et al., 2009) Continue with the setting in Corollary 1. Fort =1,2,3,

let W, denote a decomposed matrixz of ¥ and k; denote its row dimension. If
min{C, k1 } + min{C, ko } + min{C, 3} > 2C + 2,

Then the parameters of the restricted latent class models are generically identifiable up to

label swapping.

Combining all these results as well as Proposition 2 in Huang and Bandeen-Roche (2004),

we present Lemma 4, which is the key in the proof of Theorem 3.

Lemma 4. For polytomous-response RegLCMs, (n', @) are strictly identifiable if (A1) ,(A2)
and (B3.a) hold, and are generically identifiable if (A1), (A2) and (B3.b) hold.

(B3) The matriz ® can be decomposed into ®1, ®y, ®3, with Kruskal rank of each ®; to be
I; and the dimension of each ®; to be Ky x C. We have either

(Bé’a) 11 + [2 + 13 Z 20+ 2,’ or

12



(B3.b) min{C, k1} + min{C, ko } + min{C, k3} > 2C + 2.
The proof of Lemma 4 is provided in Section B.

Proof of Theorem 3. From condition (C4), the Kruskal rank I; of ®, fulfill the arithmetic
condition of (B3.a) in Lemma 4. Given (A1) and (A2), (A1) and (A2) also hold. According
to Lemma 4, the RegL.CMs are strictly identifiable at (n’, ©%) for i = 1,..., N. Following
the similar arguments in Step 2-3 from the Proof of Theorem 2, we show that (3,7, A) in
RegLCMs are identifiable given (n°, ®") are identifiable under (A3). Hence we complete the
proof. O

Proof of Proposition 3. As mentioned in Section 4, (C'4*) is the sufficient condition for the
identifiability of general restricted latent class models with binary responses according to
Theorem 1 in Xu (2017). This condition is further extended to restricted latent class models
with polytomous responses by Theorem 2 in Culpepper (2019). So for RegCDMs, (n', ©°) are
strictly identifiable given (C'4*) fori = 1,..., N. Then based on the the similar arguments in
Step 2-3 from the Proof of Theorem 2, (3,7, A) in RegCDMs are identifiable given (', ©7)
are identifiable. O

Proof of Theorem 4. For t = 1,2 and 3, the decomposed matrix ®, and the decomposed
matrix ¥, have the same row dimension x;. So given (C4'), condition (B3.b) in Lemma
4 holds. According to Lemma 4, RegL.LCMs are generically identifiable at (n°, @) for i =
1,..., N. Based on the similar arguments in Step 2-3 from the Proof of Theorem 2, (8,7, \)
in RegLCMs are generically identifiable given (n’, ©) are generically identifiable. O

Proof of Proposition 4. In Proposition 5.1(b) of Gu and Xu (2020), the condition (C4”) is
sufficient for the generic identifiability of CDMs. So for RegCDMs, (n?, ©%) are generically
identifiable under (C4”) for i = 1,..., N. Based on the the similar arguments in Step 2-3
from the Proof of Theorem 2, (3,7, A) in RegCDMs are generically identifiable given (n’, ©%)

are generically identifiable. O
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B Proofs of Lemmas

Proof of Lemma 1. For notational convenience, we use 1, ®, € and w to denote the pa-
rameters ', O, € and w’ of a general subject 7. According to the definition of iden-
tifiability, (1, ®) are identifiable means that there exist no (n,®) # (n’, ©’) such that
P(R=17r|n,0)=PR=r|n,0). To prove Lemma 1 that (n, ©) are identifiable if
and only if (€, w) are identifiable, we need to show that the transformation from (n, ©) to
(€, w) is bijective. We next illustrate this bijective mapping from 7 to € holds by showing
(M0, -+ snc—1) = (g, -+ 1 Me—1) if and only if (eo, -+, €c—1) = (€g, -+, €0y)-

First, we show that (no, -+ ,nc-1) = (0}, - - , Ny ) implies (€g, - -+ ,€c—1) = (€4, ,€a_1)-

For ¢=0,...,C — 1, under the condition that

efe ee'c
/
Ne = 1 o1 _.. 1 -1 o~ MNe
+ZS:1 e +ZS:1 ess
we can write
c-1
€0 €c €EC—1 €s
RS S B S viry:
e e o 14 ed!
s=1 €
. /
where € denotes the common ratio among all e /e, Hence
/
d=¢€—¢€, c=0,---,C—-1 (13)

Substituting every €, with €. — ¢ into the equation 1y = 7, we have
efo 660—6
L+ Y es 1+ e

Further simplifying the above equation gives

1 1
L+ Xl e e e

and then we have
c-1 c-1
s=1 s=1
which has unique solution 6 = 0. Taking § = 0 back into (13), we have €. = €, for all

c=0,...,C —1. Therefore € = (ep,- - ,€c—1) is equivalent to € = (ep, -+ ,€x_;)-

14



Next we prove (eg, - ,€c—1) = (€}, ,€x_y) implies (7o, ,No—1) = (G, Ne_q)-
This part is straightforward as (eg, -+ ,€c-1) = (€}, ,€,_,) implies that for any ¢ =
0,...,C —1, we have

exp(ec) exp( )
1+ Zs 1 exp(es) 1+Zs 1 exp( )
Equivalently, we show 1, = 7., for any ¢ =0,...,C — 1. So (o, ,nc-1) = (M- sNr—1)-

Combining the above arguments, we prove n = n’ if and only if € = €’.
Similar arguments can be applied to show ® = @’ if and only if w = w’. Hence (1, ©)
are identifiable if and only if (e, w) are identifiable. O

Proof of Lemma 2. We prove the the first part, that is, J° has full column rank if and only
if J° are linearly independent. The second part regarding J? can be similarly proved.

To show the linear independence of J° or jo, we need to establish the relationship between
the two linear combinations as follows. For any linear combinations of the columns in J°

9.

with coefficients h2’s and s, there exist a?’s and Y, .’s such that the following equation

Jjre jre
holds.
C-1 J M;—-1c-1
Hr;=r I{r, =0
S -w)+ 3 3 S AU M=o gek
e=1 j=1 r=1 c=0 jre j0c
= S e {r;=r}
=D aml+ ) {b?rcm( — )®¢3}, (15)
c=0 j=1 r=0 =0 Jre
where
hY, if ¢ # 0,
ap = (16)

—(hY + -+ 1Y), ifc=0,
and forany j=1,...,J,¢=0,...,C —1,

19 if r £ 0,
). = (17)

-4 l?(Mjfl)c% if r=0.

With the above relationship established, we next show that J° has full column rank if and

only if 7’ are linearly independent. When 7’ are linearly independent, (15) = 0 implies

15



a = 0 and B . = 0, which further implies 22 = 0 and [9,. = 0 by (16) and (17). So (14)

jre jre

= 0 implies h) = 0 and [j,. = 0. Hence, J° has full column ranks. Similarly, when J° has

full column ranks, (14) = 0 implies hY = 0 and 9., = 0 which further implies a? = 0 and

jre

b? . =0 by (16) and (17). So (15) = 0 implies a2 = 0 and b% . = 0. Hence, 7’ are linearly

jre jre

independent. L

Proof of Lemma 4. This proof is adapted from the Proof of Proposition 2 in Huang and
Bandeen-Roche (2004). Before presenting the proof, we set up a few notations. In Section
4, @ can be decomposed into @1, P, and P3, where each ®, has Kruskal rank [; and row
dimension ;. And in Appendix A, ¥ can be decomposed into ¥}, ¥} and W%, where each
\Ilé has Kruskal rank O, and the same row dimension x; as ®;. Denote the columns in ®; to
be ¢, -+ , Pr(c-1) and the columns in ¥} to be by, - -+, 9}y Conditions (A1) and (A2)
are shown to be necessary in Section 2 and assumed to hold. To prove (B3.a) is sufficient
for the strict identifiability of (n?, @), we first need to show that for ¢ = 1,2 and 3, given
®, has Kruskal rank I;, the equation O; > I holds, so that I1 + I, + I3 > 2C' + 2 from
(B3.a) implies O; + O3 + O3 > 2C' + 2. Then based on Corollary 1 that (n’, ©") are strictly
identifiable under the condition that O, + O + O3 > 2C + 2, we complete the proof of strict
identifiability.

The remaining part is to show O; > [ for t = 1,2 and 3. Without loss of generality, we
only show O; > I, then Oy > I, and O3 > I3 can be similarly proved. Under the condition
that any set of I; columns in @, are linearly independent, @1,(1), -+, Pis(1,) are linearly
independent for any permutation o on {1,...,I;} such that {c(1), o(2),---, o(l1)} C
{0,---,C —1}. To show Oy > I, we need i1y, -, WPio(1,) to be linearly independent for
any permutation set {o(1), 0(2),---, o([1)}. The linear combinations of ¢1,x1), - , Pro(1)
can be associated with the linear combinations of (1), -+ ,%is(1,) as follows. For any

permutation o and aq(), there exists by() and Y; such that

I

I
Z aa(c)’(/)ig(c) = (Z ba(c)¢1a(c)) © lflz (18)
c=1

c=1
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where

Yi = (H exp(Arjr,Zig1 + -+ Agjry Ziga) 1 7 = (115 1) € 8J1> |

jejl k1 X1
M;—1
1 + ZS:J]_ e’Yjso'(c)
bo’(c) Qo (c) H M;—1 : (19)
jer T+ 2252 exp(Vjso(e) + Aijszijn + -+ + AgjsZijg)
To show 11y, -+ , P10(1,) to be linearly independent, we need to show Zle ag(c)d)ig(c) =

0 implies a,() = 0 for any o. Based on (18), we have Zilzl ag(c)zpig(c) = 0 implies
Z£1=1 bo(c)Pio(c) = 0. Under the condition that ¢i5a1), -, P1,(1,) are linear independent,
Z?:l bo(e)P10(c) = 0 implies byq) = -+ = by;) = 0. And by (19), a,q) = -+ = a,,) = 0.
Hence ¥15(1), -+ ,¥10(1,) are linearly independent for any o. Hence we show O; > I; and
complete the proof for strict identifiability.

For condition (B3.b), because each W! has row dimension r; the same as ®; does and we
have min{C, k1 } + min{C, ko } + min{C, k3} > 2C + 2, according to Corollary 2, (n’, @) are
generically identifiable under (B3.b) for alli =1,..., N. O
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