
Supplemental Material to “Identifiability of Latent Class Models

with Covariates”

This supplementary material contains two sections. Section A provides the proofs of propo-

sitions and theorems from Section 3 and Section 4 of the main article. Section B gives the

proofs of lemmas introduced in Section A.

A Proofs of Propositions and Theorems

In this section, we first introduce a lemma adapted from Proposition 3 in Huang and

Bandeen-Roche (2004), which is an important tool in later proofs to associate the identifia-

bility of parameters (β,γ,λ) with the identifiability of (ηi,Θi) = {ηic, θijrc : j = 1, . . . , J, r =

0, . . . ,Mj − 1, c = 0, . . . , C − 1}, for i = 1, . . . , N .

Lemma 1. For any subject i = 1, . . . , N , we define transformed variables (εi,ωi) = {εc,ωjrc :

j = 1, . . . , J, r = 0, . . . ,Mj − 1, c = 0, . . . , C − 1} such that (ηi,Θi) and (εi, ωi) are related

through the following equations,

ηic =
exp(εic)

1 +
!C−1

s=1 exp(εis)
, c = 0, . . . , C − 1;

θijrc =
exp(ωi

jrc)

1 +
!Mj−1

s=1 exp(ωi
jsc)

, j = 1, . . . , J ;

r = 0, . . . ,Mj − 1;

c = 0, . . . , C − 1.

Then (ηi,Θi) are identifiable if and only if (εi, ωi) are identifiable.

The proof of Lemma 1 is presented in Section B.

Proof of Proposition 1. We first prove the second part of Proposition 1 that (A3∗) is neces-

sary for the identifiability of RegLCMs without covariates under (A1) and (A2∗). It is equiv-

alent to show that if ψ0, · · · ,ψC−1 are not linearly independent, (η,Θ) are not identifiable.

We prove it by the method of contradiction and assume the contrary that η are identifiable.
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Recall the definitions in Section 2, η = (η0, · · · , ηC−1)
T denotes the latent class membership

probability, where ηc = P (L = c) for c = 0, · · · , C − 1. And Ψ = (ψ0, · · · ,ψC−1) denotes

the marginal probability matrix, where each entry ψrc in ψc corresponding to a response

pattern r ∈ S ′ is

ψrc = P (R = r | L = c) =
J"

j=1

θjrjc, c = 0, · · · , C − 1.

Based on the above definitions, we write the response probability vector as

(P (R = r) : r ∈ S ′)
T
= Ψ · η. (1)

As we assume η are identifiable, there exist no η′ ∕= η such that P (R = r | Ψ,η) = P (R =

r | Ψ,η′). According to (1), P (R = r | Ψ,η) = P (R = r | Ψ,η′) implies Ψ · η = Ψ · η′.

However, under the condition that ψ0, · · · ,ψC−1 are not linearly independent, there could

exist η′ ∕= η such that Ψ · (η−η′) = 0, and by the contradiction, (η,Θ) are not identifiable.

Next, we prove the first part of Proposition 1, the necessity of (A4) for the identifiability

of RegLCMs under (A1)–(A3). That is, if φ0, · · · ,φC−1 are not linearly independent, then

(β,γ,λ) are not identifiable. This proof includes three steps.

Step 1 : we prove if φ0, · · · ,φC−1 are not linearly independent, then ψi
0, · · · ,ψi

C−1

are not linearly independent for i = 1, . . . , N , where each ψi
c is an (S − 1)-dimensional

vector in which each element corresponds to a response pattern r = (r1, · · · , rJ) ∈ S ′ and

is defined as ψi
rc = P (Ri = r | Li = c,xi, zi). Equivalently, we need to prove if there

exists subject i such that ψi
0, · · · ,ψi

C−1 are linearly independent, then φ0, · · · ,φC−1 are

linearly independent. We use similar techniques as in the Proof of Proposition 2 in Huang

and Bandeen-Roche (2004). First, we associate the linear combinations of φc’s with ψc’s as

follows. For any linear combination of φc’s with coefficients ac’s, there exist bc’s and Y i such

that the following equation holds,

C−1#

c=0

acφc =

$
C−1#

c=0

bcψ
i
c

%
⊙ Y i, (2)
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where ⊙ denotes the element-wise multiplication and

Y i =
&'J

j=1
1

exp(λ1jrj
zij1+···+λqjrj

zijq)
: r = (r1, . . . , rJ) ∈ S ′

(T

S×1
,

bc = ac

J"

j=1

1 +
Mj−1!
s=1

exp(γjsc + λ1jszij1 + · · ·+ λqjszijq)

1 +
Mj−1!
s=1

eγjsc

. (3)

Therefore to show φc’s are linearly independent, we need to show that
!C−1

c=0 acφc = 0 implies

a0 = · · · = aC−1 = 0. Based on (2), we have
!C−1

c=0 acφc = 0 implies
!C−1

c=0 bcψ
i
c = 0. Under

the condition that ψi
0, . . . ,ψ

i
C−1 are linearly independent, the equation

C−1#

c=0

bcψ
i
c = b0ψ

i
0 + · · ·+ bC−1ψ

i
C−1 = 0 (4)

implies b0 = · · · = bC−1 = 0. And by (3), we have a0 = · · · = aC−1 = 0. Hence, φ0, . . . ,φC−1

are linearly independent when ψi
0, . . . ,ψ

i
C−1 are linearly independent and we complete the

proof for Step 1.

Step 2 : We next introduce parameters εic’s and ωi
jrc’s and show that they are not identifi-

able when ψi
0, · · · ,ψi

C−1 are not linearly independent. By the similar arguments in proving

the necessity of (A3∗), we have (ηi,Θi) are not identifiable when ψi
0, · · · ,ψi

C−1 are not

linearly independent for any subject i = 1, . . . , N . Recall in RegLCMs, (ηi,Θi) are func-

tionally dependent on the linear functions xT
i β and γjc + zT

ijλj, respectively. We follow the

definitions of (ηi,Θi) and (β,γ,λ) from (3) and (4) in Section 2.1 and let

εic = xT
i βc = β0c + β1cxi1 + · · ·+ βpcxip.

for i = 1, . . . , N , c = 0, . . . , C − 1. And

ωi
jrc = γjrc + zT

ijλjr = γjrc + λ1jrzij1 + · · ·+ λqjrzijq.

for i = 1, . . . , N , j = 1, . . . , J , r = 0, · · · ,Mj − 1 and c = 0, . . . , C − 1. Then according

to Lemma 1, εic’s and ωi
jrc’s are not identifiable when (ηi,Θi) are not identifiable. Hence,

εic’s and ωi
jrc’s are not identifiable when ψi

0, · · · ,ψi
C−1 are not linearly independent and we

complete the proof for Step 2.
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Step 3 : Lastly, we prove that (β,γ,λ) are not identifiable when εic’s and ωi
jrc’s are not

identifiable by the method of contradiction. Assume to the contrary that β are identifiable

given εic’s and ωi
jrc’s are not identifiable. By the definition of identifiability, P (R | β∗,γ,λ) =

P (R | β′,γ,λ) implies that β∗ = β′. Because X has full column rank, according to the

system of linear equations

ε =

)

***+

ε1

...

εN

,

---.
=

)

***+

1 x11 · · · x1p

...
...

. . .
...

1 xN1 · · · xNp

,

---.

)

***+

β00 · · · β0(C−1)

...
. . .

...

βp0 · · · βp(C−1)

,

---.
= Xβ,

we have ε∗ = Xβ∗ equivalent to ε′ = Xβ′. So for all subject i, P (Ri | εi∗,γ,λ) = P (Ri |

εi′,γ,λ) would force εi∗ = εi′, which contradicts the non-identifiability of εic’s. Therefore β

is not identifiable. Using similar techniques, we can prove γ,λ are not identifiable.

Combining the Step 1–3, we prove the first part of Proposition 1, and thus complete the

proof of Proposition 1.

Proof of Proposition 2. Theorem 4.4 (a) in Gu and Xu (2020) showed that binary-response

CDMs are not generically identifiable if some attribute is required by only one item. We

adapt their proof of Theorem 4.4 (a) to establish that for polytomous-response CDMs or

RegCDMs, the parameters are not generically identifiable under (P1) that some attribute is

required by only one item. Consider polytomous-response CDMs first and let the Q-matrix

to be

Q =

)

+ 1 u

0 Q∗

,

. .

This Q-matrix implies that α1 is required by the first item only. For any (η,Θ), we can

construct (η̄, Θ̄) ∕= (η,Θ) such that P (R = r | η,Θ) = P (R = r | η̄, Θ̄), and hence we

show that (η,Θ) are not identifiable. To better illustrate the idea, we next use α to replace

c in all parameter subscripts, i.e. ηα = ηc and θjrα = θjrc given αTv = c. When j ∕= 1, we

let ηc = η̄c, θjrc = θ̄jrc for r = 0, . . . ,Mj − 1 and c = 0, . . . , C − 1. When j = 1, we denote

α′ = (α2, · · · ,αK) ∈ {0, 1}K−1 and for all r1 = 0, . . . ,M1 − 1, we let θ̄1r1(0,α′) = θ1r1(0,α′),
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and

θ̄1r1(1,α′) =
1

E
θ1r1(1,α′) + (1− 1

E
)θ1r1(0,α′),

where E is a constant in a small neighborhood of 1 and E ∕= 1. So we have θ̄1r1(1,α′) ∕=

θ1r1(1,α′). We also let

η̄(0,α′) = η(0,α′) + (1− E) · η(1,α′),

η̄(1,α′) = E · η(1,α′).

Hence, we have

η̄(1,α′) + η̄(0,α′) = η(1,α′) + η(0,α′), (5)

θ̄1r1(1,α′)η̄(1,α′) + θ̄1r1(0,α′)η̄(0,α′) = θ1r1(1,α′)η(1,α′) + θ1r1(0,α′)η(0,α′). (6)

So for any r = (r1, · · · , rJ) ∈ S ′,

P (R = r | Ψ̄, η̄) = Ψ̄ · η̄

=
#

α′∈{0,1}K−1

α1∈{0,1}

"

j>1

θ̄
I{Rj=rj}
jrj(α1,α′)η̄(α1,α′)[θ̄

I{R1=r1}
1r1(1,α′) η̄(1,α′) + θ̄

I{R1=r1}
jr1(0,α′) η̄(0,α′)]

=

/
0001

0002

!
α′∈{0,1}K−1

α1∈{0,1}

'
j>1 θ̄

I{Rj=rj}
jrj(α1,α′)η̄(α1,α′)[θ̄1r1(1,α′)η̄(1,α′) + θ̄1r1(0,α′)η̄(0,α′)], R1 = r1

!
α′∈{0,1}K−1

α1∈{0,1}

'
j>1 θ̄

I{Rj=rj}
jrj(α1,α′)η̄(α1,α′)[η̄(1,α′) + η̄(0,α′)], R1 ∕= r1

=

/
0001

0002

!
α′∈{0,1}K−1

α1∈{0,1}

'
j>1 θ

I{Rj=rj}
jrj(α1,α′)η(α1,α′)[θ1r1(1,α′)η(1,α′) + θ1r1(0,α′)η(0,α′)], R1 = r1

!
α′∈{0,1}K−1

α1∈{0,1}

'
j>1 θ

I{Rj=rj}
jrj(α1,α′)η(α1,α′)[η(1,α′) + η(0,α′)], R1 ∕= r1

(7)

=
#

α′∈{0,1}K−1

α1∈{0,1}

"

j>1

θ
I{Rj=rj}
jrj(α1,α′)η(α1,α′)[θ

I{R1=r1}
1r1(1,α′) η(1,α′) + θ

I{R1=r1}
1r1(0,α′) η(0,α′)]

= Ψ · η = P (R = r | Ψ,η).

Equation (7) is derived based on (6) as well as the assumption that ηc = η̄c, θjrc = θ̄jrc for all

j = 2, . . . , J , r = 0, . . . ,Mj − 1 and c = 0, . . . , C − 1. This proves (η,Θ) are not identifiable

under (P1) in Proposition 2.
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For polytomous-response RegCDMs, we have similar results by following the above proof.

That is, (ηi,Θi) are not identifiable under (P1) for i = 1, . . . , N . Then following the same

arguments in Step 2–3 from the Proof of Proposition 1, we show that (β,γ,λ) in RegCDMs

are not identifiable given (ηi,Θi) are not identifiable.

Next we prove the remaining part, that is, the matrix Ψ in CDMs and the matrix Φ in

RegCDMs have full column ranks under (P2). Before presenting the proof, we introduce

another probability matrix T -matrix of size S × C, where each row corresponds to one

response pattern r ∈ S and each column corresponds to one latent class c = 0, . . . , C − 1.

Each entry of T -matrix is defined as Trc = P (R ≽ r | L = c), where ≽ denotes that for any

item j = 1, . . . , J , Rj ≥ rj. According to a similar argument in Appendix Section 4.2 in Xu

(2017), T -matrix has full column rank under the condition that the corresponding Q-matrix

contains an identity submatrix IK .

There exists a relation between the two probability matrices, T -matrix and Ψ. Because

Ψ excludes a reference response pattern, its size is (S − 1) × C. Denote Ψ′ = (ΨT ,ΨT
ref )

T

whereΨref is the row corresponding to the reference pattern. AndΨref is linearly dependent

on the rows in Ψ because
!

r∈S P (R = r | L = c) = 1. So Ψ has full column rank if and

only if Ψ′ has full column rank. Further, Ψ′ has full column rank if and only if T -matrix

has full column rank, because Ψ′ is bijectively corresponding to T -matrix according to their

definitions. In conclusion, Ψ in the CDMs has full column rank when Q-matrix contains

an identity submatrix IK . According to the Proof of Proposition 2 in Huang and Bandeen-

Roche (2004), the matrix Φ has full column rank when the matrix Ψ has full column rank.

So for RegCDMs, Φ has full column rank when Q-matrix contains an identity submatrix

IK .

Proof of Theorem 1. Following the similar idea in Huang and Bandeen-Roche (2004) page

15, we let f(R;η,Θ) to be the likelihood function, and

f(R;η,Θ) =
"

r∈S

P (R = r)I{R=r},

where S =×J

j=1
{0, . . . ,Mj−1}. Let ξ = {η1, · · · , ηC−1, θ110, · · · , θ1(M1−1)0, · · · , θJ1(C−1), · · · ,
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θJ(MJ−1)(C−1)}, so the Fisher information matrix is

E

34
∂ log f

∂ξ

54
∂ log f

∂ξ

5T
6

= E

7

8
$
#

r∈S

I{R = r}
P (R = r)

∂P (R = r)

∂ξ

%$
#

r∈S

I{R = r}
P (R = r)

∂P (R = r)

∂ξ

%T
9

:

=
#

r∈S

1

P (R = r)

4
∂P (R = r)

∂ξ

54
∂P (R = r)

∂ξ

5T

= JT

)

******+

1
P (R=r1)

0 · · · 0

0 1
P (R=r2)

· · · 0
...

...
. . .

...

0 0 · · · 1
P (R=rS)

,

------.
J.

Hence the Fisher information matrix is non-singular if and only if J has full column rank.

According to Theorem 1 of Rothenberg (1971), (η,Θ) are locally identifiable if and only

if the Fisher information matrix is non-singular when the true values of (η,Θ) are regular

point of the information matrix. Therefore (η,Θ) are locally identifiable if and only if the

Jacobian matrix J has full column rank.

Proof of Theorem 2. As introduced in Section 4, we consider a hypothetical subject with all

covariates being zeros and denote its Jacobian matrix as J0. We use the following three steps

to prove that (β,γ,λ) are identifiable if and only if J0 has full column rank.

Step 1 : We first show that for subject i = 1, . . . , N , the Jacobian matrices Ji, containing

the derivatives of conditional response probabilities with respect to parameters in ηi and Θi,

have full column rank if and only if J0 has full column rank. This proof is adapted from the

Proof of Proposition 1 in Huang and Bandeen-Roche (2004).

First, we need to set up a few notations. The Jacobian matrix Ji is written as

Ji =
&
J i
η1
, · · · ,J i

ηC−1
,J i

θ110
, · · · ,J i

θ1(M1−1)0
, · · · ,J i

θJ1(C−1)
, · · · ,J i

θJ(MJ−1)(C−1)

(
.

Each entry in J i
ηc is a partial derivative of response probability P (R = r) with respect to ηic
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at true value of ηic, which is computed to be

∂P (R = r)

∂ηic
=

J"

j=1

θijrjc −
J"

j=1

θijrj0 = ψi
rc −ψi

r0.

And each entry in J i
θjrc

is a partial derivative of response probability P (R = r) with respect

to θijrc at true value of θijrc, which is computed to be

∂P (R = r)

∂θijrc
=

/
000001

000002

ηic
'

d ∕=j θ
i
drdc

, if rj = r,

−ηic
'

d ∕=j θ
i
drdc

, if rj = 0,

0, otherwise.

or summarized as
∂P (R = r)

∂θijrc
= ηicψ

i
rc(

I{rj = r}
θijrc

− I{rj = 0}
θij0c

).

In addition to Ji, we also define the following two sets of vectors for this proof. Denote J
0
=

{ψ0
0, . . . ,ψ

0
C−1}∪{η0c

;
I{rj = r}/θ0jrc

<
⊙ψ0

c : j = 1, . . . , J, r = 0, . . . ,Mj−1, c = 0, . . . , C−1}

and J
i
= {ψi

0, . . . ,ψ
i
C−1} ∪ {ηic

;
I{rj = r}/θijrc

<
⊙ ψi

c : j = 1, . . . , J, r = 0, . . . ,Mj − 1, c =

0, . . . , C − 1}, where I{rj = r} is a (S − 1)-dimensional vector containing all I{rj = r} for

r = (r1, . . . , rJ) ∈ S ′. With the notations defined, we then introduce a useful lemma which

simplify the arguments in proving the linear independence of the columns in J0 and Ji.

Lemma 2. The Jacobian matrix J0 has full column rank if and only if J
0
are linearly

independent. The Jacobian matrix Ji has full column rank if and only if J
i
are linearly

independent.

The proof of Lemma 2 is presented in Section B. According to Lemma 2, to prove Ji has

full column rank if and only if J0 has full column rank, we can equivalently show that J
i

are linearly independent if and only if J
0
are linearly independent. First, we associate the

linear combinations of J
i
to that of J

0
as follows. For any linear combinations of J

i
with
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coefficients tic, u
i
jrc, there exist t0c , u

0
jrc and W i such that the following equation holds

C−1#

c=0

ticψ
i
c +

J#

j=1

Mj−1#

r=0

C−1#

c=0

=
ui
jrcη

i
c

4
I{rj = r}

θijrc

5
⊙ψi

c

>

=

)

+
C−1#

c=0

t0cψ
0
c +

J#

j=1

Mj−1#

r=0

C−1#

c=0

=
u0
jrcη

0
c

4
I{rj = r}

θ0jrc

5
⊙ψ0

c

>,

.⊙W i, (8)

where

W i =
&'J

j=1 exp(λ1jrjzij1 + · · ·+ λqjrjzijq) : r = (r1, . . . , rJ) ∈ S ′
(T

S×1
,

t0c = tic

J"

j=1

1 +
Mj−1!
s=1

eγjsc

1 +
Mj−1!
s=1

exp(γjsc + λ1jszij1 + · · ·+ λqjszijq)

, (9)

u0
jrc = ui

jrc

exp(β1cxi1 + · · ·+ βpcxip)

exp(λ1jrjzij1 + · · ·+ λqjrjzijq)

×
{1 +

C−1!
l=1

eβ0l}{1 +
Mj−1!
s=1

exp(γjsc + λ1jszij1 + · · ·+ λqjszijq)}

{1 +
C−1!
l=1

exp(β0l + β1lxi1 + · · ·+ βplxip)}{1 +
Mj−1!
s=1

eγjsc}

×
J"

j=1

1 +
Mj−1!
s=1

eγjsc

1 +
Mj−1!
s=1

exp(γjsc + λ1jszij1 + · · ·+ λqjszijq)

. (10)

The next two parts prove that J
i
are linearly independent if and only if J

0
are linearly

independent in two directions.

Part (i): We prove J
i
are linearly independent if J

0
are linearly independent. To show

J
i
are linearly independent, we need to show that

C−1#

c=0

ticψ
i
c +

J#

j=1

Mj−1#

r=0

C−1#

c=0

=
ui
jrcη

i
c

4
I{rj = r}

θijrc

5
⊙ψi

c

>
= 0, (11)

implies tic = 0 and ui
jrc = 0. By (8), for any tic, u

i
jrc such that (11) holds, we have

C−1#

c=0

t0cψ
0
c +

J#

j=1

Mj−1#

r=0

C−1#

c=0

=
u0
jrcη

0
c (
I{rj = r}

θ0jrc
)⊙ψ0

c

>
= 0.
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Under the condition that J
0
are linearly independent, t0c = 0 and u0

jrc = 0. Then by (9) and

(10), we have tic = 0 and ui
jrc = 0 for j = 1, . . . , J , r = 0, . . . ,Mj − 1 and c = 0, . . . , C − 1.

So J
i
are linearly independent.

Part (ii): We prove J
0
are linearly independent if J

i
are linearly independent. This part

is similar to Part (i). To show J
0
are linearly independent, we need to show that

C−1#

c=0

t0cψ
0
c +

J#

j=1

Mj−1#

r=0

C−1#

c=0

=
u0
jrcη

0
c

4
I{rj = r}

θ0jrc

5
⊙ψ0

c

>
= 0 (12)

implies t0c = 0 and u0
jrc = 0. By (8), for any t0c , u

0
jrc such that (12) holds, we have

C−1#

c=0

ticψ
i
c +

J#

j=1

Mj−1#

r=0

C−1#

c=0

=
ui
jrcη

i
c(
I{rj = r}

θijrc
)⊙ψi

c

>
= 0.

Under the condition that J
i
are linearly independent, tic = 0 and ui

jrc = 0, and hence t0c = 0

and ui
jrc = 0 by (9) and (10), for j = 1, . . . , J , r = 0, . . . ,Mj − 1 and c = 0, . . . , C − 1. So

J
0
are linearly independent.

Combining Part (i) and Part (ii), we show J
i
are linearly independent if and only if J

0

are linearly independent. And therefore Ji has full column rank if and only if J0 has full

column rank.

Step 2 : We introduce (εi, ωi) and prove that they are identifiable if and only if Ji has full

column rank. By following similar arguments in the Proof of Theorem 1, we have (ηi,Θi)

are identifiable if and only if Ji has full column rank, for i = 1, . . . , N . Next, we define

(εi, ωi) and the remaining is to show that they are identifiable if and only if (ηi,Θi) are

identifiable. Following the same arguments as Step 2 in Proof of Proposition 1, we let

εic = xT
i βc = β0c + β1cxi1 + · · ·+ βpcxip.

for c = 0, . . . , C − 1. And

ωi
jrc = γjrc + zT

ijλjr = γjrc + λ1jrzij1 + · · ·+ λqjrzijq.

for j = 1, . . . , J , r = 0, · · · ,Mj − 1 and c = 0, . . . , C − 1. Then according to Lemma 1,

(εi, ωi) are identifiable if and only if (ηi,Θi) are identifiable. Hence the proof for Step 2 is

complete.
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Step 3 : The final step is to show (β,γ,λ) are identifiable if and only if (εi, ωi) are

identifiable. We have shown that (β,γ,λ) are not identifiable when (εi, ωi) are not identi-

fiable in the Proof of Proposition 1. So all left to show is the necessary part that (β,γ,λ)

are identifiable when (εi, ωi) are identifiable. We prove this result by the method of con-

tradiction. Assuming the contrary that β is not identifiable, there exist β ∕= β′ such that

P (Ri | β,γ,λ) = P (Ri | β′,γ,λ). According to the system of linear equations

ε =

)

***+

ε1

...

εN

,

---.
=

)

***+

1 x11 · · · x1p

...
...

. . .
...

1 xN1 · · · xNp

,

---.

)

***+

β00 · · · β0(C−1)

...
. . .

...

βp0 · · · βp(C−1)

,

---.
= Xβ,

and because the full rank X is an injective mapping, we have β ∕= β′ implies that ε = Xβ

is different from ε′ = Xβ′ for at least one εi ∕= ε′i. However, since εi’s are identifiable, there

exist no εi ∕= ε′i such that P (Ri | εi,ωi) = P (Ri | ε′i,ωi). By this contradiction, we prove

β is identifiable. Using similar arguments, we can show γ,λ are also identifiable and hence

complete the proof.

Combining Steps 1–3, we prove that (β,γ,λ) in RegCDMs are identifiable if and only if

J0 has full column rank under (A1)–(A3).

To prove the main results in Section 4, we next introduce other useful lemmas and

corollaries from existing works in literature. Lemma 3 and Corollaries 1–2 summarize the

conditions for the global identifiability of general restricted latent class models proposed

by Allman, Matias, and Rhodes (2009), which is based on the algebraic results in Kruskal

(1977).

Before presenting these lemmas and corollaries, we introduce the decomposition of Ψ

and some notation definitions. The decomposition of Ψ is similar as the decomposition

of Φ defined in Section 4 in the main text. We divide the total of J items into three

mutually exclusive item sets J1,J2 and J3 containing J1, J2 and J3 items respectively, with

J1 + J2 + J3 = J . For t = 1, 2 and 3, let SJt be the set containing the response patterns

from items in Jt with cardinality of SJt to be κt = |SJt | =
'

j∈Jt
Mj. The submatrix Ψt has

dimension κt×C. The definition for the entries in Ψt is the same as in (10), except that each

11



row of Ψt corresponds to one response patterns r ∈ SJt while each row of Ψ corresponds to

r ∈ S ′.

Lemma 3. (Kruskal, 1977) For t = 1, 2 and 3, denote Ot = rankK(Ψt) as the Kruskal rank

of Ψt, where Ψt is a decomposed matrix of Ψ. If

O1 +O2 +O3 ≥ 2C + 2,

then Ψ1,Ψ2 and Ψ3 uniquely determines the decomposition of Ψ up to simultaneous permu-

tation and rescaling of columns.

Corollary 1. (Allman et al., 2009) Consider the restricted latent class models with C classes.

For t = 1, 2 and 3, let Ψt denote a decomposed matrix of Ψ and Ot denote its Kruskal rank.

If

O1 +O2 +O3 ≥ 2C + 2,

then the parameters of the model are uniquely identifiable, up to label swapping.

Corollary 2. (Allman et al., 2009) Continue with the setting in Corollary 1. For t = 1, 2, 3,

let Ψt denote a decomposed matrix of Ψ and κt denote its row dimension. If

min{C,κ1}+min{C,κ2}+min{C,κ3} ≥ 2C + 2,

Then the parameters of the restricted latent class models are generically identifiable up to

label swapping.

Combining all these results as well as Proposition 2 in Huang and Bandeen-Roche (2004),

we present Lemma 4, which is the key in the proof of Theorem 3.

Lemma 4. For polytomous-response RegLCMs, (ηi,Θi) are strictly identifiable if (A1) ,(A2)

and (B3.a) hold, and are generically identifiable if (A1), (A2) and (B3.b) hold.

(B3) The matrix Φ can be decomposed into Φ1, Φ2, Φ3, with Kruskal rank of each Φt to be

It and the dimension of each Φt to be κt × C. We have either

(B3.a) I1 + I2 + I3 ≥ 2C + 2; or

12



(B3.b) min{C,κ1}+min{C,κ2}+min{C,κ3} ≥ 2C + 2.

The proof of Lemma 4 is provided in Section B.

Proof of Theorem 3. From condition (C4), the Kruskal rank It of Φt fulfill the arithmetic

condition of (B3.a) in Lemma 4. Given (A1) and (A2), (A1) and (A2) also hold. According

to Lemma 4, the RegLCMs are strictly identifiable at (ηi, Θi) for i = 1, . . . , N . Following

the similar arguments in Step 2–3 from the Proof of Theorem 2, we show that (β,γ,λ) in

RegLCMs are identifiable given (ηi,Θi) are identifiable under (A3). Hence we complete the

proof.

Proof of Proposition 3. As mentioned in Section 4, (C4∗) is the sufficient condition for the

identifiability of general restricted latent class models with binary responses according to

Theorem 1 in Xu (2017). This condition is further extended to restricted latent class models

with polytomous responses by Theorem 2 in Culpepper (2019). So for RegCDMs, (ηi,Θi) are

strictly identifiable given (C4∗) for i = 1, . . . , N . Then based on the the similar arguments in

Step 2–3 from the Proof of Theorem 2, (β,γ,λ) in RegCDMs are identifiable given (ηi,Θi)

are identifiable.

Proof of Theorem 4. For t = 1, 2 and 3, the decomposed matrix Φt and the decomposed

matrix Ψt have the same row dimension κt. So given (C4′), condition (B3.b) in Lemma

4 holds. According to Lemma 4, RegLCMs are generically identifiable at (ηi, Θi) for i =

1, . . . , N . Based on the similar arguments in Step 2–3 from the Proof of Theorem 2, (β,γ,λ)

in RegLCMs are generically identifiable given (ηi,Θi) are generically identifiable.

Proof of Proposition 4. In Proposition 5.1(b) of Gu and Xu (2020), the condition (C4′′) is

sufficient for the generic identifiability of CDMs. So for RegCDMs, (ηi, Θi) are generically

identifiable under (C4′′) for i = 1, . . . , N . Based on the the similar arguments in Step 2–3

from the Proof of Theorem 2, (β,γ,λ) in RegCDMs are generically identifiable given (ηi,Θi)

are generically identifiable.
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B Proofs of Lemmas

Proof of Lemma 1. For notational convenience, we use η, Θ, ε and ω to denote the pa-

rameters ηi, Θi, εi and ωi of a general subject i. According to the definition of iden-

tifiability, (η,Θ) are identifiable means that there exist no (η,Θ) ∕= (η′, Θ′) such that

P (R = r | η,Θ) = P (R = r | η′,Θ′). To prove Lemma 1 that (η, Θ) are identifiable if

and only if (ε, ω) are identifiable, we need to show that the transformation from (η, Θ) to

(ε, ω) is bijective. We next illustrate this bijective mapping from η to ε holds by showing

(η0, · · · , ηC−1) = (η′0, · · · , η′C−1) if and only if (ε0, · · · , εC−1) = (ε′0, · · · , ε′C−1).

First, we show that (η0, · · · , ηC−1) = (η′0, · · · , η′C−1) implies (ε0, · · · , εC−1) = (ε′0, · · · , ε′C−1).

For c = 0, . . . , C − 1, under the condition that

ηc =
eεc

1 +
!C−1

s=1 eεs
=

eε
′
c

1 +
!C−1

s=1 eε′s
= η′c,

we can write

eδ =
eε0

eε
′
0
= · · · = eεc

eε′c
= · · · = eεC−1

eε
′
C−1

=
1 +

!C−1
s=1 eεs

1 +
!C−1

s=1 eε′s
,

where eδ denotes the common ratio among all eεc/eε
′
c . Hence

δ = εc − ε′c, c = 0, · · · , C − 1. (13)

Substituting every ε′c with εc − δ into the equation η0 = η′0, we have

eε0

1 +
!C−1

s=1 eεs
=

eε0−δ

1 +
!C−1

s=1 eεs−δ
,

Further simplifying the above equation gives

1

1 +
!C−1

s=1 eεs
=

1

eδ +
!C−1

s=1 eεs
,

and then we have

eδ +
C−1#

s=1

eεs = 1 +
C−1#

s=1

eεs ,

which has unique solution δ = 0. Taking δ = 0 back into (13), we have εc = ε′c for all

c = 0, . . . , C − 1. Therefore ε = (ε0, · · · , εC−1) is equivalent to ε′ = (ε′0, · · · , ε′C−1).
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Next we prove (ε0, · · · , εC−1) = (ε′0, · · · , ε′C−1) implies (η0, · · · , ηC−1) = (η′0, · · · , η′C−1).

This part is straightforward as (ε0, · · · , εC−1) = (ε′0, · · · , ε′C−1) implies that for any c =

0, . . . , C − 1, we have
exp(εc)

1 +
!C−1

s=1 exp(εs)
=

exp(ε′c)

1 +
!C−1

s=1 exp(ε′s)
.

Equivalently, we show ηc = η′c for any c = 0, . . . , C − 1. So (η0, · · · , ηC−1) = (η′0, · · · , η′C−1).

Combining the above arguments, we prove η = η′ if and only if ε = ε′.

Similar arguments can be applied to show Θ = Θ′ if and only if ω = ω′. Hence (η, Θ)

are identifiable if and only if (ε, ω) are identifiable.

Proof of Lemma 2. We prove the the first part, that is, J0 has full column rank if and only

if J
0
are linearly independent. The second part regarding Ji can be similarly proved.

To show the linear independence of J0 or J
0
, we need to establish the relationship between

the two linear combinations as follows. For any linear combinations of the columns in J0

with coefficients h0
c ’s and l0jrc’s, there exist a0c ’s and b0jrc’s such that the following equation

holds.

C−1#

c=1

h0
c(ψ

0
c −ψ0

0) +
J#

j=1

Mj−1#

r=1

C−1#

c=0

=
l0jrcη

0
c (
I{rj = r}

θ0jrc
− I{rj = 0}

θ0j0c
)⊙ψ0

c

>
(14)

=
C−1#

c=0

a0cψ
0
c +

J#

j=1

Mj−1#

r=0

C−1#

c=0

=
b0jrcη

0
c (
I{rj = r}

θ0jrc
)⊙ψ0

c

>
, (15)

where

a0c =

/
01

02

h0
c , if c ∕= 0,

−(h0
1 + · · ·+ h0

C−1), if c = 0,

(16)

and for any j = 1, . . . , J , c = 0, . . . , C − 1,

b0jrc =

/
01

02

l0jrc, if r ∕= 0,

−(l0j1c + · · ·+ l0j(Mj−1)c), if r = 0.

(17)

With the above relationship established, we next show that J0 has full column rank if and

only if J
0
are linearly independent. When J

0
are linearly independent, (15) = 0 implies
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a0c = 0 and b0jrc = 0, which further implies h0
c = 0 and l0jrc = 0 by (16) and (17). So (14)

= 0 implies h0
c = 0 and l0jrc = 0. Hence, J0 has full column ranks. Similarly, when J0 has

full column ranks, (14) = 0 implies h0
c = 0 and l0jrc = 0 which further implies a0c = 0 and

b0jrc = 0 by (16) and (17). So (15) = 0 implies a0c = 0 and b0jrc = 0. Hence, J
0
are linearly

independent.

Proof of Lemma 4. This proof is adapted from the Proof of Proposition 2 in Huang and

Bandeen-Roche (2004). Before presenting the proof, we set up a few notations. In Section

4, Φ can be decomposed into Φ1,Φ2 and Φ3, where each Φt has Kruskal rank It and row

dimension κt. And in Appendix A, Ψi can be decomposed into Ψi
1,Ψ

i
2 and Ψi

3, where each

Ψi
t has Kruskal rank Ot and the same row dimension κt as Φt. Denote the columns in Φt to

be φt0, · · · ,φt(C−1) and the columns in Ψi
t to be ψi

t0, · · · ,ψi
t(C−1). Conditions (A1) and (A2)

are shown to be necessary in Section 2 and assumed to hold. To prove (B3.a) is sufficient

for the strict identifiability of (ηi, Θi), we first need to show that for t = 1, 2 and 3, given

Φt has Kruskal rank It, the equation Ot ≥ It holds, so that I1 + I2 + I3 ≥ 2C + 2 from

(B3.a) implies O1 +O2 +O3 ≥ 2C + 2. Then based on Corollary 1 that (ηi, Θi) are strictly

identifiable under the condition that O1+O2+O3 ≥ 2C +2, we complete the proof of strict

identifiability.

The remaining part is to show Ot ≥ It for t = 1, 2 and 3. Without loss of generality, we

only show O1 ≥ I1, then O2 ≥ I2 and O3 ≥ I3 can be similarly proved. Under the condition

that any set of I1 columns in Φ1 are linearly independent, φ1σ(1), · · · ,φ1σ(I1) are linearly

independent for any permutation σ on {1, . . . , I1} such that {σ(1), σ(2), · · · , σ(I1)} ⊆

{0, · · · , C − 1}. To show Ot ≥ It, we need ψ1σ(1), · · · ,ψ1σ(I1) to be linearly independent for

any permutation set {σ(1), σ(2), · · · , σ(I1)}. The linear combinations of φ1σ(1), · · · ,φ1σ(I1)

can be associated with the linear combinations of ψ1σ(1), · · · ,ψ1σ(I1) as follows. For any

permutation σ and aσ(c), there exists bσ(c) and Y i
1 such that

I1#

c=1

aσ(c)ψ
i
1σ(c) = (

I1#

c=1

bσ(c)φ1σ(c))⊙ Y i
1 (18)

16



where

Y i
1 =

$
"

j∈J1

exp(λ1jrjzij1 + · · ·+ λqjrjzijq) : r = (r1, . . . , rJ) ∈ SJ1

%

κ1×1

,

bσ(c) = aσ(c)
"

j∈J1

1 +
!Mj−1

s=1 eγjsσ(c)

1 +
!Mj−1

s=1 exp(γjsσ(c) + λ1jszij1 + · · ·+ λqjszijq)
. (19)

To show ψ1σ(1), · · · ,ψ1σ(I1) to be linearly independent, we need to show
!I1

c=1 aσ(c)ψ
i
1σ(c) =

0 implies aσ(c) = 0 for any σ. Based on (18), we have
!I1

c=1 aσ(c)ψ
i
1σ(c) = 0 implies

!I1
c=1 bσ(c)φ1σ(c) = 0. Under the condition that φ1σ(1), · · · ,φ1σ(I1) are linear independent,

!I1
c=1 bσ(c)φ1σ(c) = 0 implies bσ(1) = · · · = bσ(I1) = 0. And by (19), aσ(1) = · · · = aσ(I1) = 0.

Hence ψ1σ(1), · · · ,ψ1σ(I1) are linearly independent for any σ. Hence we show O1 ≥ I1 and

complete the proof for strict identifiability.

For condition (B3.b), because each Ψi
t has row dimension κt the same as Φt does and we

have min{C,κ1}+min{C,κ2}+min{C,κ3} ≥ 2C+2, according to Corollary 2, (ηi, Θi) are

generically identifiable under (B3.b) for all i = 1, . . . , N .

References

Allman, E. S., Matias, C., & Rhodes, J. A. (2009). Identifiability of parameters in latent

structure models with many observed variables. Annals of Statistics , 37 (6A), 3099–3132.

Culpepper, S. A. (2019). An exploratory diagnostic model for ordinal responses with binary

attributes: Identifiability and estimation. Psychometrika, 84 (4), 921–940.

Gu, Y., & Xu, G. (2020). Partial identifiability of restricted latent class models. Annals of

Statistics , 48 (4), 2082–2107.

Huang, G.-H., & Bandeen-Roche, K. (2004). Building an identifiable latent class model

with covariate effects on underlying and measured variables. Psychometrika, 69 (1), 5–32.

17



Kruskal, J. B. (1977). Three-way arrays: rank and uniqueness of trilinear decompositions,

with application to arithmetic complexity and statistics. Linear Algebra and its Applica-

tions , 18 (2), 95–138.

Rothenberg, T. J. (1971). Identification in parametric models. Econometrica, 39 (3),

577–591.

Xu, G. (2017). Identifiability of restricted latent class models with binary responses. Annals

of Statistics , 45 (2), 675–707.

18


