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Besides this online appendix, the online supplementary material accompanying the paper

“Partial identification of latent correlations with binary data” includes several R-scripts. These

are described in the text-file index.txt.

1. Detailed algebraic verification of Theorem 1

For completeness, we here provide a complete algebraic verification of Theorem 1. The

calculations are tedious but elementary.

The distribution of Z = (Z1, Z2) is

P(Z = (a, a)) = p11, P(Z = (b,−b)) = p10,

P(Z = (−a,−a)) = p00, P(Z = (−b, b)) = p01.

From this we compute

E(Z1Z2) = a2(p11 + p00)− b2(p10 + p01).

The marginal distributions of Z1, Z2 are

P(Z1 = a) = p11 = P(Z2 = a), P(Z1 = b) = p10 = P(Z2 = −b)

P(Z1 = −a) = p00 = P(Z2 = −a), P(Z1 = −b) = p01 = P(Z2 = b).

We therefore have

E(Z1) = ap11 + bp10 − ap00 − bp01

= a(p11 − p00) + b(p10 − p01),

E(Z2) = ap11 − bp10 − ap00 + bp01

= a(p11 − p00)− b(p10 − p01)

= EZ1 − 2b(p10 − p01).

Therefore,

Cov (Z1, Z2) = E(Z1Z2)− E(Z1) E(Z2)

= a2(p11 + p00)− b2(p10 + p01)

− [a(p11 − p00) + b(p10 − p01)][a(p11 − p00)− b(p10 − p01)]

= a2(p11 + p00)− b2(p10 + p01)− a2(p11 − p00)2 + b2(p10 − p01)2

= a2(p11 + p00 − (p11 − p00)2)− b2(p10 + p01 − (p10 − p01)2).
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We also have

E(Z2
1 ) = E(Z2

2 )

= a2p11 + b2p10 + a2p00 + b2p01

= a2(p11 + p00) + b2(p10 + p01).

Therefore,

Var (Z1) = E(Z2
1 )− E(Z1)2

= a2(p11 + p00) + b2(p10 + p01)− [a(p11 − p00) + b(p10 − p01)]2

= a2(p11 + p00) + b2(p10 + p01)− a2(p11 − p00)2

− 2ab(p11 − p00)(p10 − p01)− b2(p10 − p01)2

= a2(p11 + p00 − (p11 − p00)2) + b2(p10 + p01 − (p10 − p01)2)−

2ab(p11 − p00)(p10 − p01),

and, using that E(Z2) = E(Z1), and that E(Z2) = E(Z1)− 2b(p10 − p01), we get

Var (Z2) = E(Z2
2 )− E(Z2)2

= E(Z2
1 )− (E(Z1)− 2b(p10 − p01))

2

= E(Z2
1 )− E(Z1)2 + 4 E(Z1)b(p10 − p01)− 4b2(p10 − p01)2

= Var (Z1) + 4[a(p11 − p00) + b(p10 − p01)] · b(p10 − p01)− 4b2(p10 − p01)2

= Var (Z1) + 4ab(p11 − p00)(p10 − p01) + 4b2(p10 − p01)2 − 4b2(p10 − p01)2

= Var (Z1) + 4ab(p11 − p00)(p10 − p01).

We want to calculate

ρ =
Cov (Z1, Z2)

(Var (Z1) Var (Z2))
1/2

.

We first calculate the product Var (Z1) Var (Z2). We now use a = 1/b. This simplifies the

expressions to

Var (Z1) = a2(p11 + p00 − (p11 − p00)2) + b2(p10 + p01

− (p10 − p01)2)− 2ab(p11 − p00)(p10 − p01)

= q − 2∆,

where q = a2(p11+p00−(p11−p00)2)+b2(p10+p01−(p10−p01)2) and ∆ = (p11−p00)(p10−p01).

Similarly, Var (Z2) = q + 2∆, and therefore,

Var (Z1) Var (Z2) = (q − 2∆)(q + 2∆)

= q2 − 4∆2

= a4c21 + b4c22 + 2a2b2c1c2 − 4∆2.

Where c1 = p11 + p00 − (p11 − p00)2, and c2 = p10 + p01 − (p10 − p01)2. We note that c1, c2,∆

does not vary with a or b.
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In terms of the introduced constants, we recognize that

Cov (Z1, Z2) = a2c1 − b2c2.

We therefore have

ρ =
Cov (Z1, Z2)

(Var (Z1) Var (Z2))
1/2

=
a2c1 − b2c2√

a4c21 + b4c22 + 2a2b2c1c2 − 4∆2
.

Using a = 1/b, we see that

ρ =
a2c1 − b2c2√
a4c21 + b4c22 + d

,

where d = 2a2b2c1c2 − 4∆2 = d = 2c1c2 − 4∆2 does not depend on a, b.

Case 1: Letting b→∞, giving the negative end-point. We use a = 1/b and get

ρ =
a2c1 − b2c2√
a4c21 + b4c22 + d

=
b−2c1 − b2c2√
b−4c21 + b4c22 + d

=
b−4c1 − c2√

b−4(b−4c21 + b4c22 + d)

=
b−4c1 − c2√

b−8c21 + c22 + b−4d)

→ −c2
|c2|

.

If c2 > 0, this shows that ρ→ −1. We recall that c22 = (p10 + p01 − (p10 − p01)2)2 ≥ 0, and we

only need to show that c22 6= 0. We have

p10 + p01 − (p10 − p01)2 = p10 + p01 − p2
10 + 2p10p01 − p2

01

= (p10 − p2
10) + (p01 − p2

01) + 2p10p01.

Since p01 and p10 are in (0, 1), we have p10p01 > 0. We have that p10 > p2
10 and p01 > p2

01, and

therefore p10 − p2
10 > 0 and p01 − p2

01 > 0. Therefore, c22 6= 0.

Case 2: Letting b→ 0+, giving the positive end-point. We use b = 1/a and the exact same

steps as above to get that

ρ =
a2c1 − b2c2√
a4c21 + b4c22 + d

→ c1
|c1|

.
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If c1 > 0, this shows that ρ → 1. We recall that c21 = (p11 + p00 − (p11 − p00)2)2 ≥ 0, and we

only need to show that c21 6= 0. We have

p11 + p00 − (p11 − p00)2 = p11 + p00 − p2
11 + 2p11p00 − p2

00

= (p11 − p2
11) + (p00 − p2

00) + 2p11p00.

Since p00 and p11 are in (0, 1), we have p11p00 > 0. We have that p11 > p2
11 and p00 > p2

00, and

therefore p11 − p2
11 > 0 and p00 − p2

00 > 0. Therefore, c21 6= 0.

Let ρb be the correlation of Z(b) = Z(1/b, b) for b > 0. We recall

ρb =
b−4c1 − c2√

b−8c21 + c22 + b−4d)

and c1, c2 > 0. Since this is a continuous function with limits −1 and 1, every correlation in

(−1, 1) is attained by the intermediate value theorem.
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