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A Proofs

A.1 Assumptions

Posterior expansion. Regularity conditions C1–C5 of Crowder (1988) ensure
a valid asymptotic expansion of the posterior cumulative distribution function (cdf)
when the data are independent but not necessarily identically distributed (i.n.i.d.),
which extends the corresponding conditions of Johnson (1970) for independent and
identically distributed (i.i.d.) data. Note that all the convergence in Pθ0-probability
in the aformentioned conditions should be strengthened to convergence with Pθ
probability 1 + o(n−1) uniformly for θ on compact sets, which parallels a comment
of Datta and Mukerjee (2004, p. 11). To further accommodate data-dependant
priors in the form of Equation 16, Condition C3 needs to be modified: Substituting
πn(·, ·) for p(·) in Crowder’s notation, we assume that, as n→∞,

Pθ{π(0,a)
n (θ1, θ2) ≤ N1, ∀θ1, θ2 ∈ Cn} = 1 + o(n−1) (C3′)

uniformly for θ on compact sets, in which a = 0, 1, 2, 3, N1 <∞, and Cn is a
neighborhood of the maximum likelihood (ML) estimator θ̂n defined on p. 299 of
Crowder (1988). Note that the reference to p(θ) in Condition C5(b) should be
changed to πn(θ̃n, θ) as well.

Edgeworth expansion. If the square-root Wald statistic Un can be expressed
as a sufficiently smooth function of some other statistics that possess a valid
Edgeworth expansion, then the desired expansion of Un follows provided
Assumption 3.1 of Skovgaard (1981b) is satisfied. For instance, the ML estimator,
and consequently the square-root Wald statistic, can often be expressed as a smooth
function of the log-likelihood derivatives due to the Implicit Function Theorem
(Rudin, 1976, pp. 223–228). Bhattacharya and Ghosh (1978, Assumptions A1–A6)
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and, more generally, Skovgaard (1981a, Assumption 3.1) supplied regularity
conditions to formalize the argument; unfortunately, their assumptions are not
directly applicable to discrete data problems.

Initial estimator and modifier function. The initial estimator is not limited
to but should behave sufficiently similar to the ML estimator. In particular, it is
assumed that, uniformly for θ on compact sets, (1) Pθ{θ̃n ∈ Cn} = 1 + o(n−1), in
which Cn is defined in Crowder (1988, p. 299) as before, and (2) Eθθ̃n =
θ + o(n−1/2). In addition, it is assumed that Dn(θ) = H(0,1)

n (θ, θ) is continuously
differentiable for all n and θ.

Example: The two-parameter logistic model. For the two-parameter logistic
(2PL) model, sufficient conditions for the posterior expansion can be formulated in
a fashion similar to the Poisson loglinear model example in Crowder (1988, Section
3.1). To obtain an Edgeworth expansion for the square-root Wald statistic Un, we
note that Un can be expressed as an implicit smooth function of Tn = ∑n

i1 aiYi,
which is denoted Un = un(Tn) (e.g., Biehler, Holling, & Doebler, 2015, Equation
A.11). Lemma 2.2 of Albers, Bickel, and van Zwet (1976) warrants a desired
expansion for weighted sums of i.n.i.d. dichotomous data, which directly applies to
Tn. Assumption 3.1 of Skovgaard (1981b) can be verified by calculating the
asymptotic orders for the cumulants of Tn (Albers et al., 1976, Equations 2.6 and
2.7) and the derivatives of un(·). For example, suppose that ai’s and bi’s are
bounded sequences, and that ai’s satisfy Lemma 2.2 of Albers et al. (1976). In this
case, the third and fourth cumulants of Tn are of orders n−1/2 and n−1; u′′(·) and
u′′′(·) are of orders n−1/2 and n−1 as well. Hence, Assumption 3.1 of Skovgaard
(1981b) holds, and there exists an Edgeworth expansion of Un with an o(n−1) error
margin. Finally, those Hn(·, ·)’s considered in the present work are sufficiently
smooth in both arguments.

A.2 Expanding the posterior quantile

Let cn = −`′′n(θ̂n,Y), mn = `′′′n (θ̂n,Y) and rn = `′′′′n (θ̂n,Y) be the derivatives of
the observed log-likelihood. Also let u = (ncn)1/2(θ − θ̂n) and πn(u|Y) be the
posterior probability density function (pdf) of u corresponding to the prior πn(θ̂n, ·)
(Equation 16). Under the assumptions sketched out in Section A.1, we have the
following expansion for πn(u|Y):

πn(u|Y) = φ(u)
{

1 + n−1/2[G1J1(u) +G3J3(u)]

+ n−1 [G2J2(u) +G4J4(u) +G6J6(u)]
}

+ op(n−1), (A.1)

in which Ja(·) is Hermite polynomial of degree a (a ∈ N) defined by
daφ(u)/dua = (−1)aJa(u)φ(u). Quantities G1 to G6 in Equation A.1 are given by

G1 = A1 + 3A3, G2 = A2 + 6A4 + 45A6, G4 = A4 + 15A6, G3 = A3, G6 = A6, (A.2)
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in which

A1 = c−1/2
n

π(0,1)
n (θ̃n, θ̂n)
πn(θ̃n, θ̂n)

, A2 = 1
2c
−1
n

π(0,2)
n (θ̃n, θ̂n)
πn(θ̃n, θ̂n)

A3 = 1
6c
−3/2
n mn, A4 = A1A3 + 1

24c
−2
n rn, A6 = 1

2A
2
3. (A.3)

Integrating Equation A.1 with respect to u on the domain (−∞, z] leads to the
following expansion of the posterior cdf

P πn{u ≤ z|Y} = Φ(z)− n−1/2φ(z) [G1 +G3J2(z)]
− n−1φ(z) [G2J1(z) +G4J3(z) +G6J5(z)] + op(n−1), (A.4)

in which P π stands for the posterior probability measure with respect to the prior
π. Define

β1 = G1 +G3J2(zα),

β2 = 2zαβ1G3 −
1
2β

2
1zα +G2J1(zα) +G4J3(zα) +G6J5(zα), (A.5)

and an approximation of the αth posterior quantile

θα(πn,Y) = θ̂n + (ncn)−1/2
[
zα + n−1/2β1 + n−1β2

]
. (A.6)

It can be deduced from Equation A.4 that P πn{θ ≤ θα(πn,Y)|Y} = α + op(n−1).

A.3 A shrinkage argument

We now proceed with a standard shrinkage argument, which consists of the
following three steps:
1. Define an auxiliary data-free prior π̄ which is sufficiently smooth and has a

compact support that contains the true θ0 in the interior; both π̄ and its
derivatives vanish at the boundary of the support. Find an expansion of
P π̄{θ ≤ θα(πn,Y)|Y} with an error term of order op(n−1).

2. Take the Pθ-expectation of the expansion of P π̄{θ ≤ θα(πn,Y)|Y} obtained in
Step 1, resulting in an expansion of Eθ [P π̄{θ ≤ θα(πn,Y)|Y}] with an o(n−1)
error term.

3. Integrate the expansion of Eθ [P π̄{θ ≤ θα(πn,Y)|Y}] obtained in Step 2 with
respect to the auxiliary prior π̄. Sending π̄ to a point mass concentrated at θ0
eventually yields the desired expansion of Pθ0{θ0 ≤ θα(πn,Y)}.

Step 1 entails expanding the posterior cdf associated with the auxiliary prior π̄
(similar to the derivation of Equation A.4) and evaluating the expansion at
θα(πn,Y) (Equation A.6). Define Ḡ1 and Ḡ2 in a similar manner as G1 and G2
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(Equations A.2 and A.3) by substituting the auxiliary prior π̄ for the prior of
interest πn. After simplification, we have

P π̄{θ ≤ θα(πn,Y)|Y}
= α + n−1/2φ(zα)(G1 − Ḡ1) + n−1zαφ(zα)

[
G2 − Ḡ2 − (G1 − Ḡ1)(G1 + 2G3)

]
+ op(n−1)

= α + n−1/2φ(zα)c−1/2
n

π(0,1)
n (θ̃n, θ̂n)
πn(θ̃n, θ̂n)

− π̄′(θ̂n)
π̄(θ̂n)


+ n−1zαφ(zα)


1

6c
−2
n mn − c−1

n

π(0,1)
n (θ̃n, θ̂n)
πn(θ̃n, θ̂n)

 π(0,1)
n (θ̃n, θ̂n)
πn(θ̃n, θ̂n)

− π̄′(θ̂n)
π̄(θ̂n)


+ 1

2c
−1
n

π(0,2)
n (θ̃n, θ̂n)
πn(θ̃n, θ̂n)

− π̄′′(θ̂n)
π̄(θ̂n)

 + op(n−1). (A.7)

Next, we take a Pθ-expectation on the right-hand side of Equation A.7 in Step
2. Our assumptions allow to replace θ̂n by θ and the observed log-likelihood
derivatives by their expected counterpart after taking the expectation (see Datta &
Mukerjee, 2004, Chapter 2):

Eθ
[
P π̄{θ ≤ θα(πn, y)|y}

]
= α + n−1/2φ(zα)In(θ)−1/2

{
π(0,1)
n (θ, θ)
πn(θ, θ) −

π̄′(θ)
π̄(θ)

}

+ n−1zαφ(zα)
{[

1
6In(θ)−2Mn(θ)− In(θ)−1π

(0,1)
n (θ, θ)
πn(θ, θ)

] [
π(0,1)
n (θ, θ)
πn(θ, θ) −

π̄′(θ)
π̄(θ)

]

+ 1
2In(θ)−1

[
π(0,2)
n (θ, θ)
πn(θ, θ) −

π̄′′(θ)
π̄(θ)

]}
+ o(n−1). (A.8)

For easy reference, let

β(θ) = 1
6In(θ)−2Mn(θ)− In(θ)−1π

(0,1)
n (θ, θ)
πn(θ, θ) .

It follows upon integration by parts that

∫
f(θ) π̄

(a)(θ)
π̄(θ) dθ → (−1)af (a)(θ0) (A.9)

for any a-time continuously differentiable function f (a ∈ N) as π̄ approaches a
point mass at θ0. In the final step, we apply Equation A.9 to Equation A.8 and
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conclude after some algebra that

Pθ0{θ0 ≤ θα(πn,Y)} = α + n−1/2φ(zα)
[
In(θ0)−1/2π

(0,1)
n (θ0, θ0)
πn(θ0, θ0) + (I−1/2

n )′(θ0)
]

+ n−1zαφ(zα)
{
β(θ0)π

(0,1)
n (θ0, θ0)
πn(θ0, θ0) + β′(θ0)

+ 1
2In(θ0)−1π

(0,2)
n (θ0, θ0)
πn(θ0, θ0) −

1
2(I−1

n )′′(θ0)
}

+ o(n−1). (A.10)

Equation A.10 simplifies to Equation 17 after some algebra. Corollaries 1 and 2 can
be established by setting the first- and second-order terms in Equation 17 to zero.

B Expected log-likelihood derivatives

The expected log-likelihood derivatives appeared in Equation 20 can be
expressed as functions of the first to fourth derivatives of the pmfs. The pmf
derivatives for the 2PL, 3PL, graded, and nominal models can be found in the
example R code in the supplementary material. We also comment on the propriety
of the Jeffreys prior for the four types of models.

B.1 Derivatives

For conciseness, we write fiy = fi(y; θ) and drop the dependencies on θ from
the notation. After some straightforward algebra, we have

In = 1
n

n∑
i=1

Ki−1∑
y=0

(f ′iy)2

fiy
, (B.11)

I ′n = 1
n

n∑
i=1

Ki−1∑
y=0

[
−

(f ′iy)3

f 2
iy

+
2f ′iyf ′′iy
fiy

]
, (B.12)

I ′′n = 1
n

n∑
i=1

Ki−1∑
y=0

[
2(f ′iy)4

f 3
iy

−
5(f ′iy)2f ′′iy

f 2
iy

+
2(f ′′iy)2 + 2f ′iyf ′′′iy

fiy

]
, (B.13)

Mn = 1
n

n∑
i=1

Ki−1∑
y=0

[
2(f ′iy)3

f 2
iy

−
3f ′iyf ′′iy
fiy

+ f ′′′iy

]
, (B.14)

M ′
n = 1

n

n∑
i=1

Ki−1∑
y=0

[
−

4(f ′iy)4

f 3
iy

+
9(f ′iy)2f ′′iy

f 2
iy

−
3(f ′′iy)2 + 3f ′iyf ′′′iy

fiy
+ f ′′′′iy

]
. (B.15)

B.2 Jeffreys prior

The Jeffreys prior is proper for the four types of IRT models under study,
which further leads to proper posterior distributions due to the boundedness of the
likelihood function.
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The 2PL model. Let ηi = exp[ai(θ − bi)]. The test information of the 2PL
model can be written as

In = 1
n

n∑
i=1

a2
i ηi

(1 + ηi)2 . (B.16)

The propriety of the Jeffreys prior follows from the fact that x1/2 + y1/2 ≥ (x+ y)1/2

for all x, y ≥ 0, and that ∫ ∞
−∞

exp(x/2)
1 + exp(x)dx = π. (B.17)

The 3PL model. Let xi = exp[ai(θ − bi)]. The test information of the 3PL
model can be written as

In = 1
n

n∑
i=1

a2
i (1− ci)η2

i

(1 + ηi)2(ci + ηi)
. (B.18)

Due to Equation B.17 and the fact that x/(x+ c) ∈ (0, 1) for all x, c > 0, the
Jeffreys prior is proper for the 3PL model.

The graded model. Let ηiy = exp[ai(θ − biy)], y = 1, . . . , Ki − 1, Ki > 2. The
test information of the graded model is

In = 1
n

n∑
i=1

a2
i

 η2
i1

(1 + ηi1)3 +
Ki−2∑
y=1

(ηiy − ηi,y+1)(ηiyηi,y+1 − 1)2

(1 + ηiy)3(1 + ηi,y+1)3 + ηi,Ki−1

(1 + ηi,Ki−1)3

 .
(B.19)

Note that (x1x2 − 1)2/[(1 + x1)2(1 + x2)2] ∈ (0, 1) for every x1, x2 > 0. By virtue of
Equation B.17, the square root of each summand on the right-hand side of Equation
B.19 is integrable.

The nominal model. Let ηiy = exp[∑y
k=0 aik(θ − bik)] and αiy = ∑y

k=0 aik,
y = 0, . . . , Ki − 1. The test information of the nominal model is given by

In = 1
n

n∑
i=1

(∑Ki−1
k=0 ηik)(

∑Ki−1
k=0 ηikα

2
ik)− (∑Ki−1

k=0 ηikαik)2

(∑Ki−1
k=0 ηik)2

= 1
n

n∑
i=1

∑
k 6=l

ηikηil(α2
ik − 2αikαil)

(∑Ki−1
k=0 ηik)2

. (B.20)

Each summand on the right-hand side of Equation B.20, with the constant removed,
satisfies

ηikηil

(∑Ki−1
k=0 ηik)2

≤ ηikηil
(ηik + ηil)2 = ηil/ηik

(1 + ηil/ηik)2 .

The integrability of the Jeffreys prior follows again from Equation B.17.
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C R code

C.1 Class item and methods

To facilitate applications to mixed response format tests, a parent S4 class
item is defined and inherited by four derived classes: namely, 2pl, 3pl, graded, and
nom, each of which implements the corresponding item type considered in the
present paper. The source code can be found in item.R.

An item object can be constructed by calling new(_type_, par, theta):
_type_ refers to the name of a derived class, par is the vector of item parameters,
and, optionally, theta is a grid of person parameter values at which we evaluate the
pmf and its derivatives. The resulting object has the following slots.
• par: Item parameters.
• ncat: Number of categories.
• P: Pmf values (Equations 1–4).
• dP: First derivatives of P.
• d2P: Second derivatives of P.
• d3P: Third derivatives of P.
• d4P: Fourth derivatives of P.

Methods for the class item include
• show: Print information.
• logLik: Evaluate the log pmf.
• info: Evaluate the item information function (inner sum of Equation B.11).
• dinfo: Evaluate the first derivative of info (inner sum of Equation B.12).
• d2info: Evaluate the second derivative of info (inner sum of Equation B.13).
• ed3: Evaluate the expected third derivative of the log pmf (inner sum of Equation

B.14).
• ded3: Evaluate the first derivative of ed3 (inner sum of Equation B.15).
• jterm: Evaluate the item’s contribution to J(·) in the weighted likelihood (WL)

estimating equation (inner sum of Equation 6 in Magis, 2015).
• djterm: Evaluate the first derivative of jterm.
To create an item type inheriting from item, one should provide the following five
methods. See the definition of derived classes 2pl, 3pl, graded, and nom for more
details.
• P: Evaluate the pmf.
• dP: Evaluate the first derivative of P.
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• d2P: Evaluate the second derivative of P.
• d3P: Evaluate the third derivative of P.
• d4P: Evaluate the fourth derivative of P.

C.2 Class test and methods

The source code file test.R contains the definition of the S4 class test, as
well as the associated methods and functions that can be applied to the class.

The constructor of the class test is of form new("test", thetalim, nint,
itemtype, itempar), in which the arguments are
• thetalim: Integration limit for the person parameter.
• nint: Number of intervals used for the composite Simpson’s rule (must be even).
• itemtype: Character vector of item types.
• itempar: List of item parameters.
The following slots are allocated for a test object upon construction.
• nitem: Number of items.
• nint: Number of intervals used for the composite Simpson’s rule (must be even).
• theta: Vector of person parameter values (length = nint + 1).
• items: List of item objects.
• info: Test information function (Equation B.11) evaluated at theta.
• kappa: Function κn(·) (Equation 20) evaluated at theta.

The following methods are available for the class test.
• show: Print information.
• logLik: Evaluate the log-likelihood function.
• info: Evaluate the test information function (Equation B.11).
• dinfo: Evaluate the first derivative of info (Equation B.12).
• d2info: Evaluate the second derivative of info (Equation B.13).
• ed3: Evaluate the expected third derivative of the log-likelihood (Equation B.14).
• ded3: Evaluate the first derivative of ed3 (Equation B.15).
• jterm: Evaluate the WL estimating equation (Equation 6 in Magis, 2015).
• djterm: Evaluate the first derivative of jterm.

Additional functions taking a test object as the first argument (x) include
• kappa: Evaluate function κn(·) (Equation 20)
• djeff: Evaluate the (log) Jeffreys prior (Equation 15)
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• ddet: Evaluate the (log) DET prior (Equation 24)
• dpost: Evaluate the posterior pdf
• ppost: Evaluate the posterior cdf
• qpost: Evaluate the posterior quantile function
• wlee: Evaluate the WL estimating equation
• wlse: Evaluate the standard error function of the WL estimator
• mle: Compute the ML estimator and its standard error
• wle: Compute the WL estimator and its standard error

C.3 Examples

In ex.R, we create tests composed of the four basic types of items
(test1—test4), upon loading the source code test.R and item.R. For selected
response patterns, we compute the ML scores and standard errors (using function
mle), the WL scores and standard errors (using function wle), the Jeffery CIs (using
function qpost with prior djeff), and the DET CIs (using function qpost with
prior ddet).
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