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1 Introduction

This supplementary material contains mathematical proofs of the main results in the

paper. The reader is directed to the main text for the explanations of the notations.

Suppose that there exists a q× 1 vector of underlying continuous random variables x∗

that follows a multivariate normal distribution with variances 1. Let x be the vector of

discrete counterparts of x∗, xg the gth entry of x, and mg the number of possible outcomes

that xg can take. Then, xg = a if τg,a−1 < x∗g ≤ τg,a, where x∗g is the gth underlying

continuous random variable, τg,0 ≡ −∞, and τg,mg ≡ ∞. The vector of unknown thresholds

for xg is denoted by τg. The probability of observing x =
(
a1 a2 · · · aq

)
is

πa1a2···aq (τ ,ρ) =
τ1,a1ˆ

τ1,a1−1

τ2,a2ˆ
τ2,a2−1

· · ·

τq,aqˆ
τq,aq−1

φq (t1, ..., tq;ρ) dtq · · · dt1,

where τ =
(
τ T1 , τ

T
2 · · · τ Tq

)T
is the vector of all thresholds, ρ is the vector of all unique

polychoric correlation coefficients, and φq (;ρ) is the density function of a q-dimensional

normal random variable with means 0, variances 1, and correlation coefficients ρ. Let

τ Tgh =
(
τ Tg , τ

T
h

)
. The probability of observing xg = a and xh = b is

π
(gh)
ab (τgh, ρgh) =

τg,aˆ
τg,a−1

τh,bˆ
τh,b−1

φ2 (t1, t2; ρgh) dt2dt1, (1)

where ρgh is the polychoric correlation coefficient between xg and xh; and φ2 (; ρ) is the

density function of a bivariate normal random variable with means 0, variances 1, and

correlation ρ. Likewise, we can let π(ghst)
agahasat

(τghst,ρghst) be the probability of observing(
xg xh xs xt

)
=
(
ag ah as at

)
and π(ghs)

agahas
(τghs,ρghs) be the probability of
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observing
(
xg xh xs

)
=
(
ag ah as

)
, where

τghst =
(
τ Tg τ Th τ Ts τ Tt

)T
,

ρghst =
(
ρgh ρgs ρgt ρhs ρht ρst

)T
,

τghs =
(
τ Tg τ Th τ Ts

)T
,

ρghs =
(
ρgh ρgs ρhs

)T
.

Throughout the paper, we estimate the polychoric correlation coefficient using the

two-step procedure of Olsson (1979). First, the thresholds are estimated from the univariate

standard normal distribution. Second, the correlation coefficient is estimated conditional

on the estimated thresholds. The multinomial log-likelihood function in the second step is

`gh (τgh, ρgh) =
n∑
i=1

`gh,i (τgh, ρgh) ,

where n is the sample size, τgh is fixed to the first-step estimates τ̂gh, and

`gh,i (τgh, ρgh) =
mg∑
a=1

mh∑
b=1

Igh,i (a, b) log π(gh)
ab (τgh, ρgh) ,

Igh,i (a, b) =


1, if we observe xg,i = a and xh,i = b,

0, otherwise.

Here, {`gh,i (τgh, ρgh)} are mutually independent.

2 Polychoric Correlation Estimation

2.1 Standard Asymptotic Framework

Under the standard asymptotic framework, we assume that the true values of the

polychoric correlations do not depend on the sample size n. Most SEM related studies lie

within the standard asymptotic framework. Suppose that the true value of ρ is ρ0. Under

some conditions, Jöreskog (1994) showed that

√
n (ρ̂− ρ0) d→ N (0,Υ) , (2)
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where Υ is the asymptotic covariance matrix. The expression of Υ can be obtained from

Jöreskog (1994).

2.2 Local Asymptotic Framework

Under the local asymptotic framework, we assume that the true values of some

parameters depend on the sample size n. Our paper assumes that the true value of γ is

γ0 + δ/
√
n. Hence, the true model-implied σ is of the form

σtrue = σ (βtrue) = σ
(
θ0,γ0 + δ/

√
n
)
.

Suppose that σtrue can be expanded into

σtrue = σ0 + δ∗/
√
n+O

(
n−1

)
, (3)

where σ0 = σ (θ0,γ0) and

δ∗ = ∂σ (θ0,γ0)
∂γT

δ.

Then, for any pair (g, h), the polychoric correlation coefficient between xg and xh, denoted

by ρgh, is also locally drifted. Its true value satisfies

ρgh,true = ρgh,0 + δ∗gh/
√
n+O

(
n−1

)

for some local parameter δ∗gh. However, the thresholds τg and τh are not locally drifted.

Consequently, the true probability of observing xg = a and xh = b becomes

π
(gh)
ab (τgh,0, ρgh,true), where the subscript 0 is used to denote the true value of the thresholds.

2.3 Regularity Conditions

Let Ō(ρ) and Ō(τ)
g be closed balls that contain ρ0 and τg,0 as interior points,

respectively. Suppose that the polychoric correlation matrix with the correlation

coefficients ρ0 is a positive definite matrix; and that all πa1a2···aq (τ0,ρ0) > 0. Because the

polychoric correlation matrix is a continuous function of ρ and πa1a2···aq (τ ,ρ) is a
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continuous function of (τ ,ρ), we can choose Ō(ρ) and Ō(τ)
g such that the polychoric

correlation matrix remains positive definite and πa1a2···aq (τ ,ρ) is bounded below from zero

for all (τ ,ρ) ∈ Ō(τ) × Ō(ρ), where Ō(τ) = Ō
(τ)
1 × Ō

(τ)
2 × · · · × Ō(τ)

q and × is the Cartesian

product. Recall that a compact set is closed and bounded in the Euclidean space. Then by

the Tychonoff theorem (e.g., Richmond, 2020, Theorem 6.2.5), Ō(τ) and Ō(τ)× Ō(ρ) are also

closed and bounded. By the extreme value theorem (e.g., Rudin, 1976, Theorem 4.16), any

continuous function will attain its minimum and maximum on Ō(τ) × Ō(ρ). Thus, we can

find open balls O(τ) ⊂ Ō(τ) and O(ρ) ⊂ Ō(ρ) such that τ0 is an interior point of O(τ), ρ0 is

an interior point of O(ρ), and the continuous functions that are bounded on Ō(τ) × Ō(ρ) are

still bounded on O(τ) ×O(ρ).

Before we proceed to the main results and their proofs, we need to establish some

properties regarding the partial derivatives of log πa1···aq (τ ,ρ) for (τ ,ρ) ∈ O(τ) ×O(ρ).

Result 1. For any finite dimension q ≥ 2, log πa1···aq (τ ,ρ), the first-order partial

derivatives of log πa1···aq (τ ,ρ), the second-order partial derivatives of log πa1···aq (τ ,ρ), and

the second-order partial derivatives of ∂ log πa1···aq (τ ,ρ) /∂ρ are all bounded on O(τ) ×O(ρ).

Proof. The boundness of log πa1···aq (τ ,ρ) holds since πa1···aq (τ ,ρ) > 0 is bounded on the

open set O(τ) ×O(ρ) by construction. Regarding the first-order and higher-order partial

derivatives of log πa1···aq (τ ,ρ), πa1a2···aq (τ ,ρ) is bounded below from zero for all

(τ ,ρ) ∈ O(τ) ×O(ρ). Then we only need to show that the derivatives of πa1···aq (τ ,ρ) are

bounded. Since πa1···aq (τ ,ρ) involves a multiple integral, the partial derivatives of

πa1···aq (τ ,ρ) is also a multiple integral. For some constants dk, some vectors ak and some
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matrices Ak, we have∣∣∣∣∣∣∣∣
τ1,a1ˆ

τ1,a1−1

· · ·

τq,aqˆ
τq,aq−1

φq (t;ρ)
∏
k

(
dk + aTk t+ tTAkt

)
dtq · · · dt1

∣∣∣∣∣∣∣∣
≤

τ1,a1ˆ
τ1,a1−1

· · ·

τq,aqˆ
τq,aq−1

φq (t;ρ)
∏
k

∣∣∣dk + aTk t+ tTAkt
∣∣∣ dtq · · · dt1

≤ E

∣∣∣∣∣∏
k

(
dk + aTk t+ tTAkt

)∣∣∣∣∣ , (4)

where t = (t1, · · · , tq)T . That is, the above integral is bounded by a linear combination of

absolute moments of a multivariate normal distribution. Kamat (1953) have proposed an

approach to compute those absolute moments. Then, (4) is bounded on O(τ) ×O(ρ), if dk,

ak and Ak are all continuous functions of (τ ,ρ). Thus, it suffices to show that the

integrand needed to compute the partial derivatives are φq (t;ρ) multiplied by polynomials

of t.

Let ρg be the gth entry of ρ and Σ be a correlation matrix with off-diagonal elements

ρ. That is, a random variable with density function φq (t;ρ) has the correlation matrix Σ.

Let σij be the (i, j)th entry of Σ,

Σ(g) = Σ−1 ∂Σ
∂ρg

Σ−1,

and σ(g)
ij be the (i, j)th entry of Σ(g). For any g,

∂πa1···aq (τ ,ρ)
∂ρg

=
τ1,a1ˆ

τ1,a1−1

· · ·

τq,aqˆ
τq,aq−1

φq (t;ρ) ∂ log φq (t;ρ)
∂ρg

dtq · · · dt1,

where

∂ log φq (t;ρ)
∂ρg

= −1
2tr

{
ΣΣ(g)

}
+ 1

2t
TΣ(g)t.

Thus, ∂πa1···aq (τ ,ρ) /∂ρg is bounded on O(τ) ×O(ρ). Regarding the first-order partial
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derivative with respect to τ , note that

∣∣∣∣∣∂πa1···aq (τ ,ρ)
∂τ1,a

∣∣∣∣∣ =
τ2,a2ˆ

τ2,a2−1

· · ·

τq,aqˆ
τq,aq−1

φq (τ1,a, t2, · · · , tq;ρ) dtq · · · dt2

≤ φ1 (τ1,a) ≤
1√
2π
, if τ1,a = τ1,a1 or τ1,a1−1,∣∣∣∣∣∂πa1···aq (τ ,ρ)

∂τ1,a

∣∣∣∣∣ = 0, if τ1,a 6= τ1,a1 and τ1,a 6= τ1,a1−1,

where φ1 () is the density of a univariate standard normal random variable. Therefore, the

first-order partial derivatives of πa1···aq (τ ,ρ) with respect to τ1 are bounded. By symmetry

in the sense that the order of the integral can be interchanged, the first-order partial

derivatives of πa1···aq (τ ,ρ) with respect to τ are bounded. Consequently, the first-order

partial derivatives of log πa1···aq (τ ,ρ) are bounded on O(τ) ×O(ρ).

Now consider the first-order partial derivatives of ∂πa1···aq (τ ,ρ) /∂ρ. Note that

∂2πa1···aq (τ ,ρ)
∂ρg∂ρh

=
τ1,a1ˆ

τ1,a1−1

· · ·

τq,aqˆ
τq,aq−1

∂2φq (t;ρ)
∂ρg∂ρh

dtq · · · dt1,

where

∂2φq (t;ρ)
∂ρg∂ρh

= φq (t;ρ)
(

1
4tr

{
ΣΣ(g)

}
tr
{
ΣΣ(h)

}
− 1

2tr
{

∂2Σ
∂ρg∂ρh

Σ−1 −ΣΣ(g)ΣΣ(h)
})

+1
4φq (t;ρ) tT

(
2∂Σ(g)

∂ρh
− tr

{
ΣΣ(g)

}
Σ(h) − tr

{
ΣΣ(h)

}
Σ(g)

)
t

+1
4φq (t;ρ)

(
tTΣ(h)t

) (
tTΣ(g)t

)
.

Hence, ∂2πa1···aq (τ ,ρ) /∂ρg∂ρh is bounded on O(τ) ×O(ρ). Regarding the first-order partial

derivatives of ∂ log πa1···aq (τ ,ρ) /∂ρ with respect to τ , we still use the derivatives with

respect to τ1 as an example. It is easy to see that ∂2πa1···aq (τ ,ρ) /∂τ1,a∂ρh = 0 if

a 6= a1 − 1 and a 6= a1. If a = a1 − 1 or a1, then

∣∣∣∣∣∂
2πa1···aq (τ ,ρ)
∂τ1,a∂ρh

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
τ2,a2ˆ

τ2,a2−1

· · ·

τq,aqˆ
τq,aq−1

[1
2φq

(
t̃a;ρ

) (
t̃TaΣ(g)t̃a

)
− 1

2φq
(
t̃a;ρ

)
tr
{
ΣΣ(g)

}]
dtq · · · dt2

∣∣∣∣∣∣∣∣ ,
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where t̃a =
(
τ1,a t2 · · · tq

)T
. Hence, ∂2πa1···aq (τ ,ρ) /∂τ1,a∂ρh is bounded on O(τ) ×O(ρ)

if a = a1−1 or a1. Regarding the first-order partial derivatives of ∂πa1···aq (τ ,ρ) /∂τ1,a with

respect to τ , it is easy to see that ∂2πa1···aq (τ ,ρ) /∂τ1,a1∂τ1,a = 0 if a 6= a1. If a = a1,

∂2πa1···aq (τ ,ρ)
∂τ 2

1,a1

=
τ2,a2ˆ

τ2,a2−1

· · ·

τq,aqˆ
τq,aq−1

φq (τ1,a1 , t2, · · · , tq;ρ)
(
−eT1 Σ−1t̃a1

)
dtq · · · dt2,

where ei is a vector with ith entry being 1 and other entries being 0. Hence,

∂2πa1···aq (τ ,ρ) /∂τ 2
1,a1 is bounded if a = a1. Further, ∂2πa1···aq (τ ,ρ) /∂τ1,a1∂τ2,a = 0, if

a 6= a2 − 1 and a 6= a2. If a = a2 − 1 or a2, then

∣∣∣∣∣∂
2πa1···aq (τ ,ρ)
∂τ1,a1∂τ2,a

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
τ3,a3ˆ

τ3,a3−1

· · ·

τq,aqˆ
τq,aq−1

φq (τ1,a1 , τ2,a, t3, · · · , tq;ρ) dtq · · · dt3

∣∣∣∣∣∣∣∣ ≤ φ2 (τ1,a1 , τ2,a; ρ12) .

Therefore, by symmetry, every entry in ∂2πa1···aq (τ ,ρ) /∂τ∂τ T are bounded on O(τ) ×O(ρ).

This completes the proof for the boundness of the second-order partial derivatives of

log πa1···aq (τ ,ρ).

At last consider the second-order partial derivatives of ∂πa1···aq (τ ,ρ) /∂ρ. From

∂2πa1···aq (τ ,ρ) /∂ρg∂ρh derived above, the integrand needed in ∂3πa1···aq (τ ,ρ) /∂ρg∂ρh∂ρi

is φq (t;ρ) multiplied by a polynomial of t up to the sixth order. From

∂2πa1a2···aq (τ ,ρ) /∂τ1,a∂ρh derived above, the integrand needed in

∂3πa1···aq (τ ,ρ) /∂τ1,a∂ρg∂ρh is φq (t;ρ) multiplied by a polynomial of t up to the fourth

order. From ∂2πa1a2···aq (τ ,ρ) /∂τ∂τ Tderived above, the integrands needed in

∂3πa1···aq (τ ,ρ) /∂τ∂τ T∂ρg is also a multivariate normal density multiplied by a polynomial

of t up to the fourth order. Therefore, the second-order partial derivatives of

∂ log πa1···aq (τ ,ρ) /∂ρ are bounded on O(τ) ×O(ρ) .

In order to show the main results, we need the following regularity conditions.

A1 For any pair (g, h), ρgh,true = ρgh,0 + δ∗gh/
√
n+O (n−1) for some local parameter δ∗gh.
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A2 For any (τgh, ρgh) 6= (τgh,0, ρgh,0), P (`gh,i (τgh, ρgh) = `gh,i (τgh,0, ρgh,0)) < 1.

A3 For any pair (g, h), ∂`gh (τgh, ρgh) /∂ρgh = 0 always has a unique solution for any

τgh ∈ O(τ)
g ×O

(τ)
h .

A4 For any pair (g, h), the information

E0

(
∂2`gh,i (τgh,0, ρgh,0)

∂ρ2

)
=

mg∑
a=1

mh∑
b=1

πab (τgh,0, ρgh,0) ∂
2 log πab (τgh,0, ρgh,0)

∂ρ2 6= 0.

Assumptions A2 and A3 ensure the identifibility. Assumption A4 ensures that the
reciprocal of the Fisher information is well-defined. Assumption A1 means that the true
values of the polychoric correlation coefficients are locally drifted in a n−1/2 neighborhood.
This is a mild assumption when the true values of the structural equation model in the
main text are locally drifted. The model-implied covariance matrix of the structural
equation model in the main text is Λy (I −B)−1 [Γvar (ξ) ΓT + var (ε)

] [
(I −B)−1

]T

ΛT
y Λy (I −B)−1 Γvar (ξ) ΛT

x

Λxvar (ξ) ΓT
[
(I −B)−1

]T

ΛT
y Λxvar (ξ) ΛT

x

+ var

δx

δy

 , (5)

provided that I −B is invertible. Let σ be the vector of all unique elements in (5) and β

be the vector of free parameters in Λx, Λy, B, Γ, var(ξ), var(δx), var(δy), cov(δx, δTy ), and

var(ε). In order to link (5) to Assumption A1, we need the following mild assumptions on

the covariance matrix (5).

A5 The covariance matrix (5) evaluated at β0 is positive definite. σ (β) is a twice

continuously differentiable function of β on a neighborhood of β0. The partial

derivatives ∂σ (β0) /∂β and ∂2σ (β0) /∂β∂βT are finite.

By positive definiteness and the continuity in Assumption A5, we can find open balls

O(θ) and O(γ) such that θ0 is an interior point of O(θ), γ0 is an interior point of O(γ); (5) is

positive definite for all (θ,γ) ∈ O(θ) ×O(γ); and σ (θ,γ), ∂σ (β) /∂β and ∂2σ (β) /∂β∂βT

are bounded on O(θ) ×O(γ). If the structural equation model in the main text is the true
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data generation process, then ρ = σ (θ,γ). By the continuity, we can let O(ρ) be an open

ball that is nested in the image of O(θ) ×O(γ) under σ (θ,γ), and then Result 1 holds.

Further, Assumption A5 implies that ∂σ (θ0,γ) /∂γ and ∂2σ (θ0,γ) /∂γ∂γT are

continuous functions of γ ∈ O(γ). For a sufficiently large n, γ0 + δ/
√
n is also an interior

point of O(γ). Then, the Taylor’s theorem (Rudin, 1976, pp 110 and pp 243) yields

σ
(
θ0,γ0 + δ/

√
n
)

= σ (θ0,γ0) + ∂σ (θ0,γ0)
∂rT

δ/
√
n+ 1

2δ
T ∂

2σ (θ0, γ̃)
∂γ∂γT

δ/n, (6)

where γ̃ lies between γ0 + δ/
√
n and γ0. Since ∂σ (θ0,γ) /∂γ and ∂2σ (θ0,γ) /∂γ∂γT are

bounded on O(γ), the third term in the right-hand side of (6) is O (n−1). Thus, Assumption

A1 holds under Assumption A5.

Using Assumption A1 and Result 1, we can expand π(ghst)
agahasat

(τghst,ρghst) that will be

used later. For notational simplicity, we will drop the indices from π(ghst)
agahasat

(τghst,ρghst)

and express it as π (τ ,ρ) in this subsection, whenever no confusion arises. The partial

derivatives shown in Result 1 imply that log π (τ ,ρ) has continuous second-order partial

derivatives on O(τ) ×O(ρ). Because of Assumption A1, ρtrue is an interior point of O(ρ) for

a sufficiently large n. Hence, the Taylor’s theorem (e.g., Rudin, 1976, pp 110 and pp 243)

yields

log π (τ0,ρtrue) = log π (τ0,ρ0) + ∂ log π (τ0,ρ0)
∂ρT

(ρtrue − ρ0)

+1
2 (ρtrue − ρ0)T ∂

2 log π (τ0, ρ̃)
∂ρ∂ρT

(ρtrue − ρ0)

= log π (τ0,ρ0) + ∂ log π (τ0,ρ0)
∂ρT

(
δ∗/
√
n+O

(
n−1

))
+1

2
(
δ∗/
√
n+O

(
n−1

))T ∂2 log π (τ0, ρ̃)
∂ρ∂ρT

(
δ∗/
√
n+O

(
n−1

))
= log π (τ0,ρ0) + ∂ log π (τ0,ρ0)

∂ρT
δ∗/
√
n+O

(
n−1

)
, (7)

where ρ0 is the vector that collects all ρgh,0, and ρ̃ lies between ρ0, and ρtrue and δ∗ is the

vector that collects all δ∗gh. The remainder in (7) is O (n−1) since the partial derivatives are

bounded on O(τ) ×O(ρ) by Result 1 such that ∂ log π(τ0,ρ0)
∂ρT

O (n−1) = O (n−1) and
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∂2 log π(τ0,ρ̃)
∂ρ∂ρT

δ∗/
√
n = O

(
n−1/2

)
. By taking exp () on both sides of (7), the expansion of

log π (τ0,ρtrue) also gives the representation

π (τ0,ρtrue) = π (τ0,ρ0) exp
{
∂ log π (τ0,ρ0)

∂ρT
δ∗/
√
n+O

(
n−1

)}
.

Using the Taylor series exp (x) = 1 + x+ exp (x̃)x2/2 for some 0 < x̃ < x, we further obtain

π (τ0,ρtrue) = π (τ0,ρ0)
{

1 + ∂ log π (τ0,ρ0)
∂ρT

δ∗/
√
n+R (δ∗)

}
, (8)

where the non-random remainder

R (δ∗) = O
(
n−1

)
+ exp (x̃)

2

[
∂ log π (τ0,ρ0)

∂ρT
δ∗/
√
n+O

(
n−1

)]2

and x̃ lies between 0 and ∂ log π(τ0,ρ0)
∂ρT

δ∗/
√
n+O (n−1). Since the partial derivatives are

bounded by Result 1, ∂ log π(τ0,ρ0)
∂ρT

δ∗/
√
n = O

(
n−1/2

)
and x̃ = O

(
n−1/2

)
. Hence,

R (δ∗) = O (n−1).

When the dimension is two, similar steps yield

π
(gh)
ab (τgh,0, ρgh,true) = π

(gh)
ab (τgh,0, ρgh,0) exp

{
∂ log π(gh)

ab (τgh,0, ρgh,0)
∂ρ

δ∗gh/
√
n+O

(
n−1

)}

= π
(gh)
ab (τgh,0, ρgh,0)

[
1 + ∂ log π(gh)

ab (τgh,0, ρgh,0)
∂ρ

δ∗gh/
√
n+Rab

(
δ∗gh

)]
,(9)

for some non-random remainder Rab

(
δ∗gh
)

= O (n−1).

2.4 Consistency and Asymptotic Normality

Throughout the paper, we use Etrue () to denote the expectation under the true

distribution and E0 () to denote the expectation under the distribution with ρ0 as the

parameter value. For example,

E0 [`gh,i (τgh,0, ρgh)] =
mg∑
a=1

mh∑
b=1

πab (τgh,0, ρgh,0) log πab (τgh,0, ρgh) ,

Etrue [`gh,i (τgh,0, ρgh)] =
mg∑
a=1

mh∑
b=1

πab (τgh,0, ρgh,true) log πab (τgh,0, ρgh) .

The variances vartrue () and var0 () are defined similarly.
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When the two-step procedure is used to estimate the polychoric correlation coefficient,

the thresholds τg are estimated from the univariate standard normal distributions. Hence,

τ̂g is a still consistent estimator of τg and
√
n (τ̂g − τg) is asymptotically normal, for any g.

In the second step, `gh (τ̂gh, ρgh) is maximized with respect to ρgh, a pseudo-maximum

likelihood setting. Hence, we will extend Gong and Samaniego (1981) from the standard

asymptotic framework to the local asymptotic framework.

Before we present the main results and their proofs, two well-known theorems are

presented here, which will be repeatedly used.

1. Law of Large Numbers (LLN; e.g., Jiang, 2010, Theorem 6.4). Let Xn,i,

i = 1, ..., n, n = 1, 2, ..., be a triangular array of random variables such that for each n, the

Xn,i’s are independent. Then, ∑n
i=1 Xn,i

p→ 0 as n→∞ if and only if

n∑
i=1

P (|Xn,i| > ε) → 0,

n∑
i=1

E {Xn,iI (|Xn,i| ≤ κ)} → 0,

n∑
i=1

var {Xn,iI (|Xn,i| ≤ κ)} → 0,

for every ε > 0 and some κ > 0.

2. Lindeberg-Feller Central Limit Theorem (e.g., van der Vaart, 1998, Proposition

2.27). For each n, let Yn,1, ..., Yn,knbe independent random vectors with finite variances

such that

lim
n→∞

kn∑
i=1

E
[
‖Yn,i‖2 I {‖Yn,i‖ ≥ ε}

]
= 0, for every ε > 0

kn∑
i=1

cov (Yn,i)→ Σ.

Then the sequence ∑kn
i=1 [Yn,i − E (Yn,i)] converges in distribution to a normal N (0,Σ)

distribution.

Theorem 1. Consider any pair (g, h). For ε > 0, let An (ε) be the event that, for any pairs

(g, h), there exists a root ρ̂gh of the equation ∂`gh (τ̂gh, ρ) /∂ρ = 0 for which



FMA IN ORDINAL SEM 13

|ρ̂gh − ρgh,0| < ε. Suppose that Assumptions A1 and A2 hold. Then for any ε > 0,

P {An (ε)} → 1 as n→∞, under the local asymptotic framework. If Assumption A3 also

holds, then ρ̂ p→ ρ0, under the local asymptotic framework.

Proof of Theorem 1. The proof by and large follows Theorem 2.1 in Gong and Samaniego

(1981), but to the local asymptotic framework. Let Agh,n (ε) be the event that there exists

a root ρ̂gh of the equation ∂`gh (τ̂gh, ρ) /∂ρ = 0 for which |ρ̂gh − ρgh,0| < ε. Suppose that,

for any ε1 > 0 and any ε2 > 0, there exists a Ngh such that

P {Agh,n (ε1)} > 1− 3ε2, (10)

for all n > Ngh. Let N∗ = max(g,h) Ngh. Then,

P {An (ε1)} = P {A12,n (ε1) ∩ A13,n (ε1) ∩ · · · ∩ Aq−1,q,n (ε1)} > 1− q (q − 1)
2 3ε2,

for all n > N∗. This means that P {An (ε1)} → 1 as n→∞. Further, under the

assumption A3 that ∂`gh (τ̂gh, ρ) /∂ρ = 0 always has a unique root for any (g, h), we reach

P


√∑
g<h

(ρ̂gh − ρgh,0)2 <

√
q (q − 1)

2 ε1

 > 1− q (q − 1)
2 3ε2.

In other words, ρ̂ p→ ρ0. Thus, in the rest of the proof, we will show that (10) holds.

For notational simplicity, we drop the index g and h in the proof if no confusion

arises. Let O(τ) and O(ρ) be the open sets as stated in section 2.3. That is, τ0 and ρ0 are

interior points of O(τ) and O(ρ); and inf
(τ ,ρ)∈O(τ)×O(ρ)

πab (τ , ρ) > 0, for any a and b. By LLN,

1
n
` (τ0, ρ)− Etrue [`i (τ0, ρ)] p→ 0, (11)

for any fixed ρ ∈ O(ρ), provided that
n∑
i=1

P (|`i (τ0, ρ)− Etrue [`i (τ0, ρ)]| > nε) → 0,(12)

n∑
i=1

Etrue

{
`i (τ0, ρ)− Etrue [`i (τ0, ρ)]

n
I (|`i (τ0, ρ)− Etrue [`i (τ0, ρ)]| ≤ nκ)

}
→ 0,(13)

n∑
i=1

vartrue
{
`i (τ0, ρ)− Etrue [`i (τ0, ρ)]

n
I (|`i (τ0, ρ)− Etrue [`i (τ0, ρ)]| ≤ nκ)

}
→ 0,(14)
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for any ε > 0 and some κ > 0; and the expectations and variances are finite.

By Result 1, log πab (τ0, ρ) is bounded on O(ρ) for any (a, b). Then, `i (τ0, ρ),

E0 [`i (τ0, ρ)] =
∑
a,b

πab (τ0, ρ0) log πab (τ0, ρ) ,

E0
[
`2
i (τ0, ρ)

]
=

∑
a,b

πab (τ0, ρ0) [log πab (τ0, ρ)]2 ,

and var0 (`i (τ0, ρ)) are all bounded on O(ρ). By Assumption A1, equation (9) holds if

ρtrue ∈ O(ρ). Hence, we have

Etrue [`i (τ0, ρ)] =
∑
a,b

πab (τ0, ρtrue) log πab (τ0, ρ)

= E0 [`i (τ0, ρ)] +
∑
a,b

πab (τ0, ρ0) ∂ log πab (τ0, ρ0)
∂ρ

log πab (τ0, ρ) δ∗/
√
n

+
∑
a,b

πab (τ0, ρ0) log πab (τ0, ρ)Rab (δ∗) ,

vartrue (`i (τ0, ρ)) = Etrue
[
`2
i (τ0, ρ)

]
− E2

true [`i (τ0, ρ)]

= E0
[
`2
i (τ0, ρ)

]
+
∑
a,b

πab (τ0, ρ0) ∂ log πab (τ0, ρ0)
∂ρ

log2 πab (τ0, ρ) δ∗/
√
n

+
∑
a,b

πab (τ0, ρ0) log2 πab (τ0, ρ)Rab (δ∗)− E2
true [`i (τ0, ρ)] .

By Result 1, ∑a,b πab (τ0, ρ0) log πab (τ0, ρ), ∑a,b πab (τ0, ρ0) log2 πab (τ0, ρ),

∑
a,b

πab (τ0, ρ0) ∂ log πab (τ0, ρ0)
∂ρ

log πab (τ0, ρ) ,

and
∑
a,b

πab (τ0, ρ0) ∂ log πab (τ0, ρ0)
∂ρ

log2 πab (τ0, ρ) ,

are all bounded on O(ρ). Since Rab (δ∗) = O (n−1) in (9), we have

Etrue (`i (τ0, ρ)) = E0 [`i (τ0, ρ)] +O
(
n−1/2

)
,

vartrue (`i (τ0, ρ)) = var0 (`i (τ0, ρ)) +O
(
n−1/2

)
,

and they are both finite for any fixed ρ ∈ O(ρ). Since both `i (τ0, ρ) and Etrue [`i (τ0, ρ)] are

bounded, |`i (τ0, ρ)− Etrue [`i (τ0, ρ)]| is bounded on ρ ∈ O(ρ). Hence,

|`i (τ0, ρ)− Etrue [`i (τ0, ρ)]| < nε for a sufficiently large n. Consequently, (12) holds.



FMA IN ORDINAL SEM 15

Likewise, for a sufficiently large n, |`i (τ0, ρ)− Etrue [`i (τ0, ρ)]| ≤ nκ for fixed κ. Thus, (13)

and (14) hold, since

n∑
i=1

Etrue

{
`i (τ0, ρ)− Etrue [`i (τ0, ρ)]

n

}
= 0

and

n∑
i=1

vartrue
{
`i (τ0, ρ)− Etrue [`i (τ0, ρ)]

n

}
= vartrue {`i (τ0, ρ)}

n

=
var0 (`i (τ0, ρ)) +O

(
n−1/2

)
n

→ 0.

Therefore, the law of large numbers (11) is applicable and

P
(∣∣∣∣ 1n` (τ0, ρ)− Etrue [`i (τ0, ρ)]

∣∣∣∣ > ε
)
→ 0,

for any ε > 0, as n→∞. It further yields

1
n
` (τ0, ρ) p→ E0 [`i (τ0, ρ)] ,

since the local drift in the expectation vanishes as n→∞.

From section 2.3 we know that ` (τ , ρ) has continuous partial derivatives with respect

to (τ , ρ) on the open set O(τ) ×O(ρ). Hence, for a sufficiently large n, the consistency of τ̂

and the Taylor’s theorem yields

1
n
` (τ̂ , ρ) = 1

n
` (τ0, ρ) + 1

n

∂` (τ̃ , ρ)
∂τ T

(τ̂ − τ0) + oP (1) ,

where τ̃ lies between τ̂ and τ0. By Result 1, |∂ log πab (τ , ρ) /∂τ | is bounded on

O(τ) ×O(ρ). Hence, for all (τ , ρ) ∈ O(τ) ×O(ρ) ,∣∣∣∣∣∂`i (τ , ρ)
∂τ

∣∣∣∣∣ =
∑
a,b

∣∣∣∣∣Ii (a, b) ∂ log πab (τ , ρ)
∂τ

∣∣∣∣∣
is also bounded. Since τ̂ is still a consistent estimator of τ0,

P
{

(τ̂ − τ0)T (τ̂ − τ0) < ε
}
→ 1 as n→∞ for any ε > 0. For a sufficiently small ε, the



FMA IN ORDINAL SEM 16

open ball
{
τ ; (τ̂ − τ0)T (τ̂ − τ0) < ε

}
is a subset of O(τ). Hence, P

(
τ̂ ∈ O(τ)

)
→ 1.

Equivalently,

P
(
(τ̂ , ρ) ∈ O(τ) ×O(ρ)

)
→ 1

for any fixed ρ ∈ O(ρ), as n→∞. Then n−1∂` (τ̃ , ρ) /∂τ is bounded in probability. Hence,

P
(∣∣∣∣ 1n` (τ̂ , ρ)− 1

n
` (τ0, ρ)

∣∣∣∣ > ε
)
→ 0.

Above all,

1
n
` (τ̂ , ρ)− Etrue [`i (τ0, ρ)] p→ 0, (15)

for ρ ∈ O(ρ), since for any ε > 0,

P
(∣∣∣∣ 1n` (τ̂ , ρ)− Etrue [`i (τ0, ρ)]

∣∣∣∣ > 2ε
)
≤ P

(∣∣∣∣ 1n` (τ̂ , ρ)− 1
n
` (τ0, ρ)

∣∣∣∣ > ε
)

+P
(∣∣∣∣ 1n` (τ0, ρ)− Etrue [`i (τ0, ρ)]

∣∣∣∣ > ε
)
,

which converges to 0 as n→∞. It further yields

1
n
` (τ̂ , ρ) p→ E0 [`i (τ0, ρ)] ,

since the local drift in the expectation vanishes as n→∞.

The rest of the proof mimics the proof of Theorem 2.1 in Gong and Samaniego

(1981). By (15),

[ 1
n
` (τ̂ , ρ)− 1

n
` (τ̂ , ρ0)

]
− {E0 [`i (τ0, ρ)]− E0 [`i (τ0, ρ0)]} p→ 0.

By Jensen’s inequality

E0 [`i (τ0, ρ)]− E0 [`i (τ0, ρ0)] ≤ logE0

∏mx
a=1

∏my
b=1 [πab (τ0, ρ)]Ii(a,b)∏mx

a=1
∏my
b=1 [πab (τ0, ρ0)]Ii(a,b)

= 0.

By Assumption A2, the equality is attained only if ρ = ρ0. Hence, n−1 [` (τ̂ , ρ)− ` (τ̂ , ρ0)]

converges in probability to a negative number for ρ 6= ρ0. Consequently, for any small
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ε1 > 0 and ε2 > 0, there exists a N such that

1− ε2 < P
(
τ̂ ∈ O(τ)

)
, (16)

1− ε2 < P (` (τ̂ , ρ0 + ε1) < ` (τ̂ , ρ0)) , (17)

1− ε2 < P (` (τ̂ , ρ0 − ε1) < ` (τ̂ , ρ0)) , (18)

for all n > N . Here (16) holds since τ̂ is a consistent estimator of τ0; (17) and (18) hold

because of the convergence of n−1 [` (τ̂ , ρ)− ` (τ̂ , ρ0)] that we just showed. Suppose that

the event

{
τ̂ ∈ O(τ), ` (τ̂ , ρ0 + ε1) < ` (τ̂ , ρ0) , and ` (τ̂ , ρ0 − ε1) < ` (τ̂ , ρ0)

}
(19)

holds. Note that, for a given τ̂ , ` (τ̂ , ρ) is a continuous function of ρ on the closed and

bounded interval [ρ0 − ε1, ρ0 + ε1]. By the extreme value theorem (Rudin, 1976, Theorem

4.16), ` (τ̂ , ρ) must attain a maximum. Since the values of ` (τ̂ , ρ) at boundaries are lower

than the value at an interior point (ρ = ρ0) by event (19), the maximum of ` (τ̂ , ρ) on the

closed interval [ρ0 − ε1, ρ0 + ε1] must be attained at an interior point. This means that, if

event (19) holds, ` (τ̂ , ρ) has a local maximum ρ̂ on the open interval (ρ0 − ε1, ρ0 + ε1).

Since ` (τ̂ , ρ) is differentiable with respect to ρ, the local maximum ρ̂ satisfies

∂` (τ̂ , ρ) /∂ρ = 0. By inequalities (16), (17), and (18), the event (19) holds with probability

greater than 1− 3ε2, which completes the proof of (10).

Theorem 2. Suppose that Assumptions A1, A2, A3, and A4 hold. Then
√
n (ρ̂− ρtrue) d→ N (0,Υ), under the local asymptotic framework, where Υ is the same as

the asymptotic covariance matrix in (2).

Proof of Theorem 2. For ease of presentation, we first prove the asymptotic normality of

the polychoric correlation coefficient estimator between two variables. Second, we extend

the proof to the multivariate case. Since the univariate distribution is not locally drifted,

the expansion for the thresholds in Jöreskog (1994) is still applicable. However, ρ is locally
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drifted by Assumption A1. Hence, the expansion for ρ in Jöreskog (1994) is not directly

applicable.

The marginal probabilities of observing xg = a and xh = b are

πg,a (τg) =
τg,aˆ

τg,a−1

φ1 (t) dt, πh,b (τh) =
τh,bˆ

τh,b−1

φ1 (t) dt,

respectively, where φ1 () is the density function of a standard normal random variable. To

estimate τg, the univariate log-likelihood scaled by n−1 is

n−1
n∑
i=1

mg∑
a=1

I {xg,i = a} log πg,a (τg) , (20)

where τg,0 ≡ −∞ and τg,mg ≡ ∞. Denote the observed relative frequency matrix by P (gh)

(mg ×mh). Let the operator diag(·) construct a diagonal matrix using the enclosed vector

as diagonal elements. Jöreskog (1994) showed that

√
n (τ̂g − τg,0) =

(
BT
g,0D

−1
g,0Bg,0

)−1
BT
g,0D

−1
g,0
√
nP (gh)1g + oP (1) , (21)

where Bg,0 = Bg (τg,0) with

Bg (τg) =



φ1 (τg,1) 0 · · · 0

−φ1 (τg,1) φ1 (τg,2) · · · 0

0 −φ1 (τg,2) · · · 0
... ... . . . ...

0 0 · · · φ1
(
τg,mg−1

)
0 0 · · · −φ1

(
τg,mg−1

)



,

Dg,0 = Dg (πg,0) with Dg (πg) = diag (πg) and πg =
(
πg,1 · · · πg,mg

)T
, and 1g is a

mh × 1 column vector of ones. It is worth mentioning that
√
nP (gh)1g in (21) diverges as

n→∞, but BT
g,0D

−1
g,0
√
nP (gh)1g does not. Let π(gh)

0 be the mg ×mh matrix with entries

π
(gh)
ab (τgh,0, ρgh,0). It is easy to see that D−1

g,0π
(gh)
0 1g = 1g and BT

g,0D
−1
g,0π

(gh)
0 1g = BT

g,01g = 0.

Hence, we get BT
g,0D

−1
g,0
√
nP (gh)1g = BT

g,0D
−1
g,0
√
n
(
P (gh) − π(gh)

0

)
1g. Then, an equivalent
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expression of (21) is

√
n (τ̂g − τg,0) =

(
BT
g,0D

−1
g,0Bg,0

)−1
BT
g,0D

−1
g,0
√
n
(
P (gh) − π(gh)

0

)
1g + oP (1) . (22)

In fact, BT
g,0D

−1
g,0
√
nP (gh)1g originates from the first-order derivative of (20) given by a

vector with entries(
n−1∑n

i=1 I {xg,i = a}
πg,a (τg)

− n−1∑n
i=1 I {xg,i = a+ 1}
πg,a+1 (τg)

)
φ1 (τg,a) .

Likewise, τ̂h satisfies

√
n (τ̂h − τh,0) =

(
BT
h,0D

−1
h,0Bh,0

)−1
BT
h,0D

−1
h,0
√
n
(
P (gh) − π(gh)

0

)T
1h + oP (1) . (23)

For the asymptotic normality of the polychoric correlation coefficient estimator

between two variables, we often suppress the index g and h for notational simplicity if it

does not cause confusion. From section 2.3, it can be easily seen that ` (τ , ρ) has

continuous third-order partial derivatives with respect to (τ , ρ) on the open set O(τ) ×O(ρ).

Hence, the Taylor’s theorem yields

0 = 1√
n

∂` (τ̂ , ρ̂)
∂ρ

=
[

1
n

∂2` (τ0, ρ0)
∂ρ2 + 1

2n
∂3` (τ̃ , ρ̃)
∂ρ3 (ρ̂− ρ0) + 1

n

∂3` (τ̃ , ρ̃)
∂ρ2∂τ T

(τ̂ − τ0)
]
√
n (ρ̂− ρ0)

+ 1√
n

∂` (τ0, ρ0)
∂ρ

+ 1
n

∂2` (τ0, ρ0)
∂ρ∂τ T

√
n (τ̂ − τ0) + 1

2
√
n

(τ̂ − τ0)T ∂
2` (τ̃ , ρ̃)

∂ρ∂τ∂τ T
(τ̂ − τ0) ,

where ρ̃ lies between ρ̂ and ρ0, and τ̃ lies between τ̂ and τ0. Consequently,

√
n (ρ̂− ρ0) = −

1√
n
∂`(τ0,ρ0)

∂ρ + 1
n
∂2`(τ0,ρ0)
∂ρ∂τT

√
n (τ̂ − τ0) + 1

2
√
n

(τ̂ − τ0)T ∂2`(τ̃ ,ρ̃)
∂ρ∂τ∂τT

(τ̂ − τ0)
1
n
∂2`(τ0,ρ0)

∂ρ2 + 1
2n

∂3`(τ̃ ,ρ̃)
∂ρ3 (ρ̂− ρ0) + 1

n
∂3`(τ̃ ,ρ̃)
∂ρ2∂τT

(τ̂ − τ0)
,(24)

provided that the denominator is nonzero. We will show later that the denominator

converges in probability to a nonzero constant. Hence, with probability approaching 1, the

denominator is nonzero.
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We first consider the numerator of (24). From equations (22) and (23), we have

1√
n

∂` (τ0, ρ0)
∂ρ

+
[

1
n

∂2` (τ0, ρ0)
∂ρ∂τ T

]
√
n (τ̂ − τ0)

= 1√
n

∂` (τ0, ρ0)
∂ρ

+
[

1
n

∂2` (τ0, ρ0)
∂ρ∂τ T

]
(
BT
g,0D

−1
g,0Bg,0

)−1
BT
g,0D

−1
g,0
√
n (P − π0) 1g + oP (1)(

BT
h,0D

−1
h,0Bh,0

)−1
BT
h,0D

−1
h,0
√
n (P − π0)T 1h + oP (1)


=
√
n
mg∑
a=1

mh∑
b=1

Pab
∂ log πab (τ0, ρ0)

∂ρ
+
[

1
n

∂2` (τ0, ρ0)
∂ρ∂τ Tg

] (
BT
g,0D

−1
g,0Bg,0

)−1
BT
g,0D

−1
g,0
√
n (P − π0) 1g

+
[

1
n

∂2` (τ0, ρ0)
∂ρ∂τ Th

] (
BT
h,0D

−1
h,0Bh,0

)−1
BT
h,0D

−1
h,0
√
n (P − π0)T 1h +

[
1
n

∂2` (τ0, ρ0)
∂ρ∂τ T

]
oP (1)

=
√
ntr

{
ATP

}
+ tr

{
1g
[

1
n

∂2` (τ0, ρ0)
∂ρ∂τ Tg

] (
BT
g,0D

−1
g,0Bg,0

)−1
BT
g,0D

−1
g,0
√
n (P − π0)

}

+tr
{
D−1

h,0Bh,0
(
BT
h,0D

−1
h,0Bh,0

)−1
[

1
n

∂2` (τ0, ρ0)
∂ρ∂τh

]
1Th
√
n (P − π0)

}

+
[

1
n

∂2` (τ0, ρ0)
∂ρ∂τ T

]
oP (1) , (25)

where Pab is the (a, b)th entry of P and the (a, b)th entry of A is ∂ log πab (τ0, ρ0) /∂ρ. Note

that

tr
{
ATπ0

}
=

mg∑
a=1

mh∑
b=1

∂ log πab (τ0, ρ0)
∂ρ

πab,0 =
mg∑
a=1

mh∑
b=1

∂πab (τ0, ρ0)
∂ρ

= 0.

Then, we can express
√
ntr

{
ATP

}
in (25) as

√
ntr

{
AT (P − π0)

}
. Further, by Result 1,

∂2 log πab (τ0, ρ0) /∂ρ∂τ is bounded on O(τ) ×O(ρ). Hence

1
n

∂2` (ρ0, τ0)
∂ρ∂τ T

=
mg∑
a=1

mh∑
b=1

Pab
∂2 log πab (τ0, ρ0)

∂ρ∂τ T

is also bounded. Consequently [
1
n

∂2` (ρ0, τ0)
∂ρ∂τ T

]
oP (1) = oP (1) .

As a result, (25) becomes

1√
n

∂` (ρ0, τ0)
∂ρ

+
[

1
n

∂2` (ρ0, τ0)
∂ρ∂τ T

]
√
n (τ̂ − τ0) =

√
ntr {Λ (P − π0)}+ oP (1) , (26)

with tr {Λπ0} = 0, where

Λ = AT + 1g
[

1
n

∂2` (ρ0, τ0)
∂ρ∂τ Tg

] (
BT
g,0D

−1
g,0Bg,0

)−1
BT
g,0D

−1
g,0

+D−1
h,0Bh,0

(
BT
h,0D

−1
h,0Bh,0

)−1
[

1
n

∂2` (ρ0, τ0)
∂ρ∂τh

]
1Th .
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By LLN,

1
n

∂2` (ρ0, τ0)
∂ρ2 − Etrue

(
∂2`i (τ0, ρ0)

∂ρ2

)
p→ 0, (27)

if and only if

n∑
i=1

P

(∣∣∣∣∣∂2`i (ρ0, τ0)
∂ρ2 − Etrue

(
∂2`i (τ0, ρ0)

∂ρ2

)∣∣∣∣∣ > nε

)
→ 0,

n∑
i=1

Etrue


∂2`i(ρ0,τ0)

∂ρ2 − Etrue
(
∂2`i(τ0,ρ0)

∂ρ2

)
n

I

(∣∣∣∣∣∂2`i (ρ0, τ0)
∂ρ2 − Etrue

(
∂2`i (τ0, ρ0)

∂ρ2

)∣∣∣∣∣ ≤ nκ

) → 0,

n∑
i=1

vartrue


∂2`i(ρ0,τ0)

∂ρ2 − Etrue
(
∂2`i(τ0,ρ0)

∂ρ2

)
n

I

(∣∣∣∣∣∂2`i (ρ0, τ0)
∂ρ2 − Etrue

(
∂2`i (τ0, ρ0)

∂ρ2

)∣∣∣∣∣ ≤ nκ

) → 0,

for every ε > 0 and some κ > 0; and the expectations and variances are finite. From

equation (9), we have

Etrue

(
∂2`i (τ0, ρ0)

∂ρ2

)
=

∑
a,b

πab (τ0, ρtrue)
∂2 log πab (τ0, ρ0)

∂ρ2

= E0

(
∂2`i (τ0, ρ0)

∂ρ2

)

+
∑
a,b

πab (τ0, ρ0) ∂ log πab (τ0, ρ0)
∂ρ

∂2 log πab (τ0, ρ0)
∂ρ2 δ∗/

√
n

+
∑
a,b

πab (τ0, ρ0) ∂
2 log πab (τ0, ρ0)

∂ρ2 Rab (δ∗) , (28)

vartrue
(
∂2`i (τ0, ρ0)

∂ρ2

)
= Etrue

(∂2`i (τ0, ρ0)
∂ρ2

)2
− [Etrue

(
∂2`i (τ0, ρ0)

∂ρ2

)]2

= E0

(∂2`i (τ0, ρ0)
∂ρ2

)2
− [Etrue

(
∂2`i (τ0, ρ0)

∂ρ2

)]2

+
∑
a,b

πab (τ0, ρ0) ∂ log πab (τ0, ρ0)
∂ρ

(
∂2 log πab (τ0, ρ0)

∂ρ2

)2

δ∗/
√
n

+
∑
a,b

πab (τ0, ρ0)
(
∂2 log πab (τ0, ρ0)

∂ρ2

)2

Rab (δ∗) . (29)

By Result 1, the first- and second-order partial derivatives of log πab (τ , ρ) are bounded on



FMA IN ORDINAL SEM 22

O(τ) ×O(ρ). Hence,

E0

(
∂2`i (τ0, ρ0)

∂ρ2

)
=
∑
a,b

πab (τ0, ρ0) ∂
2 log πab (τ0, ρ0)

∂ρ2 ,

E0

(∂2`i (τ0, ρ0)
∂ρ2

)2
 =

∑
a,b

πab (τ0, ρ0)
[
∂2 log πab (τ0, ρ0)

∂ρ2

]2

,

∑
a,b

πab (τ0, ρ0) ∂ log πab (τ0, ρ0)
∂ρ

∂2 log πab (τ0, ρ0)
∂ρ2 ,

∑
a,b

πab (τ0, ρ0) ∂ log πab (τ0, ρ0)
∂ρ

(
∂2 log πab (τ0, ρ0)

∂ρ2

)2

,

are bounded, so as the variance var0
(
∂2`i(τ0,ρ0)

∂ρ2

)
. Further, since Rab (δ∗) = O (n−1) in (9),

∑
a,b

πab (τ0, ρ0) ∂
2 log πab (τ0, ρ0)

∂ρ2 Rab (δ∗) = O
(
n−1

)
,

∑
a,b

πab (τ0, ρ0)
(
∂2 log πab (τ0, ρ0)

∂ρ2

)2

Rab (δ∗) = O
(
n−1

)
.

Therefore,

Etrue

(
∂2`i (τ0, ρ0)

∂ρ2

)
= E0

(
∂2`i (τ0, ρ0)

∂ρ2

)
+O

(
n−1/2

)
,

vartrue
(
∂2`i (τ0, ρ0)

∂ρ2

)
= var0

(
∂2`i (τ0, ρ0)

∂ρ2

)
+O

(
n−1/2

)
,

and they are both finite. Since both ∂2`i (ρ0, τ0) /∂ρ2 and Etrue [∂2`i (τ0, ρ0) /∂ρ2] are finite

and bounded, ∣∣∣∣∣∂2`i (ρ0, τ0)
∂ρ2 − Etrue

(
∂2`i (τ0, ρ0)

∂ρ2

)∣∣∣∣∣ < nε

for a sufficiently large n. Consequently, (27) holds since

n∑
i=1

Etrue


∂2`i(ρ0,τ0)

∂ρ2 − Etrue
(
∂2`i(τ0,ρ0)

∂ρ2

)
n

 = 0,

n∑
i=1

vartrue


∂2`i(ρ0,τ0)

∂ρ2 − Etrue
(
∂2`i(τ0,ρ0)

∂ρ2

)
n

 = 1
n
vartrue

(
∂2`i (ρ0, τ0)

∂ρ2

)
→ 0.

Likewise, similar arguments yields

1
n

∂2` (ρ0, τ0)
∂ρ∂τ

− Etrue
(
∂2`i (τ0, ρ0)
∂ρ∂τ

)
p→ 0. (30)
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Consequently, Λ converges in probability to

Γ = AT + 1gE0

(
∂2`i (τ0, ρ0)
∂ρ∂τ Tg

)(
BT
g,0D

−1
g,0Bg,0

)−1
BT
g,0D

−1
g,0

+D−1
h,0Bh,0

(
BT
h,0D

−1
h,0Bh,0

)−1
E0

(
∂2`i (τ0, ρ0)
∂ρ∂τh

)
1Th , (31)

which coincides with equation (16) in Jöreskog (1994), as if the local parameter is zero.

Further, by the Slutsky’s theorem (Theorem 2.13, Jiang, 2010),

√
ntr {Λ (P − π0)} =

√
ntr {Γ (P − π0)}+

√
ntr {(Λ− Γ) (P − π0)}

=
√
ntr {Γ (P − π0)}+ oP (1) ,

if
√
n (P − π0) converges in distribution to some random variable. Consequently, equation

(26) becomes

1√
n

∂` (ρ0, τ0)
∂ρ

+
[

1
n

∂2` (ρ0, τ0)
∂ρ∂τ T

]
√
n (τ̂ − τ0) =

√
ntr {Γ (P − π0)}+ oP (1) . (32)

We now consider the last term in the numerator and the last term in the denominator

of (24). Let the operator vec () vectorize the enclosed matrix by stacking columns on top of

each other. In order to derive the asymptotic distribution of
√
nvec (P − π0), we assume

that a random vector zn follows a multinomial distribution with one trial and probabilities

vec (πtrue) with πtrue = π (τ0, ρtrue), and that the observed relative frequency is vec (P ).

Here the subscript n is used to emphasize that the distribution of zn depends on n. We

also define z0 as a multinomial distribution with probabilities vec (π0) with π0 = π (τ0, ρ0).

Because of (9), we have

Etrue (zn) = vec (πtrue) = E0 (z0) + diag (vec (π0)) ∂ log {vec (π0)}
∂ρ

δ∗/
√
n+O

(
n−1

)
. (33)

Since ∂ log {vec (π0)} /∂ρ is bounded by Result 1, Etrue (zn) = E0 (z0) +O
(
n−1/2

)
. Note

that

vartrue (zn) = Etrue
(
znz

T
n

)
− Etrue (zn)Etrue

(
zTn
)

= diag {vec (πtrue)} − vec (πtrue) vecT (πtrue) .
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By (33), we get

vartrue (zn) = diag {vec (πtrue)} − vec (πtrue) vecT (πtrue)

= diag
{
E0 (z0) +O

(
n−1/2

)}
−
[
E0 (z0) +O

(
n−1/2

)] [
E0 (z0) +O

(
n−1/2

)]T
= var0 (z0) +O

(
n−1/2

)
. (34)

If we observe xg = a and xh = b,∥∥∥∥∥zn − Etrue (zn)√
n

∥∥∥∥∥
2

= ‖vec (πtrue)‖2 − π2
ab (τ0, ρtrue) + (1− πab (τ0, ρtrue))2

n
≤ 2
n
.

Hence, the Lindeberg condition holds, since, for every ε > 0,∥∥∥∥∥zn,i − Etrue (zn,i)√
n

∥∥∥∥∥
2

< ε2

and

n∑
i=1

E

∥∥∥∥∥zn,i − Etrue (zn,i)√
n

∥∥∥∥∥
2

I


∥∥∥∥∥zn,i − Etrue (zn,i)√

n

∥∥∥∥∥
2

≥ ε2


 = 0,

for a sufficiently large n. The diagonal and off-diagonal entries in the covariance matrix of

zn,i are πa (τ0, ρtrue) [1− πa (τ0, ρtrue)] and −πa (τ0, ρtrue) πb (τ0, ρtrue), respectively. Note

that

n∑
i=1

vartrue
(
zn,i − Etrue (zn,i)√

n

)
= vartrue (zn,i)→ var0 (z0)

by (34). Therefore, the central limit theorem implies

1√
n

n∑
i=1

[zn,i − Etrue (zn,i)] d→ N (0, var0 (z0)) .

Since n−1∑n
i=1 zn,i = vec (P ), we have

√
n

(
vec (P )− vec (π0)− diag (vec (π0)) ∂ log {vec (π0)}

∂ρ
δ∗/
√
n

)
d→ N (0, var0 (z0)) . (35)

Equivalently,

√
n (vec (P )− vec (π0)) d→ N

(
diag (vec (π0)) ∂ log {vec (π0)}

∂ρ
δ∗, var0 (z0)

)
. (36)
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Hence, the Slutsky’s theorem (Theorem 2.13, Jiang, 2010) leads to

√
ntr {Γ (P − π0)} = vecT (Γ)

√
nvec (P − π0)

d→ N

(
vecT (Γ) diag (vec (π0)) ∂ log {vec (π0)}

∂ρ
δ∗, vecT (Γ) var0 (z0) vec (Γ)

)
.

(37)

Note that

∂3`i (τ̃ , ρ̃)
∂ρ∂τ∂τ T

=
mx∑
a=1

my∑
b=1

Ii (a, b)
[

1
πab (τ̃ , ρ̃)

∂3πab (τ̃ , ρ̃)
∂ρ∂τ∂τ T

− 1
π2
ab (τ̃ , ρ̃)

∂2πab (τ̃ , ρ̃)
∂ρ∂τ

∂ log πab (τ̃ , ρ̃)
∂τ T

−∂
2 log πab (τ̃ , ρ̃)
∂τ∂τ T

∂ log πab (τ̃ , ρ̃)
∂ρ

− ∂ log πab (τ̃ , ρ̃)
∂τ

∂2 log πab (τ̃ , ρ̃)
∂ρ∂τ T

]
,

where all partial derivatives are finite and bounded on O(τ) ×O(ρ) by Result 1. Then,

n−1∂3` (τ̃ , ρ̃) /∂ρ∂τ∂τ T is bounded in probability. Likewise, n−1∂3` (τ̃ , ρ̃) /∂ρ3 and

n−1∂3` (τ̃ , ρ̃) /∂ρ2∂τ are also bounded in probability. Consequently,

√
n (τ̂ − τ0)T

[
1
n

∂3` (τ̃ , ρ̃)
∂ρ∂τ∂τ T

]
(τ̂ − τ0) p→ 0, (38)

1
n

∂2` (τ0, ρ0)
∂ρ2 + 1

2n
∂3` (τ̃ , ρ̃)
∂ρ3 (ρ̂− ρ0) + 1

n

∂3` (τ̃ , ρ̃)
∂ρ2∂τ T

(τ̂ − τ0) p→ E0

(
∂2`i (τ0, ρ0)

∂ρ2

)
,(39)

since ρ̂− ρ0 = oP (1) by Theorem 1,
√
n (τ̂ − τ0) = OP (1) from (22) and (23), and (27)

holds. By equation (39) and E0
(
∂2`i(τ0,ρ0)

∂ρ2

)
6= 0 under Assumption A4, the denominator of

(24) is nonzero with probability approaching 1. By equations (32) and (38), the numerator

of (24) becomes

√
ntr {Γ (P − π0)}+ oP (1) ,

which converges in distribution to the normal distribution (37) by the Slutsky’s theorem.

The denominator of (24) converges in probability to a constant by (39). Hence, by the

corollary of the Slutsky’s theorem in Ferguson (1996, P40), we obtain

√
n (ρ̂− ρ0) = 1

−E0
(
∂2`i(τ0,ρ0)

∂ρ2

)√ntr {Γ (P − π0)}+ oP (1) .



FMA IN ORDINAL SEM 26

Therefore,

√
n (ρ̂− ρ0) d→ N

vecT (Γ) diag (vec (π0))
−E0

(
∂2`i(τ0,ρ0)

∂ρ2

) ∂ log {vec (π0)}
∂ρ

δ∗,
vecT (Γ) var0 (z0) vec (Γ)[

E0
(
∂2`i(τ0,ρ0)

∂ρ2

)]2
 ,

the asymptotic covariance matrix of which is in line with the result in Jöreskog (1994) for

the standard asymptotic framework. Note that

vecT
[
1gE0

(
∂2`i (τ0, ρ0)
∂ρ∂τ Tg

)(
BT
g,0D

−1
g,0Bg,0

)−1
BT
g,0D

−1
g,0

]
diag (vec (π0)) ∂ log {vec (π0)}

∂ρ

= vecT
[
1gE0

(
∂2`i (τ0, ρ0)
∂ρ∂τ Tg

)(
BT
g,0D

−1
g,0Bg,0

)−1
BT
g,0D

−1
g,0

]
∂vec (π0)

∂ρ

= tr
{
D−1

g,0Bg,0
(
BT
g,0D

−1
g,0Bg,0

)−1
E0

(
∂2`i (τ0, ρ0)
∂ρ∂τg

)
1Tg
∂π0

∂ρ

}
, (40)

and

vecT
[
D−1

h,0Bh,0
(
BT
h,0D

−1
h,0Bh,0

)−1
E0

(
∂2`i (τ0, ρ0)
∂ρ∂τh

)
1Th

]
diag (vec (π0)) ∂ log {vec (π0)}

∂ρ

= vecT
[
D−1

h,0Bh,0
(
BT
h,0D

−1
h,0Bh,0

)−1
E0

(
∂2`i (τ0, ρ0)
∂ρ∂τh

)
1Th

]
∂vec (π0)

∂ρ

= tr
{

1hE0

(
∂2`i (τ0, ρ0)
∂ρ∂τ Th

)(
BT
h,0D

−1
h,0Bh,0

)−1
BT
h,0D

−1
h,0
∂π0

∂ρ

}

= tr
{
E0

(
∂2`i (τ0, ρ0)
∂ρ∂τ Th

)(
BT
h,0D

−1
h,0Bh,0

)−1
BT
h,0D

−1
h,0
∂π0

∂ρ
1h
}
. (41)

Since

1Tg
∂π (τ0, ρ0)

∂ρ
= 0 and ∂π (τ0, ρ0)

∂ρ
1h = 0,

we can see that (40) and (41) are both 0. Further,

vecT
(
AT

)
diag (vec (π0)) ∂ log {vec (π0)}

∂ρ
= vecT

(
AT

) ∂vec (π0)
∂ρ

= tr

∂ log
(
πT0
)

∂ρ

∂π0

∂ρ


= −E0

(
∂2`i (τ0, ρ0)

∂ρ2

)
,

since

∂2`i (τ0, ρ0)
∂ρ2 =

∑
a,b

 Ii (a, b)
πab (τ0, ρ0)

∂2πab (τ0, ρ0)
∂ρ2 − Ii (a, b)

π2
ab (τ0, ρ0)

(
∂πab (τ0, ρ0)

∂ρ

)2

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and

E0

(
∂2`i (τ0, ρ0)

∂ρ2

)
= −

∑
a,b

 1
πab (τ0, ρ0)

(
∂πab (τ0, ρ0)

∂ρ

)2
 = −

∑
a,b

[
∂ log πab (τ0, ρ0)

∂ρ

∂πab (τ0, ρ0)
∂ρ

]
.

Therefore, using the expression of Γ given by (31), we get

vecT (Γ) diag (vec (π0)) ∂ log {vec (π0)}
∂ρ

= vecT
(
AT

)
diag (vec (π0)) ∂ log {vec (π0)}

∂ρ

+vecT
(

1gE0

(
∂2`i (τ0, ρ0)
∂ρ∂τ Tg

)(
BT
g,0D

−1
g,0Bg,0

)−1
BT
g,0D

−1
g,0

)
diag (vec (π0)) ∂ log {vec (π0)}

∂ρ

+vecT
(
D−1

h,0Bh,0
(
BT
h,0D

−1
h,0Bh,0

)−1
E0

(
∂2`i (τ0, ρ0)
∂ρ∂τh

)
1Th

)
diag (vec (π0)) ∂ log {vec (π0)}

∂ρ

= −E0

(
∂2`i (τ0, ρ0)

∂ρ2

)
,

which means that the mean of the asymptotic distribution of
√
n (ρ̂− ρ0) is equivalent to

δ∗. In other words,

√
n (ρ̂− ρtrue) d→ N

0, vec
T (Γ) var0 (z0) vec (Γ)[
E0
(
∂2`i(τ0,ρ0)

∂ρ2

)]2
 .

The proof for the polychoric correlation coefficient estimator between two variables is

completed.

Regarding the asymptotic distribution of more than one polychoric correlation

estimators, the proof by and large follows from the one estimator case. Our proof above

implies that

√
n (ρ̂gh − ρgh,0) = 1

−E0

(
∂2`i(τgh,0,ρgh,0)

∂ρ2

)√ntr{Γ(gh)
(
P (gh) − π(gh)

0

)}
+ oP (1) (42)

holds for any pair of gth indicator and hth indicator, provided that all regularity conditions
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hold. Here indices are added to indicate the pair of indicators. Thus,


√
n (ρ̂12 − ρ12,0)

...
√
n (ρ̂q−1,q − ρq−1,q,0)

 =



1

−E0

(
∂2`i(τ12,0,ρ12,0)

∂ρ2

)√ntr{Γ(12)
(
P (12) − π(12)

0

)}
...

1

−E0

(
∂2`i(τq−1,q,0,ρq−1,q,0)

∂ρ2

)√ntr{Γ(q−1,q)
(
P (q−1,q) − π(q−1,q)

0

)}


+ oP (1)

= −
√
nH−1E



vec
(
P (12) − π(12)

0

)
vec

(
P (13) − π(13)

0

)
...

vec
(
P (q−1,q) − π(q−1,q)

0

)


+ oP (1) , (43)

where

H = diag
(
E0
(
∂2`i(τ12,0,ρ12,0)

∂ρ2

)
· · · E0

(
∂2`i(τq−1,q,0,ρq−1,q,0)

∂ρ2

))
,

E =



vecT
(
Γ(12)

)
0 · · · 0

0 vecT
(
Γ(13)

)
· · · 0

... ... . . . ...

0 0 · · · vecT
(
Γ(q−1,q)

)


.

Hence, the asymptotic distribution of the vector of all polychoric correlation estimators
√
n (ρ̂− ρtrue) depends on the joint distribution of

p =
(
vecT

(
P (12) − π(12)

0

)
vecT

(
P (13) − π(13)

0

)
· · · vecT

(
P (q−1,q) − π(q−1,q)

0

))T
,

where p is a ∑q
i=1

∑q
j=i+1 mimj × 1 vector. In the univariate case, we use πtrue to denote

π
(gh)
true and π0 to denote π(gh)

0 . In the multivariate case, we redefine

πtrue =
(
vecT

(
π

(12)
true

)
vecT

(
π

(13)
true

)
· · · vecT

(
π

(q−1,q)
true

))T
, (44)

π0 =
(
vecT

(
π

(12)
0

)
vecT

(
π

(13)
0

)
· · · vecT

(
π

(q−1,q)
0

))T
, (45)

as a generalization of vec
(
π

(gh)
true

)
and vec

(
π

(gh)
0

)
. Using the newly defined π0, we will first

generalize (33) and (34) to multivariate cases. Let y(gh)
n be the mgmh × 1 vector with
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entries I {xg = a and xh = b} for all possible combinations of a, and b. Let yn be the∑q
i=1

∑q
j=i+1 mimj × 1 vector that stacks all y(gh)

n on top of another for all possible pairs

(g, h). Without loss of generality, we assume that the entries in yn are sorted such that

Etrue (yn) = πtrue. We also define y(gh)
0 and y0 as analogues to y(gh)

n and yn, respectively,

but E0
(
y

(gh)
0

)
= vec

(
π

(gh)
0

)
and E0 (y0) = π0. yn and y0 are simply the generalizations of

zn and z0 from the univariate case to the multivariate case. By stacking (33) for all pairs

(g, h) from the univariate case, we get

Etrue (yn) = E0 (y0) +



π
(12)
11,0

∂ log π(12)
11 (τ12,0,ρ12,0)
∂ρ1,2

δ∗12
...

π
(12)
m1m2,0

∂ log π(12)
m1m2 (τ12,0,ρ12,0)

∂ρ1,2
δ∗12

...

π
(q−1,q)
mq−1mq ,0

∂ log π(q−1,q)
mq−1mq (τq−1,q,0,ρq−1,q,0)

∂ρq−1,q
δ∗q−1,q


/
√
n+O

(
n−1

)
, (46)

where δ∗gh is the local parameter in δ∗ corresponding to ρgh. As we showed in Result 1, the

partial derivatives are bounded. Hence, (46) implies that Etrue (yn) = E0 (y0) +O
(
n−1/2

)
.

The entries in vartrue (yn) are either vartrue
(
y(gh)
n

)
or covtrue

(
y(gh)
n ,y(st)

n

)
for g < h and

s < t. Equation (34) is directly applicable to vartrue
(
y(gh)
n

)
, yielding

vartrue
(
y(gh)
n

)
= var0

(
y

(gh)
0

)
+O

(
n−1/2

)
. For covtrue

(
y(gh)
n ,y(st)

n

)
, note that the entries in

Etrue

[
y(gh)
n

(
y(st)
n

)T ]
are of the form Etrue [I {xg = a and xh = b} I {xs = c and xt = d}],

which can be 0, or π(g1g2)
a1a2,true, or π

(g1g2g3)
a1a2a3,true, or π

(g1g2g3g4)
a1a2a3a4,true. By (8), we get

Etrue [I {xg = a and xh = b} I {xs = c and xt = d}]

= E0 [I {xg = a and xh = b} I {xs = c and xt = d}] +O
(
n−1/2

)
,

and Etrue
[
y(gh)
n

(
y(st)
n

)T ]
= E0

[
y(gh)
n

(
y(st)
n

)T ]
+O

(
n−1/2

)
. Hence,

covtrue
(
y(gh)
n ,y(st)

n

)
= Etrue

[
y(gh)
n

(
y(st)
n

)T ]
− Etrue

(
y(gh)
n

) [
Etrue

(
y(st)
n

)]T
= E0

[
y(gh)
n

(
y(st)
n

)T ]
− E0

(
y

(gh)
0

) [
E0
(
y

(st)
0

)]T
+O

(
n−1/2

)
.

Therefore,

vartrue (yn) = var0 (y0) +O
(
n−1/2

)
, (47)
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which is a generalization of (34) to the multivariate case.

To apply the Lindeberg-Feller theorem, we consider yn − Etrue (yn), which has mean

0. Since
∥∥∥y(gh)

n − Etrue
(
y(gh)
n

)∥∥∥2
≤ 2 for any pair (g, h), then

∥∥∥∥∥yn,i − Etrue (yn,i)√
n

∥∥∥∥∥
2

≤ q (q − 1)
n

.

Hence, the Lindeberg condition holds since, for every ε > 0, ‖yn,i − Etrue (yn,i)‖2 < nε2 and

n∑
i=1

E

∥∥∥∥∥yn,i − Etrue (yn,i)√
n

∥∥∥∥∥
2

I

{∥∥∥∥∥yn,i − Etrue (yn,i)√
n

∥∥∥∥∥ ≥ ε

} = 0

for a sufficiently large n. Note that

n∑
i=1

vartrue
(
yn,i − Etrue (yn,i)√

n

)
= vartrue (yn,i)→ var0 (y0)

by (47). Therefore, the central limit theorem implies

1√
n

n∑
i=1

[yn,i − Etrue (yn,i)] d→ N (0, var0 (y0)) .

By (46), we further get

√
n [p− E0 (y0)] d→ N





π
(12)
11,0

∂ log π(12)
11 (τ12,0,ρ12,0)
∂ρ1,2

δ∗12
...

π
(12)
m1m2,0

∂ log π(12)
m1m2 (τ12,0,ρ12,0)

∂ρ1,2
δ∗12

...

π
(q−1,q)
mq−1mq ,0

∂ log π(q−1,q)
mq−1mq (τq−1,q,0,ρq−1,q,0)

∂ρq−1,q
δ∗q−1,q


, var0 (y0)


,

where the asymptotic covariance matrix var0 (y0) is evaluated at (τ0,ρ0), rather than

(τ0,ρtrue). Hence, (43) implies that

√
n (ρ̂− ρ0) d→ N


H−1

0 E0



π
(12)
11,0

∂ log π(12)
11 (τ12,0,ρ12,0)
∂ρ1,2

δ∗12
...

π
(12)
m1m2,0

∂ log π(12)
m1m2 (τ12,0,ρ12,0)

∂ρ1,2
δ∗12

...

π
(q−1,q)
mq−1mq ,0

∂ log π(q−1,q)
mq−1mq (τq−1,q,0,ρq−1,q,0)

∂ρq−1,q
δ∗q−1,q


,H−1

0 E0var0 (y0)ET
0 H

−1
0


.
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As we have showed for the univariate case,

vecT
(
Γ(gh)

)
diag

(
vec

(
π

(gh)
0

))
−E0

∂2`i

(
τ

(gh)
0 ,ρgh,0

)
∂ρ2


∂ log

{
vec

[
π(gh)

(
τ

(gh)
0 , ρgh,0

)]}
∂ρ

δ∗gh = δ∗gh,

for all g and h. Thus,

√
n (ρ̂− ρ0) d→ N

(
δ∗,H−1

0 E0var0 (y0)H−1
0 ET

0

)
and

√
n (ρ̂− ρtrue) d→ N

(
0,H−1

0 E0var0 (y0)H−1
0 ET

0

)
This means that the local asymptotic framework affects asymptotic mean but the

asymptotic covariance matrix remains the same as the one under the standard asymptotic

framework. The proof for the multivariate case is completed.

2.5 Simulation Study

A simulation is conducted to investigate the property of ρ̂ under the local asymptotic

framework. Theorem 1 means that ρ̂ is a consistent estimator of ρ0 also under the local

asymptotic framework. Theorem 2 means that the estimated asymptotic covariance matrix

from standard SEM package remains valid under the local asymptotic framework. However,
√
n (ρ̂− ρtrue) d→ N (0,Υ) does not necessarily imply limn→∞E [

√
n (ρ̂− ρtrue)] = 0.

Consider the function h (x) =
(
h1 (x1) · · · hp (xp)

)
, where x is a p× 1 vector,

hi (xi) =


xi, |xi| ≤M,

M, |xi| > M,

and M is a fixed constant. It is easy to see that h (x) is a continuous and bounded

function. Then, for a sufficiently large M , limn→∞E [h {
√
n (ρ̂− ρtrue)}] is approximately

0 and limn→∞E [h {
√
n (ρ̂− ρ0)}] is approximately h (δ∗) by Jiang (2010, pp 45).
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Continuous data are generated from the multivariate normal distribution with mean

0 and covariance matrix
1 0.4 + δ∗n−1/2 0.3 + δ∗n−1/2

0.4 + δ∗n−1/2 1 0.35 + δ∗n−1/2

0.3 + δ∗n−1/2 0.35 + δ∗n−1/2 1

 .

Hence, there are three correlation coefficients and six estimates of asymptotic

covariances/variances. We consider five different δ∗ values, namely, δ∗ = 0, 0.1, 0.2, 0.3, and

0.4. When δ∗ = 0, we are simply working with the standard asymptotic framework. The

population thresholds are chosen such that the probabilities of belonging to each category

are 0.24, 0.41, 0.22, 0.1, and 0.03, which is the moderate asymmetry setting in Rhemtulla

et al. (2012). The sample size considered here is n = 100, 200, 400, 1000, 5000, and 10, 000.

The number of replication is 10, 000. We use the lavaan (Rosseel, 2012) package to estimate

the polychoric correlation coefficient and its asymptotic covariance/variance.

Figure 1 illustrates the estimated density of ρ̂− ρ0 for each pair of indicators. If

Theorem 1 holds, ρ̂− ρ0 will be sufficiently close to 0 as n increases. It is seen that the

estimated density becomes more concentrated around 0 as n increases. This implies that

P (|ρ̂− ρ0| > ε) may be sufficiently small for a small ε.

As mentioned above, if Theorem 2 holds, limn→∞E [h {
√
n (ρ̂− ρtrue)}] ≈ 0 and

limn→∞E [h {
√
n (ρ̂− ρtrue)}] ≈ δ∗ for all correlation coefficients if M is sufficiently large.

In our simulation, the realized
√
n (ρ̂− ρtrue) is always bounded between −10 and 10. We

can let M ≥ 10 without changing the sample mean of
√
n (ρ̂− ρtrue). Figure 2 illustrates

the the bias of the polychoric correlation estimators, where the bias is defined by

1
R

R∑
r=1

h
{√

n (ρ̂r − ρtrue)
}

or 1
R

R∑
r=1

h
{√

n (ρ̂r − ρ0)
}

ρ̂r is the estimator at iteration r, and R is the number of replications. As expected, it is

seen that the R−1∑R
r=1 h {

√
n (ρ̂r − ρtrue)} remains low, whereas R−1∑R

r=1 h {
√
n (ρ̂r − ρ0)}

is approximately δ∗.
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Figure 1 . Estimated density of ρ̂− ρ0. Columns correspond to different δ∗ values and rows

correspond to different correlation coefficients.

Regarding the asymptotic covariance estimator, we do not know the true value.

Nevertheless, if Theorem 2 holds, the estimated asymptotic covariance matrix from lavaan

should be close to the sample covariance of the estimated correlation coefficients. Figure 3

illustrates the relative bias of asymptotic covariance/variance estimators of polychoric

correlation estimators, where the relative bias is defined by

100 · 1
R

R∑
r=1

Υ̂r − Υ̃0

Υ̃0
,

where Υ̂r is the estimate of Υ0 at iteration r, and Υ̃0 is the sample covariance of the

estimated correlation coefficients. It is seen from Figure 3 that the relative bias of the

asymptotic covariance/variance estimators is generally small, as the sample size increases.

3 Frequentist Model Averaging

In the context of SEM with normally distributed continuous data, Jin and Ankargren

(2019) derived the asymptotic distribution of
√
n

 θ̂s − θ0

γ̂s − γ0,s

 in their equation (6) and the

asymptotic distribution of
√
n (µ̄− µtrue) in their equation (9). For the purpose of

presentation, their results are placed in the following lemma.
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Figure 2 . Bias of polychoric correlation estimators. Different colors correspond to the bias

of estimating ρ0 or ρtrue.

Lemma 1. Suppose that Js is invertible and all third-order partial derivatives of the fit

function F (θ0,γ0,s,γ0,sc) in a neighborhood of (θ0,γ0) are dominated by functions with

finite means. Then,

√
n

 θ̂s − θ0

γ̂s − γ0,s

 =J−1
s


 Jθγ

πsJγγ

 δ +

 M

πsN


+OP

(
n−1/2

)
. (48)

and

√
n (µ̄− µtrue) = ∂µ0

∂θT
∑
c

cs
√
n
(
θ̂s − θ0

)
+
∑
c

cs
∂µ0

∂γTs

√
n (γ̂s − γ0,s)−

∂µ0

∂γT
δ +OP

(
n−1/2

)
= ∂µ0

∂θT
J−1
θθ M +W

{
δ −

(∑
s

csK
(s)
)
K−1D

}
+OP

(
n−1/2

)
, (49)
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Figure 3 . Relative bias of asymptotic covariance/variance estimators of polychoric

correlation estimators. Different colors correspond to the asymptotic covariance between

estimators of different correlation coefficients.

where µtrue = µ (θ0,γ0 + δ/
√
n), µ0 = µ (θ0,γ0), W = ∂µ0

∂θT
J−1
θθ Jθγ − ∂µ0

∂γT
,

K−1 = Jγγ − JTθγJ−1
θθ Jθγ,Ks =

(
πsK

−1πTs
)−1

, K(s) = πTsKsπs,

D = δ −KJTθγJ−1
θθ M +KN , and

− 1
2
√
n

∂F (β0)
∂β

−

Jθγ
Jγγ

 δ d→

M
N

 .
(Jin and Ankargren, 2019).

The fit function F used in Jin and Ankargren (2019) is the maximum likelihood fit

function that will be denoted by FML. When the observed indicators are ordinal, the least
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squares fit function is commonly used, which will be denoted by FLS. Since both FML and

FLS can be viewed as distance functions between ρ and σ, Lemma 1 remains valid for

ordinal SEM, if F = FLS and Assumptions A1 to A5 also hold. Hereafter, we assume all

these assumptions hold.

We first derive the joint distribution of M and N under the assumptions in Theorem

2. Here M and N are defined by

− 1
2
√
n

∂FLS (β0)
∂β

−

Jθγ
Jγγ

 δ d→

M
N

 ,
simply replacing F by FLS in all partial derivatives.

Proof of joint distribution of M and N . Note that

∂FLS (β)
∂β

= −2n
(
∂σ (β)
∂βT

)T
V̂ (ρ̂− σ (β)) ,

where V̂ is a consistent estimator of V . By Theorem 1, ρ̂ is a consistent estimator of

σ0 = σ (β0). Then,

1
n

∂2F (β0)
∂β∂βT

p→ 2Jfull,

where

Jfull =
(
∂σ0

∂βT

)T
V
∂σ0

∂βT
.

Hence,

− 1
2
√
n

∂FLS (β0)
∂β

−

Jθγ
Jγγ

 δ =
√
n

(
∂σ0

∂βT

)T
V̂ (ρ̂− σ0)−

Jθγ
Jγγ

 δ

=


(
∂σ0
∂θT

)T
V̂
√
n
(
ρ̂− σ0 − ∂σ0

∂γT
δ/
√
n
)

(
∂σ0
∂γT

)T
V̂
√
n
(
ρ̂− σ0 − ∂σ0

∂γT
δ/
√
n
)


=


(
∂σ0
∂θT

)T
V
√
n (ρ̂− σtrue)(

∂σ0
∂γT

)T
V
√
n (ρ̂− σtrue)

+ oP (1) ,
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where the last equality holds from (3) and Assumption A5. By Theorem 2,
(
∂σ0
∂θT

)T
V
√
n (ρ̂− σtrue)(

∂σ0
∂γT

)T
V
√
n (ρ̂− σtrue)

 d→ N

0,
(
∂σ0

∂βT

)T
VΥV

∂σ0

∂βT

 .
Hence, the joint distribution of M and N is multivariate normal with mean 0 and the

covariance matrix (
∂σ0

∂βT

)T
VΥV

∂σ0

∂βT
.

Derivation of the qudratic programming Q (c). By (49), the mean of the limiting

distribution of
√
n (µ̄− µtrue) is ζ = W

{
I −

(∑
s csK

(s)
)
K−1

}
δ and the corresponding

covariance matrix is

Ω = ∂µ0

∂θT
J−1
θθ var (M )J−1

θθ

(
∂µ0

∂θT

)T

+W
(∑

s

csK
(s)
)
K−1var (D)K−1

(∑
s

csK
(s)
)
W T

−∂µ0

∂θT
J−1
θθ cov

(
M ,DT

)
K−1

(∑
s

csπ
T
sKsπs

)
W T

−W
(∑

s

csK
(s)
)
K−1cov

(
D,MT

)
J−1
θθ

(
∂µ0

∂θT

)T
.
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The limit of nE (µ̄− µtrue)T (µ̄− µtrue) is then

tr
{
Ω + ζζT

}
= tr

∂µ0

∂θT
J−1
θθ var (M)J−1

θθ

(
∂µ0

∂θT

)T
+tr

{
W

(∑
s

csK
(s)
)
K−1var (D)K−1

(∑
s

csK
(s)
)
W T

}

−tr
{
∂µ0

∂θT
J−1
θθ cov

(
M ,DT

)
K−1

(∑
s

csπ
T
sKsπs

)
W T

}

−tr

W
(∑

s

csK
(s)
)
K−1cov

(
D,MT

)
J−1
θθ

(
∂µ0

∂θT

)T
+tr

W
[
I −

(∑
s

csK
(s)
)
K−1

]
δδT

[
I −

(∑
s

csK
(s)
)
K−1

]T
W T


= tr

∂µ0

∂θT
J−1
θθ var (M)J−1

θθ

(
∂µ0

∂θT

)T
+tr

{
W

[∑
s

∑
t

csctK
(s)K−1var (D)K−1K(t)

]
W T

}

−2tr
{
∂µ0

∂θT
J−1
θθ cov

(
M ,DT

)
K−1

(∑
s

csK
(s)
)
W T

}

+tr
{
W

[
δδT − 2

(∑
s

csK
(s)
)
K−1δδT

]
W T

}

+tr
{
W

(∑
s

csK
(s)
)
K−1δδTK−1

(∑
t

ctK
(t)
)
W T

}
,

which can be simplified to

tr

∂µ0

∂θT
J−1
θθ var (M )J−1

θθ

(
∂µ0

∂θT

)T
+WδδTW T


+2

∑
s

cstr
{
−WK(s)K−1δδTW T − ∂µ0

∂θT
J−1
θθ cov

(
M ,DT

)
K−1K(s)W T

}
+
∑
s

∑
t

cscttr
{
W

[
K(s)K−1

(
var (D) + δδT

)
K−1K(t)

]
W T

}
.

Recall that D = δ −KJTθγJ−1
θθ M +KN , so that

cov
(
M ,DT

)
= cov

(
M ,NT

)
K − var (M)J−1

θθ JθγK

var (D) = Kvar (N )K +KJTθγJ−1
θθ var (M )J−1

θθ JθγK

−Kcov
(
N ,MT

)
J−1
θθ JθγK −KJTθγJ−1

θθ cov
(
M ,NT

)
K.
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Hence,

tr
{
Ω + ζζT

}
= tr

∂µ0

∂θT
J−1
θθ var (M )J−1

θθ

(
∂µ0

∂θT

)T
+WδδTW T


+2

∑
s

cstr
{
∆1K

(s)W T
}

+
∑
s

∑
t

cscttr
{
W

[
K(s)∆2K

(t)
]
W T

}
,

where

∆1 =∂µ0

∂θT
J−1
θθ

(
V ar (M)J−1

θθ Jθγ − Cov
(
M ,NT

))
−WδδTK−1,

∆2 =JTθγJ−1
θθ V ar (M )J−1

θθ Jθγ + V ar (N )− 2JTθγJ−1
θθ Cov

(
M ,NT

)
+K−1δδTK−1.

The first term in tr
{
Ω + ζζT

}
does not depend on the weights. Hence, minimizing

tr
{
Ω + ζζT

}
is equivalent to minimizing

Q (c) =
∑
s

cstr
{
∆1K

(s)W T
}

+ 1
2
∑
s

∑
t

cscttr
{
WK(s)∆2K

(t)W T
}
. (50)

The proof is completed.

Unbiased estimator of δ and δδT . Using the inverse of a 2× 2 block matrix,

J−1
s =

 J−1
θθ + J−1

θθ Jθγπ
T
sKsπsJ

T
θγJ

−1
θθ −J−1

θθ Jθγπ
T
sKs

−KsπsJ
T
θγJ

−1
θθ Ks

 .
Then, equation (48) implies that

δ̂ =
√
n (γ̂full − γ0) d→ δ −KJTθγJ−1

θθ M +KN ∼ N
(
δ, GHGT

)
,

where G =
(
−KJTθγJ−1

θθ K

)
and

H = var

M
N

 =
(
∂σ0

∂βT

)T
VΥV

∂σ0

∂βT
.

Hence, the mean of the asymptotic distribution of δ̂ is still δ. The mean of the asymptotic

distribution of δ̂δ̂T is δδT +GHGT . An asymptotically unbiased estimator of δδT is then

δ̂δ̂T − ĜĤĜ.
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Heuristic proof of the joint convergence. In practice, c is estimated by maximizing

Q̂ (c) =
∑
s

cstr
{
∆̂1K̂

(s)Ŵ T
}

+ 1
2
∑
s

∑
t

cscttr
{
Ŵ K̂(s)∆̂2K̂

(t)Ŵ T
}
,

subject to the unit simplex, where Ŵ and K̂(s) are consistent estimators of W and K(s)

respectively. Since δ̂ =
√
n (γ̂full − γ0) d→D, ∆̂1 and ∆̂2 are not consistent estimators of

∆1 and ∆2. They are only asymptotically unbiased. Hence, Q̂ (c) d→ Q∗ (c) for some

Q∗ (c), of which the distribution depends on the joint distribution of M and N . If the

quadratic programming is positive definite, then c∗, the minimizer of Q∗ (c), is unique. In

the context of linear regression, Liu (2015) showed that

√
n (µ̄ (ĉ)− µtrue) d→∂µ0

∂θT
J−1
θθ M +W

{
δ −

(∑
s

c∗sK
(s)
)
K−1D

}
, (51)

where ĉ is the minimizer of Q̂ (c) and c∗ is the minimizer of Q∗ (c). Suppose that ĉ d→ c∗.

Since the distribution of Q∗ (c) depends on the joint distribution of M and N , the

distribution of c∗ also depends on M and N . Recall that the asymptotic distribution of
√
n (µ̂s − µtrue) also depends on the joint distribution of M and N by Lemma 1.

Therefore, there is joint convergence in the distribution of ĉ and
√
n (µ̂s − µtrue), and (51)

holds.

A rigorous proof of ĉ d→ c∗ should be based on the argmax continuous mapping

theorem (e.g., Van der Vaart, and Wellner, 1996, Theorem 3.2.2). Intuitively speaking,

since ĉ is the minimizer of Q̂ (c), the distribution of ĉ depends on the distribution of δ̂.

Hence, the asymptotic distribution of ĉ depends on the joint distribution of M and N . If

the quadratic programming is positive definite, then its minimizer ĉ is unique and

ĉ = OP (1). As the minimizer, Q̂ (ĉ) ≤ inf
c
Q̂ (c) + oP (1). Hence, the assumption ĉ d→ c∗ is

likely to hold.

Proof of the equivalence of confidence intervals. Equation (49) indicates that

√
n (µ̂full − µtrue) = ∂µ0

∂θT
J−1
θθ M +W (δ −D) +OP

(
n−1/2

)
.
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Hence, the full model confidence interval for µi is[
µ̂i,full − z1−α/2

κ̂i√
n
, µ̂i,full + z1−α/2

κ̂i√
n

]
,

where µ̂i,full is the ith entry of µ̂full, z1−α/2 is the 1− α/2 quantile of the standard normal

distribution, and κi is (i, i)th entry of the covariance matrix of ∂µ0
∂θT
J−1
θθ M −WD with κ̂i

being its estimator. Contrasting it with equation (6) in the main text, it suffices to show

that

µ̄ (ĉ)− Ŵ
[
I −

(∑
s

ĉsK̂
(s)
)
K̂−1

]
δ̂/
√
n = µ̂full + oP

(
n−1/2

)
. (52)

Since Ŵ , K̂ and K̂(s) are consistent estimators of W , K and K(s) respectively, we get

Ŵ = W + oP (1) and K̂(s)K̂−1 = K(s)K−1 + oP (1). Since the entries of ĉ are bounded

between 0 and 1, ĉoP (1) = oP (1). Hence,

Ŵ

[
I −

(∑
s

ĉsK̂
(s)K̂−1

)]
δ̂/
√
n = (W + oP (1))

[
I −

∑
s

ĉsK
(s)K−1 +

∑
s

ĉsoP (1)
]
δ̂/
√
n

= W

[
I −

∑
s

ĉsK
(s)K−1

]
δ̂/
√
n+ oP

(
n−1/2

)
, (53)

where the last equality holds since δ̂ d→D and oP (1) δ̂ p→ 0. In the likelihood context,

Wang and Zhou (2013) showed that

µ̄ (ĉ)−W
[
I −

(∑
s

ĉsK
(s)
)
K−1

]
δ̂/
√
n = µ̂full + oP

(
n−1/2

)
. (54)

Even though they only considered the likelihood context, it turns out that their proof is

directly applicable to the context of SEM with ordinal data, which means that (54) also

holds in ordinal SEM. Hence, (53) and (54) lead to (52).

Theorem 3. Let the focus parameter be µ = β. Support that the assumptions in Lemma 1

hold, that the Assumptions A1 to A5 hold, and that the joint convergence in distribution

(51) holds. Then, TFMA = Tfull + oP (1), where Tfull = n (ρ̂− σ̂full)T V̂ (ρ̂− σ̂full) is the

test statistic for the full model.
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Proof of Theorem 3. Since both TFMA and Tfull are quadratic forms, it suffices to show that

√
n (ρ̂− σ̄) +

∂σ
(
β̂full

)
∂βT

Ŵ

(
I −

∑
s

ĉsK̂
(s)K̂−1

)
δ̂ =

√
n (ρ̂− σ (µ̂full)) + oP (1) .

Because of (53), we get

∂σ
(
β̂full

)
∂βT

Ŵ

(
I −

∑
s

ĉsK̂
(s)K̂−1

)
δ̂

=
(
∂σ (β0)
∂βT

+ oP (1)
)[
W

(
I −

∑
s

ĉsK
(s)K−1

)
δ̂ + oP (1)

]

= ∂σ (β0)
∂βT

W

(
I −

∑
s

ĉsK
(s)K−1

)
δ̂ + oP (1) , (55)

where the second equality holds since ĉoP (1) = oP (1), δ̂ d→D and oP (1) δ̂ p→ 0. Note that

σ̄ = σ0 + ∂σ (µ0)
∂µT

[µ̄ (ĉ)− µ0] +OP
(
n−1

)

by (51), and

σ (µ̂full) = σ0 + ∂σ (µ0)
∂µT

(µ̂full − µ0) +OP
(
n−1

)

by (49). Then

σ̄ = σ (µ̂full) + ∂σ (µ0)
∂µT

[µ̄ (ĉ)− µ̂full] +OP
(
n−1

)
. (56)

Hence, using (55), (56), and (54), we further obtain

√
n (ρ̂− σ̄) +

∂σ
(
β̂full

)
∂βT

Ŵ

(
I −

∑
s

ĉsK̂
(s)K̂−1

)
δ̂

=
√
n (ρ̂− σ̄) + ∂σ (β0)

∂βT
W

(
I −

∑
s

ĉsK
(s)K−1

)
δ̂ + oP (1)

=
√
n (ρ̂− σ (µ̂full))−

√
n
∂σ (µ0)
∂µT

[µ̄ (ĉ)− µ̂full] + ∂σ (β0)
∂βT

W

(
I −

∑
s

ĉsK
(s)K−1

)
δ̂ + oP (1)

=
√
n (ρ̂− σ (µ̂full)) + oP (1) ,

which completes the proof.



FMA IN ORDINAL SEM 43

4 References

Ferguson, T. S. (1996). A course in large sample theory. Chapman & Hall, London, UK.

Gong, G. and Samaniego, F. J. (1981). Pseudo maximum likelihood estimation: theory and

applications. The Annals of Statistics, 9:861–869.

Jiang, J. (2010). Large sample techniques for statistics. Springer, New York, NY.

Jin, S. and Ankargren, S. (2019). Frequentist model averaging in structural equation

modeling. Psychometrika, 84:84–104.

Jöreskog, K. G. (1994). On the estimation of polychoric correlations and their asymptotic

covariance matrix. Psychometrika, 59:381–389.

Kamat, A. R. (1953). Incomplete and absolute moments of the multivariate normal

distribution with some applications. Biometrika, 40:20–34.

Liu, C.-A. (2015). Distribution theory of the least squares averaging estimator. Journal of

Econometrics, 186:142–159.

Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient.

Psychometrika, 44:443–460.

Rhemtulla, M., Brosseau-Liard, P. E., and Savalei, V. (2012). When can categorical

variables be treated as continuous? A comparison of robust continuous and categorical

sem estimation methods under suboptimal conditions. Psychological Methods,

17:354–373.

Richmond, T. (2020). General topology. De Gruyter, Berlin, Germany.

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of

Statistical Software, 48:1–36.



FMA IN ORDINAL SEM 44

Rudin, W. (1976). Principles of Mathematical Analysis. McGraw-Hill, New York, NY, 3rd

edition.

Van der Vaart,, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes.

Springer-Verlag, New York, NY.

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press,

Cambridge, UK.

Wang, H. and Zhou, S. Z. F. (2013). Interval estimation by frequentist model averaging.

Communications in Statistics: Theory and Methods, 42:4342–4356.


	Frequentist Model Averaging in Structure Equation Model With Ordinal Data: Supplementary Material
	Introduction
	Polychoric Correlation Estimation
	Standard Asymptotic Framework
	Local Asymptotic Framework
	Regularity Conditions
	Consistency and Asymptotic Normality
	Simulation Study

	Frequentist Model Averaging
	References

