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Frequentist Model Averaging in Structure Equation Model With Ordinal Data:

Supplementary Material
1 Introduction

This supplementary material contains mathematical proofs of the main results in the
paper. The reader is directed to the main text for the explanations of the notations.

Suppose that there exists a ¢ x 1 vector of underlying continuous random variables x*
that follows a multivariate normal distribution with variances 1. Let @ be the vector of
discrete counterparts of x*, x, the gth entry of x, and m, the number of possible outcomes

that z, can take. Then, z, = a if 75,1 < ¥, < 744, where z7 is the gth underlying

continuous random variable, 7,9 = —o0, and 7 ,,, = 0o. The vector of unknown thresholds
for z, is denoted by 7,. The probability of observing & = (a1 Ay -+ - aq) is
T1,aq T2,a9 Tq,aq
Tajas--aq (Tap) = / / / (/bq (tla"wtq;p) dtq"'dth
Tl,a1—1T2,a9—1 Tq,aqg—1

T
where T = (TlT Ty Ty ) is the vector of all thresholds, p is the vector of all unique

polychoric correlation coefficients, and ¢, (; p) is the density function of a ¢g-dimensional

normal random variable with means 0, variances 1, and correlation coefficients p. Let

Ty, = (TgT T ) The probability of observing z, = a and z;, = b is

Tg,a Th,

b
TS (Tons po) = / / s (t1, o; pan) dbzdt, (1)

Tg,a—1 Th,b—1

where pg, is the polychoric correlation coefficient between x, and xj; and ¢ (; p) is the
density function of a bivariate normal random variable with means 0, variances 1, and
correlation p. Likewise, we can let lghst) (Tgnsts Pghst) be the probability of observing

agapasat

(_ng Ty g -Tt) = (ag ap Qg at> and W((ZZZ‘Z)GS (Tghsupghs) be the probablhty of
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observing (xg T, x5> = (ag ap as>, where

T
T = (27 0 2T 2T)
T
Pghst = <,09h Pgs Pgt Phs Pht pst) )
T
Tohs = <’TgT o TST) )

T
pghs = <pgh Pgs phs> .

Throughout the paper, we estimate the polychoric correlation coefficient using the
two-step procedure of (Olsson! (1979). First, the thresholds are estimated from the univariate
standard normal distribution. Second, the correlation coefficient is estimated conditional
on the estimated thresholds. The multinomial log-likelihood function in the second step is

n
Con (Tgns Pgn) = z;ﬁgh,i (Tgns Pgn)
=
where n is the sample size, 7, is fixed to the first-step estimates 7, and

Mg mp

Coni (Tgns Pn) = D> Igni(a,b) 1og 75" (Tyns Pon)
a=1b=1
1, if we observe z,; = a and xp,; = b,

[gh,i (CL, b) =
0, otherwise.

Here, {lyn; (T4n, pgn)} are mutually independent.

2 Polychoric Correlation Estimation
2.1 Standard Asymptotic Framework

Under the standard asymptotic framework, we assume that the true values of the
polychoric correlations do not depend on the sample size n. Most SEM related studies lie
within the standard asymptotic framework. Suppose that the true value of p is pg. Under

some conditions, |Joreskog) (1994)) showed that

\/E(ﬁ_p()) i> N(07T)> (2)
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where Y is the asymptotic covariance matrix. The expression of Y can be obtained from

Joreskog) (1994).

2.2 Local Asymptotic Framework

Under the local asymptotic framework, we assume that the true values of some
parameters depend on the sample size n. Our paper assumes that the true value of ~ is

~o + 6/+y/n. Hence, the true model-implied o is of the form

Otrue — O (ﬁtrue) =0 (007’70 + 5/\/5) .

Suppose that ... can be expanded into
Otrue = 0O9+6"/v/n+0 (n’l) , (3)

where oy = o (6y, 7o) and

do (6y,70)
0 = ——— 7).
oy’

Then, for any pair (g, k), the polychoric correlation coefficient between z, and x, denoted

by pgn, is also locally drifted. Its true value satisfies

Pghjtrue = Pgh0 + 6;}1/\/5 +0 (nil)

for some local parameter d,,. However, the thresholds 7, and 7, are not locally drifted.
Consequently, the true probability of observing x, = a and z;, = b becomes

W((lih) (Tgh,0, Pghtrue), Where the subscript 0 is used to denote the true value of the thresholds.

2.3 Regularity Conditions

Let O and OS(]T) be closed balls that contain py and 1, as interior points,
respectively. Suppose that the polychoric correlation matrix with the correlation
coeflicients py is a positive definite matrix; and that all 7,4, 4,...q, (70, Po) > 0. Because the

polychoric correlation matrix is a continuous function of p and 7, 4y...q, (T, p) is a
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continuous function of (7, p), we can choose O and Oéﬂ such that the polychoric
correlation matrix remains positive definite and 7, 4y..q, (7, p) is bounded below from zero
for all (T, p) € O x O®, where O = O\ x O x -+ x O{ and x is the Cartesian
product. Recall that a compact set is closed and bounded in the Euclidean space. Then by
the Tychonoff theorem (e.g., Richmond, 2020, Theorem 6.2.5), O™ and O™ x O) are also
closed and bounded. By the extreme value theorem (e.g., Rudin} 1976, Theorem 4.16), any
continuous function will attain its minimum and maximum on O x O® . Thus, we can
find open balls O ¢ O and O ¢ O® such that 7 is an interior point of O, py is
an interior point of O, and the continuous functions that are bounded on O x O® are
still bounded on O x O,

Before we proceed to the main results and their proofs, we need to establish some

properties regarding the partial derivatives of log mq,...q, (T, p) for (7, p) € O x O,

Result 1. For any finite dimension ¢ > 2, log 4, ...a, (T, p), the first-order partial
derivatives of log y,...a, (T, p), the second-order partial derivatives of log my,...q, (T, p), and

the second-order partial derivatives of 01og ma,...a, (T, p) /Op are all bounded on O x O,

Proof. The boundness of log 7,,...q, (T, p) holds since 7,...q, (T, p) > 0 is bounded on the
open set O x O by construction. Regarding the first-order and higher-order partial
derivatives of log 7y, ..., (T, P), Tayaz--a, (T, P) is bounded below from zero for all

(1,p) € O x O, Then we only need to show that the derivatives of Tay-a, (T, P) are
bounded. Since 7g,...q, (T, p) involves a multiple integral, the partial derivatives of

Tay.ay (T, P) is also a multiple integral. For some constants dj, some vectors a; and some
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matrices Aj, we have

T1,aq Tq,aq
t;p) [ (di + abt + " Ayt) dt, - dt,
1l,a1—1 Tq,aqg—1 k
T1,aq Tq,aq
< / / 0 (t:p) [1|d + al't + " Axt| dt, - dt,
Tl,a1—1 Tq,aqg—1 k
< B[] (d+aft+t"Ast)|, (4)
k
where t = (tq,--- ,tq)T. That is, the above integral is bounded by a linear combination of

absolute moments of a multivariate normal distribution. Kamat| (1953)) have proposed an
approach to compute those absolute moments. Then, () is bounded on O™ x O if dj,
a; and Ay are all continuous functions of (7, p). Thus, it suffices to show that the
integrand needed to compute the partial derivatives are ¢, (t; p) multiplied by polynomials
of t.

Let p, be the gth entry of p and X be a correlation matrix with off-diagonal elements
p. That is, a random variable with density function ¢, (t; p) has the correlation matrix 3.
Let 0,5 be the (¢, j)th entry of 3,

0%

»@ — »-!
Opy

and O'( 9 he the (i,§)th entry of ). For any g,

T1,aq q,a
OTay.aq (T, P) / / 6’10g¢ (t; p)
ZTaag A0 by ( — =0 dt, - dty,
apg ) 1 q g q
1,a1— Tq,aqg—1

where

dlog ¢, (t; p)

1 1
= ——tr{EZnWl 4 ¢Txn0
Op, 5071 J+3

Thus, Oma,...a, (T, p) /Opy is bounded on O x O®). Regarding the first-order partial
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derivative with respect to 7, note that

T2,a9 Tq,aq
Ong,.a, (T,
1 Q( p)‘ B / / Gg (Trarta, sty p) dty - dty
8’7’1@
T2,a9—1 Tq,ag—1

it Tl = Tl,a1 or Tl,a1—15

ol (Tl,a) < \/12—7T7

= 0, if Tl,a 7é T1,a1 and Tl,a 7& Tl,a1—15

Ogy.aq (T, P)
87’1@

where ¢; () is the density of a univariate standard normal random variable. Therefore, the
first-order partial derivatives of m,,...q, (7, p) with respect to 71 are bounded. By symmetry
in the sense that the order of the integral can be interchanged, the first-order partial
derivatives of 7,,..q, (T, p) With respect to 7 are bounded. Consequently, the first-order
partial derivatives of log m,,...q, (T, p) are bounded on O x O

Now consider the first-order partial derivatives of Om,,...q, (T, p) /Op. Note that

*Tgycay (T, P) / / ¢y (t;p) p it
dpyOpn apgaph b

Tl,a1—1 Tq,ag—1

where

0*¢, (t; p) (1 0 w1 [ O°E o @550
el o, (t: p) Ztr{EEg}tr{EZ b Str I 3 N ) ¥

ox9)
dpn

Fio et (2

+i¢q (t:p) (£7="¢) (£'2)¢).

~ tr {ZB0} 5" —  {mn®] 2@) ¢

Hence, 0%7,,...a, (T, p) /OpyOps is bounded on O x O, Regarding the first-order partial
derivatives of 9log 7y, .., (T, p) /Op with respect to T, we still use the derivatives with
respect to 7 as an example. It is easy to see that 82%1...% (1,p) /OT1..0pn = 0 if
a#a;—1and a# a;. If a=a; —1 or ay, then

Tq, ag

2
|8 Wg;lzqa(p?p | / / qu a p) (TZ(Q)t ) — —gbq (ta,p> tr {22(9)}} dt

2,a9—1 Tq,aqg—1

e dty)
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T
where t, = (7-1 W lo - tq) . Hence, 0*mq,...a, (T, p) /OT1,.0ps is bounded on O x OW
if @ = a;— or a;. Regarding the first-order partial derivatives of Omg,...q, (T, p) /071, With
respect to T, it is easy to see that 827ra1...aq (1,p) /0T1,4,0T14 =01if a # ay. If a = a4,

T2,a9 Tq,aq

g, a, (T, —1f
1 q( p) _ / / ¢q(7—1,a17t27"'7tq;p>(_e,{2 ltal)dtq...dtg,

2
011 4,

Toag-1  Taag-1
where e; is a vector with ith entry being 1 and other entries being 0. Hence,

PMayoay (T, p) /0T, is bounded if @ = ay. Further, 0%m,,...a, (T, p) /0T1,0,072,0 = 0, if
a#as—1and a## ay. If a=as— 1 or as, then

T3,a3 Tq,aq

*Tayay (T, P) ‘ _ /

87'1@1 87'2@

¢q (Tl,alaTZ,aa LTI P P) dtq codtg| < o (Tl,a1a7—2,a; Plz) .

Sa3—1  Tayag—1
Therefore, by symmetry, every entry in 8°m,,..q, (T, p) /OTOTT are bounded on O™ x O).
This completes the proof for the boundness of the second-order partial derivatives of

log g, ...ay (T P).

At last consider the second-order partial derivatives of Om,,...q, (T, p) /Op. From
0*Tay.ay (T, P) /OpgOpy derived above, the integrand needed in 8°my,...q, (T, p) /0pa0prdp;
is ¢, (t; p) multiplied by a polynomial of ¢ up to the sixth order. From
827ra1a2...aq (1, p) /071 ,0py, derived above, the integrand needed in
P Tayeay (T, P) J0T1,.0pg0pn is ¢q (t; p) multiplied by a polynomial of ¢ up to the fourth
order. From 8°m,,ay...q, (T, p) /0707 derived above, the integrands needed in
PTayea, (T, p) JOTOTT Dpy s also a multivariate normal density multiplied by a polynomial
of t up to the fourth order. Therefore, the second-order partial derivatives of

dlog gy ...a, (T, p) /Op are bounded on O x O .

In order to show the main results, we need the following regularity conditions.

A1 For any pair (g,h), pghtrue = Pgno + 0pp/v/n + O (n~') for some local parameter ;..
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A2 For any (Tgn, pgn) # (Tgh0, Pgh0)s P (Ugn,i (Ton, Pgn) = Loni (Tgn0, Pgno)) < 1.

A3 For any pair (g, h), 0y, (Tyn, pgn) /Opgn = 0 always has a unique solution for any

Tgh € OéT) X O,(IT).

A4 For any pair (g, h), the information

O*Uyn.i (Tgh.0s Paho) ol 02108 Tap (Tyn.0s Paho)
ED ( an, ag 27 gn, — Z Z 7_[_ab (Tgh707 pgh70> 8 ‘29 s an, # 0.
P a—1b=1 P

Assumptions [A2] and [A3] ensure the identifibility. Assumption [A4] ensures that the
reciprocal of the Fisher information is well-defined. Assumption [AT] means that the true
values of the polychoric correlation coefficients are locally drifted in a n~'/2 neighborhood.
This is a mild assumption when the true values of the structural equation model in the
main text are locally drifted. The model-implied covariance matrix of the structural
equation model in the main text is

T
A, (I—B) ™" [Tvar (&) T7T + var (¢)] LEI - B)*l] AT A, (I-B) 'Tvar (&) A7 5, .
+ var ,
Agvar (§)TT [(I — B)_l} AZ; Avar (&) AL
provided that I — B is invertible. Let o be the vector of all unique elements in and B
be the vector of free parameters in A,, A, B, I, var(§), var(é,), var(d,), cov(d,, 65), and

var(e). In order to link to Assumption , we need the following mild assumptions on

the covariance matrix ([9)).

A5 The covariance matrix (b)) evaluated at By is positive definite. o (3) is a twice

continuously differentiable function of B on a neighborhood of By. The partial

derivatives do (By) /08 and 9%c (By) /0BIBT are finite.

By positive definiteness and the continuity in Assumption [A5] we can find open balls
O and O such that 6, is an interior point of O¥), ~y is an interior point of O); () is
positive definite for all (8,v) € O x OW); and  (8,~), 0o (8) /08 and 0%a (B) /0BIB”

are bounded on O x OO If the structural equation model in the main text is the true
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data generation process, then p = o (8,). By the continuity, we can let O be an open
ball that is nested in the image of O x O under o (0,), and then Result |1| holds.
Further, Assumption [A5|implies that 9o (8y,v) /0~ and 8% (0y, ) /OvO~T are
continuous functions of v € O, For a sufficiently large n, ~o + 8/4/n is also an interior

point of O0). Then, the Taylor’s theorem (Rudin, 1976, pp 110 and pp 243) yields

820- (007 ;5/)

o (907’)’0 + 5/\/5) = o0 (00,%) + (6 )5/\/_ *5TWJ/% (6)

where 7 lies between ~y + 8//n and . Since da (6y,7) /0~ and 0%c (6y,~) /OyOyT are
bounded on O, the third term in the right-hand side of (©) is O (n~'). Thus, Assumption
holds under Assumption [AF

Using Assumption and Resultl we can expand Waggitgsat (Tynsts Pgnst) that will be
used later. For notational simplicity, we will drop the indices from Wéi’éi@sat (Tyhsts Pghst)
and express it as 7 (7, p) in this subsection, whenever no confusion arises. The partial
derivatives shown in Result [I|imply that log 7 (7, p) has continuous second-order partial
derivatives on O x O, Because of Assumption , Pirue i an interior point of O® for
a sufficiently large n. Hence, the Taylor’s theorem (e.g., Rudin, 1976, pp 110 and pp 243)

yields

dlog 7 (19,
lOgW (T07 ptrue) = IOg’/T (7-07 PO) + gap(TO pO) (ptrue - PO)

1 7 9 log 7 (19, P)
+§ (ptrue - PO) 8p8pT (ptrue - pO)

— g (0. pu) - alogglg;‘o,po) (/v +0 (n 1))

+§ (6°/vn+0 () - 1?,,25,?’ 7 (8 /vi+0(n "))

o1
— log (70, po) + Oggé?”’())a*/ﬁ+o(nl), (7)

where py is the vector that collects all pgp o, and p lies between pg, and py,. and 6* is the
vector that collects all d;,. The remainder in is O (n™!) since the partial derivatives are

bounded on O x O®) by Result |1 such that alo%(;0”’0)0 (™) =0(n"') and
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Plogn(mb) §+ | /7 = O (n*1/2). By taking exp () on both sides of (7)), the expansion of

0popT

log 7 (7o, Prrue) also gives the representation

al ) * -
7 (T0, Ptrue) = W(Tg,pg)e}(p{ Ogg;;'o Po)é /\/ﬁ+0(n 1)}

Using the Taylor series exp (z) = 14z + exp (%) 22 /2 for some 0 < # < z, we further obtain

7 (7o, pirue) = 7 (70, 0) {1 + “Ogg/ﬁ;(”p(’)a*/ﬂ + R(é*)} , ®)

where the non-random remainder

. 1 exp () | dlogm (10, Po) ., 1 2
R(@E) = O(n ')+ I;”[ g@/ET ”)5/\/5+0(n )]

and 7 lies between 0 and %’}0’”0)5* /v/n+ O (n™!). Since the partial derivatives are
bounded by Result ak’ggf(?’po)é*/\/_ =0 (n_1/2) and & = O (n_l/z). Hence,
R(6*)=0(n™).

When the dimension is two, similar steps yield

(gh)
h h Ologm, Tgh,05 Pgh,0) ox _
71—((5) ) (Tgh,Ov pgh,true) = 7[-((1% ) (Tgh,07 pgh,O) €xp { % Tab épgh 0> Pgh O) 5gh/\/ﬁ + @ (n 1) }

(gh)

dlogm,y " (T4n0, . .
7 (74,05 Pgh0) [1 + : épgh’o pgh’0)5gh/\/ﬁ+ Ry ( gh)] 9)

for some non-random remainder R, (5;‘h> =0 (n1).

2.4 Consistency and Asymptotic Normality

Throughout the paper, we use Ey... () to denote the expectation under the true
distribution and Ej () to denote the expectation under the distribution with py as the

parameter value. For example,

mg mp

Ey [fgh,i (Tgh,Oa Pgh)] = Z Z Tab (Tgh,07 Pgh,o) log Tap (Tgh,07 pgh) )
a=1b=1
Mg mp

Etrue [ggh,i (Tgh,Oa pgh)] = Z Z Tab (Tgh,07 pgh,true) log Tab (Tgh,Oa pgh) .
a=1b=1

The variances vary.. () and varg () are defined similarly.
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When the two-step procedure is used to estimate the polychoric correlation coefficient,
the thresholds 7, are estimated from the univariate standard normal distributions. Hence,
7, is a still consistent estimator of 7, and \/n (7, — 7,) is asymptotically normal, for any g.
In the second step, £y, (T4n, pgn) is maximized with respect to pgp, a pseudo-maximum
likelihood setting. Hence, we will extend |Gong and Samaniego (1981)) from the standard
asymptotic framework to the local asymptotic framework.

Before we present the main results and their proofs, two well-known theorems are
presented here, which will be repeatedly used.

1. Law of Large Numbers (LLN; e.g., Jiang, 2010, Theorem 6.4). Let X,
1=1,....,n,n=1,2,.., be a triangular array of random variables such that for each n, the
X,;'s are independent. Then, >, X, ; 20 as n — oo if and only if

S P (Xl > 6) = 0,
i=1

ZE{X?MI |Xn il <r)} — 0,
i=1
Zvar {XniI (| X0 <rK)} — 0,

for every € > 0 and some x > 0.
2. Lindeberg-Feller Central Limit Theorem (e.g., van der Vaart|, 1998, Proposition
2.27). For each n, let Y,, 1, ..., Y, 1, be independent random vectors with finite variances

such that

kn
JLIEOEE Yol {1 Yaill > €}] =0, for every e >0

Then the sequence Y5, [V,,; — F (Y,,;)] converges in distribution to a normal N (0, )

distribution.

Theorem 1. Consider any pair (g,h). Fore >0, let A, (¢) be the event that, for any pairs

(g,h), there exists a root pg of the equation 0Ly, (Tyn, p) /Op = 0 for which
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|Pgh — Pgno| < €. Suppose that Assumptions and hold. Then for any € > 0,
P{A, ()} = 1 as n — oo, under the local asymptotic framework. If Assumption[A3] also

holds, then p = po, under the local asymptotic framework.

Proof of Theorem[1 The proof by and large follows Theorem 2.1 in [Gong and Samaniego
(1981)), but to the local asymptotic framework. Let A, (€) be the event that there exists
a root pg, of the equation 0y, (T4, p) /Op = 0 for which |pgr, — pgno| < €. Suppose that,

for any €; > 0 and any €3 > 0, there exists a Ny, such that
P{Agh,n (81)} > 1 — 3eo, (10)

for all n > Ngyj,. Let N* = max(y ) Ngy. Then,

q(q—1)

P{An (81)} = P {Alg,n (61) N A137n (51) N---N Aq—l,q,n (61)} >1-— 5

3627

for all n > N*. This means that P {A, ()} — 1 as n — co. Further, under the

assumption [A3| that 0¢,, (T4, p) /Op = 0 always has a unique root for any (g, h), we reach

- —1 —1
P Z (pgh — pgh,0)2 < Q(q2)€1 > 1-— Q(q2)382.
g<h

In other words, p 2 po. Thus, in the rest of the proof, we will show that holds.
For notational simplicity, we drop the index g and h in the proof if no confusion
arises. Let O and O) be the open sets as stated in section That is, 7y and py are

interior points of O™ and O%); and inf Tap (T, p) > 0, for any a and b. By LLN,
(T’p)EO(T)XO(P)

1
Ee (’7'0, P) - Etrue [gz (TOa p)] £> 07 (11)

for any fixed p € O), provided that

> P (i (10, p) = Birue [li (10, p)]| > ) — 0,(12)

1

n
1=

> i { 0 Bl P 1) = Bt el < )| 0,09

ivartrue {&' (T0,p) — E:Lrue 4; (To,/?)][ (14; (10, p) = Etrue [li (10, p)]| < n”)} — 0,(14)
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for any £ > 0 and some x > 0; and the expectations and variances are finite.
By Result , log 7ap (70, p) is bounded on O for any (a,b). Then, ¢; (1o, p),

EO [62 (7-07 p)] - Z Tab (TOa PO) log Tab (TOa p) )
a,b

Ey W (TO;P)} = E;Wab(Toapo) [1Og7rab(7'o,p)]2,

and varg (¢; (10, p)) are all bounded on O%). By Assumption equation (9) holds if

Pirue € OP). Hence, we have

Etrue [éz (7-07 P)] = Z Tab (TOa ptrue) log Tab (7-07 ,0)
a,b

0log ma (7o,
= Eo[li (10, p)] + > 7a (70, p0) & abp( 0: 70)
a,b

+ Zﬂab (70, po) log Tap (70, p) Rap (67),
a,b

Valtrye (61 (T07 p)) = Etrue [622 (7-07 p)} - Etzrue [& (7-07 10)]

0log map (10, x
= B[ )]+ S () ST b2 (1, ) 0
a,b

+ Z Tab (T07 pO) 10g2 Tab (7-07 P) Rap (6*) - Et2rue [& (‘To, p)] :
a,b

log Tab (T()a P) 5*/\/5

By Result , > a,b Tab (70, po) log Tas (T, p), > a,b Tab (7'0,/)0)10g2 Tab (T0, P),

0log map (7'0700)

Tab (7-07 ,00) 108; Tab (TOa p) ;
% 7
0log g (70,
and Z Tab (7-07 ,00) abp( 0 pO) 108;2 Tab (7-07 :0) )
a,b

are all bounded on O®). Since Ry, (6*) = O (n™!) in (9), we have

Birue (6i (10,p)) = Eolli (10,p)] + O (nfm) :
Valtrye (gz (T07 P)) = VaIg (gz <T07 p)) + O (n_1/2) 9
and they are both finite for any fixed p € O, Since both ¢; (1o, p) and Ey. [4; (To, p)] are

bounded, |¢; (79, p) — Eirue [€i (To, p)]| is bounded on p € O, Hence,
10; (70, p) — Etrue [Ci (T0, p)]| < ne for a sufficiently large n. Consequently, holds.
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Likewise, for a sufficiently large n, |¢; (7o, p) — Eirue [li (70, p)]| < nk for fixed . Thus,
and hold, since

ZZEE”“@ {fi (70, £) = Etrue [l (TO,P)]} _ 0

n

and

En var gi (7-07 p) - Etrue wz (TO, p)] Valtrue {Ez (TO, p)}
P true " = -
var (6 (10, p)) + O (V2
o (4 (70 P)yj ( ) 0

Therefore, the law of large numbers is applicable and

1
P <‘n€ (T07p) - Etrue wl (T07p)]‘ > €> — Oa

for any € > 0, as n — oo. It further yields

1
gf(ToaP) L Eo [l (10,p)],

since the local drift in the expectation vanishes as n — oo.
From section we know that ¢ (7, p) has continuous partial derivatives with respect
to (7, p) on the open set O x O, Hence, for a sufficiently large n, the consistency of #

and the Taylor’s theorem yields

lﬁ(i—,p) _ iNTO’p)_i_lW(%—TO)-i-OP(l)a

where 7 lies between 7 and 7. By Result [l [0log 7, (7, p) /07| is bounded on
O™ x O). Hence, for all (1,p) € O x OV

]
I (a.b) ) ogﬂaa:(f,p)

] -

a,b
is also bounded. Since 7 is still a consistent estimator of 7,

P {(+ —7) (F—m) < e} — 1 as n — oo for any € > 0. For a sufficiently small €, the
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open ball {‘r; (F—1) (F—m) < 6} is a subset of O, Hence, P (f' € O(T)) — 1.
Equivalently,

P((#,p) €07 x0¥) - 1

for any fixed p € O®), as n — co. Then n~'0¢ (F, p) /O is bounded in probability. Hence

1 1
P (‘é('f',p) —=f (To,p)’ > 6) — 0.
n n
Above all,

r ..
gf (’T, P) - Etrue [61 (7-07 p)] & 07

(15)
for p € OV si

, since for any € > 0,

1
n

P(’ (T, p) = Eprue [l (To,p)]’>2€> < p<’711
+P

(7

T.p) — if (7'0;;0)‘ > 6)

(10, ) = Etrue [ (7'07/))]‘ > 6) ;

3\H =

which converges to 0 as n — oo. It further yields

P,

gé(‘f-,p) = o [l; (10, p)]

since the local drift in the expectation vanishes as n — oo

The rest of the proof mimics the proof of Theorem 2.1 in (Gong and Samaniego
(1981). By (15),

Lllg (T,p) — 7115(‘7'7/)0) —{Eo [ti (10, p)] — Eo [l (0, po)]} 5 0.

By Jensen’s inequality

My my Ii(a,b)
= TL2 [Ty (70,
Bo [t (70, p)] — Eo s (1o, p0)] < log By = L=1 [Tar (70, )

!
T1, TT0 [as (70, o))
By Assumption [A2] the equality is attained only if p = pg. Hence, n=[¢(F, p) — £ (%, po)]

converges in probability to a negative number for p # py. Consequently, for any small
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g1 > 0 and €9 > 0, there exists a [NV such that

l-e < P(#e07), (16)
l—ey < PU(T,p0+e1) <l(T,p0)), (17)
l—ey < Pl(T,po—¢e1) <l(T,p0)), (18)

for all n > N. Here holds since 7 is a consistent estimator of 7y; and hold
because of the convergence of n=! [( (7, p) — £ (7, po)] that we just showed. Suppose that

the event
{# €07, t(#,p0+e1) < (#,p0), and £(F,p0 — &1) < £(,p0) (19)

holds. Note that, for a given 7, ¢ (7, p) is a continuous function of p on the closed and
bounded interval [py — €1, po + €1]. By the extreme value theorem (Rudin, (1976, Theorem
4.16), £ (7, p) must attain a maximum. Since the values of ¢ (7, p) at boundaries are lower
than the value at an interior point (p = po) by event (19)), the maximum of ¢ (#, p) on the
closed interval [py — €1, po + €1] must be attained at an interior point. This means that, if
event holds, ¢ (7, p) has a local maximum p on the open interval (pg — €1, po + £1)-
Since ¢ (T, p) is differentiable with respect to p, the local maximum p satisfies

ol (7, p) /0p = 0. By inequalities , , and , the event holds with probability
greater than 1 — 3e,, which completes the proof of .

Theorem 2. Suppose that Assumptions and [Ad] hold. Then

V(P = Pirue) % N (0,Y), under the local asymptotic framework, where Y is the same as

the asymptotic covariance matrix in .

Proof of Theorem[J. For ease of presentation, we first prove the asymptotic normality of
the polychoric correlation coefficient estimator between two variables. Second, we extend
the proof to the multivariate case. Since the univariate distribution is not locally drifted,

the expansion for the thresholds in [Joreskog| (1994) is still applicable. However, p is locally
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drifted by Assumption . Hence, the expansion for p in Joreskog| (1994) is not directly
applicable.

The marginal probabilities of observing z, = a and z;, = b are

Tga (Ty) = / o1 () dt,  mhy (Th) = / ¢ (t) dt,

Tg,a—1 Thb—1

respectively, where ¢, () is the density function of a standard normal random variable. To

estimate 7, the univariate log-likelihood scaled by n"' is

n Mg
n Z Z I{zg: = a}logmya (1y), (20)
i=1 a=1
where 7,0 = —o0 and 7y,,, = 00. Denote the observed relative frequency matrix by ph)

(mg x my). Let the operator diag(-) construct a diagonal matrix using the enclosed vector

as diagonal elements. [Joreskog| (1994) showed that
A —_ 71 f—
V(=750 = (BloD;3Byo) BroD,3v/nP 1, +op (1), (21)

where B, o = B, (7,0) with

1 (7g.1) 0 e 0

—¢1(191)  ¢1(7g2) - 0
0 —éy (1y) -+ 0

B, (1) = ’ '
0 0 e ¢l (Tg,mgfl)
0 0 —¢1 (Tg7mg—1>
T
D,,= D, (m,o) with D, (7,) = diag (7,) and 7, = (%71 e ﬂg,mg> ,and 1, is a

myp, % 1 column vector of ones. It is worth mentioning that /nP " 1,in diverges as
n — oo, but BL D, y/nPY"1, does not. Let 7™ be the m, x my, matrix with entries
79 (4.0, Pgno). Tt is casy to see that D;éﬂ'(()gh) 1, =1, and B;OD;éwégh) 1,=B],1,=0.

Hence, we get BL D, 5y/nPY"1, = BT D, 5\/n (P(gh) — ﬂégh)> 1,. Then, an equivalent
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expression of is
-1
Vi (= 7p0) = (BL,D;iB,o)  Bl,Dyiv/n (P —mf™)1,+0p(1).  (22)

In fact, BLyD, 5/nP“"1, originates from the first-order derivative of given by a

vector with entries

(nl "oz, =a} ntYr T{x, = a—{—l})

Tga (Tg) 7Tg,a+1 (14)

¢1(Tga) -

Likewise, 7, satisfies
-1 T
Vi (7, = o) = (BJyDyiBio)  BiyDypv/n (P —mi™) 1,4+ 0p(1).  (23)

For the asymptotic normality of the polychoric correlation coefficient estimator
between two variables, we often suppress the index g and h for notational simplicity if it
does not cause confusion. From section it can be easily seen that ¢ (7, p) has
continuous third-order partial derivatives with respect to (7, p) on the open set O x O)

Hence, the Taylor’s theorem yields

)
vn  9p
1 02 (7o, po) 1 &% (7,p) 103 (7,p) ,. R
HT+2n 007 (p— Po)‘i‘EW(T—TO) V(P — po)
1 90(10,p0) | 10% (70, p0) . . T (T, D) .
+\/ﬁ p n  0poTT Vi (= 70) + 2\/n (7 =) OpoToTT (F=70),

where p lies between p and pg, and 7 lies between 7 and 7y. Consequently,

1 9(10,00) |, 1 9*(10,00) 1 /a T 824(7,p)
f L _ % goppo n apg(;.go \/>(T - TO) 7 (T - TO) 8p8Tg£T (T o TO) 24
n(p—po) = 92 g(q—o,po) 1 0% 1 034(F,p) (24)

% + n ( 2) (P Po ) + n 9p207TT (T - TO)
provided that the denominator is nonzero. We will show later that the denominator
converges in probability to a nonzero constant. Hence, with probability approaching 1, the

denominator is nonzero.
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We first consider the numerator of . From equations and , we have

1 9l (7o, po) 10 (TO,PO)_ A
N n porT Vi (7 =)
_ - _ -1 _
_ L (mp) |, [10% (0 p0) (BI,D,4By0)  BILyD, /i (P —m)1,+op (1)
= o o 4
vn o p (n 90075 [ (BEyDyiBuo)  BLoDisy/n (P — )" Ly +op (1)
A alog Tab (7-07 PO) 1 82£ (7-07 pO) T -1 -1 7 -1
= P, — B D -B B D P — 1
\/ﬁag“; b ap + n apaTgT ( g9,0~g,0 9,0) g9,0~g,0 n( 7'&'0) g
1 0%4 (7o, po) _ -1 _ 1 9%¢ (70, po)
T [n DporT (BhoDyoBuo)  BiloDyiv/n (P —m) 1, + n OpdrT op (1)

l 0% (70, po)
n  OpotT)

—1
= Vntr{A"P} —I—tr{lg l ] (BjoD,3By0) Bi,D,} n(P—ﬂ'O)}

) - ~1[10%4 (19, po)
+tr {Dh’éBh,O (Bi?,oDh,(lJBhv(J) [napaTh

1 0% (7o, po)
DRraalk

where P, is the (a,b)th entry of P and the (a,b)th entry of A is dlog ma, (70, po) /Op. Note

1 1,v/n (P - 7"0)}

that
mg mp Mg mp
tI‘{ } Z”;alogﬂ-ab TOaPO Tabo = le; 67Tab TOaPO) —0.

Then, we can express /ntr {ATP} in as \/ntr {AT (P — 71'0)}. Further, by Result ,

0% log Ta (To, po) /OpOT is bounded on O x O®). Hence

1 9*¢ (po, T0) Ak 0 log map (To, po)
- ) Pa al b
n  OporT az:l bz;l b opoTT

is also bounded. Consequently

1 0% (po, T0)
n  OporT

‘| op (1) = Op (1) .
As a result, becomes
1 8€ (,00, T()) 1 82£ (p(], 7'0) N
el b 10/ B U R — = A (P — 1 2
) LS Ve —m) = Vi (A (P m)} +or (1), (20
with tr {Am} = 0, where

1 02£ (po, TQ)

A= AT+1,|-
+ g[n opoT)

](B;FOD \Bo) 'B7,D;}

—1 T -1 -1 [10%(po, 1) | {7
+D;,4Bio (BlLoD;,Bho) [n Spom |

(25)
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By LLN,

2 2¢.
19%(po,10) B, (5 ti (7'07p0)> L (27)

if and only if

n 20
P Po’To g, (Pl g,
0p?
=1
9L (po,0) >t (7'0 po)
- P 0%; (po, 0%; (1o,
ZEW{ % e (7 )1< o TO) ~ Eirue (M)‘ gm>} = 0,
i=1 n 9p? 9p

8%¢;(po,m0) E 92£;(70,p0)
n ——F5 35 rue \ = 3,2 0262
Zvartrue dp ¢ ( dp )I (‘ (PgaTO) — By <8€(Tg’p0)>‘ < nn‘) — 0,
P n Op dp

for every € > 0 and some k > 0; and the expectations and variances are finite. From

equation @, we have

29 2
e (WTO”OO)> = S b (0 Prrac) 0% log map (0, po)

0p? o0 0p?
5251‘ (7'0, Po)
- g, (2570 P0)
0log map (Toapo) o8 log ap (Toapo)
+ Y 7 (70, 0" /\/n
aZJ; b (70, o) 9 20 /v
02 log map (0, .
+ > Tab (70, o) & abQ( > pO)Rab (6%), (28)
a,b P
0*C; (70, po) 9%C; (1o, po) ? 9*C; (1o, po) ?
Valirye <@p2 = FEirue “or — | Etrue o

_ &L (10, p0) \* 0% (10, p0)\|”
= EO (apz - Etrue T

0log map (To,Po) <82 log 74 (TO,P0)>25*/\/E

+Z7Tab (70, o)

b Op Op?
82 log s (1o, po) \
+ > 7ab (T0, p0) < o 7Ta;2(7'0 Po)> Ray (67). (29)
a,b

By Result , the first- and second-order partial derivatives of log my, (T, p) are bounded on
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O x O, Hence,

9°L; (70, po) 9% log Tap (To, po)
Eqy <8p2 = %b: Tab (05 Po) 52 5

2L, (1o, po) \~ 92 1og .y (10, po) 1
( é;gp0)>]:z:”ab(70,ﬂ0)[ Ogﬁb(mm)]’

Eq
a,b ap2

ZW ) (7_0 po) dlog myy (Tovpo) o log ap (7'0,,00)
(Z’b a Y ap apQ Y

810g Tay (To, po) (0% log ey (10, po) \
%l; Tab <T07 pO) ap apg ’

are bounded, so as the variance vary (%{T)S’po)) Further, since Ry, (6*) = O (n™!) in (9),

0% log map (70, . _
> ) R () = 0 ()
a,b

8210g7rab(7-0ap0) 2R 5* - 0 -1
S (. o) (=25 w(@) = O(n).

a,b

Therefore,

B . <32€¢ (Tojpo)> _ g <82€i (To,Po)> 40 (n_l/g) ’

0p? dp?
82&' (‘7'0, po) 02& (7-07 pO) -
Valirue <8p2 = vary T + O (n 1/2) )

and they are both finite. Since both 9%¢; (pg, T9) /0p* and Eie [0%C; (10, po) /Op?] are finite
and bounded,

82& (p(], ’7'0) 82& (T07 PO)
‘8/)2 - EtTue T < ne

for a sufficiently large n. Consequently, holds since

BQZi(pO,To) . Etrue (622i8(7'g,p0)) }
o

n 5.2
P
Z Etrue
=1

3%4i(po,m0) E 9%4i(79,p0) 2
n rue 1 0°l; s
Zvartrue o0 ' ( bt ) = —Valyrye (M) -0
= n n op

0,
n

Likewise, similar arguments yields

1pom) o (Pli(mp)) 5
n  0poT opoT
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Consequently, A converges in probability to

9*4; (70, po)

r = AT+ 1,E
" 90( DpoTT

-1
) (B10D,48,0)” BL,D,!

_ _ -1 %, (70, Po)
+D;,4Bio (BlLoDyBio)  Fo (aparh 17, (31)

which coincides with equation (16) in [Joreskog| (1994), as if the local parameter is zero.

Further, by the Slutsky’s theorem (Theorem 2.13, |Jiang, 2010)),

Vntr {A (P —my)} = /ntr {T(P —m)}+vntr{(A—-T) (P —m)}
= Vntr {T'(P — )} +op (1),

if v/n (P — my) converges in distribution to some random variable. Consequently, equation

becomes

1 0tpo, o) 1 0% (po, T0)
NZO) n  dporT

We now consider the last term in the numerator and the last term in the denominator

1 Vn(F—m) = Vntr{T(P—my)}+op(l). (32

of . Let the operator vec () vectorize the enclosed matrix by stacking columns on top of
each other. In order to derive the asymptotic distribution of y/nvec (P — ), we assume
that a random vector z, follows a multinomial distribution with one trial and probabilities
vee (Tye) With e = 7 (70, Prrue), and that the observed relative frequency is vec (P).
Here the subscript n is used to emphasize that the distribution of z, depends on n. We
also define zy as a multinomial distribution with probabilities vec () with 7y = 7 (79, po)-

Because of @D, we have

0log {vec ()}

Eirue (2n) = vee (Tyue) = Fo (20) + diag (vec (7)) p

0 /Vn+0(n7'). (33)

Since dlog {vec (mo)} /p is bounded by Result , Eirue (20) = Eo (20) + O (n_l/Q). Note

that

Valirqye (Zn) = Eiue (an;{) — Eipue (zn) Etrue (Z;I;)

= diag {vec (Tyue)} — vec (Tiue) vee! (Tprue) -
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By , we get

Valtrye (zn)

= diag {vec (Tyue)} — vec (Tprue) vee! (Tprue)
_ diag{Eo (20) + O (n—l/Z)} 3 [Eo (20) + O (n_uz” [Eo (20) + O (n_l/z)]T

= wvarg(29) + O (n_l/z) - (34)

If we observe x, = a and x;, = b,

Zp — Etrue (zn) ?

||V€C (ﬂ-true) ”2 - ng (7-07 ,Otrue> + (1 — Tab (7-0: ptrue))2

= <

2
n n

Jn

Hence, the Lindeberg condition holds, since, for every € > 0,

and

2
2

Zn,i — Etrue (zn,i) < €

vn

R

zn,i - Etrue (Zn,i)

vn

zn,i - Etrue (Zn,i)

NG

> E
i=1

2

for a sufficiently large n. The diagonal and off-diagonal entries in the covariance matrix of

Zp,i are Tg (TO) ptrue) []- — Tq (7_07 ptrue>] and —Ta (T07 ptrue) T (T07 ptrue)u respectively. Note

that

n _E )
Z Valirye <zn,z \;%w (zn,z)> = Valfrye (zn,i) — vary <Z0>

by . Therefore, the central limit theorem implies

Since n~!

vn (Vec (P) — vec (mg) — diag (vec (7))

Z Zng — Etrue znz)] i> N(O,V&I‘O (Zo)).

%1 Zni = vec (P), we have

0log {vec (mo)}
dp

5*/\/ﬁ> 4N (0,varo (20)) . (35)

Equivalently,

Vvn (vec (P) — vec () 4N (diag (vec (7))

0log {vec (7o)}
dp

d*, varg (z0)> . (36)
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Hence, the Slutsky’s theorem (Theorem 2.13, |Jiang, |2010) leads to

Vntr {T' (P — my)} = vec” (T') v/nvec (P — )

1
4N (vecT (T") diag (vec (7)) Olog {\éec <7r0)}(5*,vecT (I') varg (z0) vec (I‘)) .
i
(37)
Note that
830, (+, ) ms My 1 Prw(,0)
) — ]‘Z , b a )
0poToT™ a; 1; (a,) Tap (T, p) OpOTOTT
_ 1 8277—ab (7:7ﬁ> alog Tab (7:7p~)
71-gb (7’:7 ﬁ) apaT 8TT
_82 IOg Tab (%7 ﬁ) alog Tab (7-7 15) . 810g Tab (%7 ﬁ) 82 IOg Tab <7-7 16)
ororT p or 0poTT ’
where all partial derivatives are finite and bounded on O x O®) by Result 1| Then,
n=t330 (7, p) /OpdTOTT is bounded in probability. Likewise, n=10%¢ (7, p) /0p® and
n103 (7, p) /0p?OT are also bounded in probability. Consequently,
. 103 (7,p)],.
Vi (# —7)" lnapa(faf;] (F—1) B 0, (38)
1 82£ (TO po) 1 83€ (7~' ﬁ) 1 (93€ (7~' ,5) P 82& (Tg po)
- ) - P s SOE\TP) s g [ L5iT0,P0) ) g
n  0p? * 2n  0p? (P = po) + n 0p?0rT (F-m) = F 0p? (39)

since p — pg = op (1) by Theorem [I v/n (# — 79) = Op (1) from and (23), and
holds. By equation and Ejy (%{T)S’po)) # 0 under Assumption , the denominator of
(24)) is nonzero with probability approaching 1. By equations and , the numerator

of becomes
Vntr {T (P — my)} + op (1),

which converges in distribution to the normal distribution by the Slutsky’s theorem.
The denominator of converges in probability to a constant by . Hence, by the

corollary of the Slutsky’s theorem in [Ferguson| (1996, P40), we obtain

) 1
Vi(p—po) = ) (azeié;g,po))\/ﬁtr{F(P—ﬂ'O)}JrOP(l)-
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Therefore,

T(T) diag (vec (mp)) 0 log {vec (71'0)}5* vecT (T) varg (2q) vec (T')
_EO (M) 3p ’ [Eo (M)r )

Op?

Vi(p—po) S N(

0p?
the asymptotic covariance matrix of which is in line with the result in Joreskog (1994) for
the standard asymptotic framework. Note that

0log {vec (m)}
dp

azgi (T07 pO) - -1 - :
vecl llgEO <W (B;OngéBgﬂ) B! D, | diag (vec (m))

dvec ()

dp

9*l; (1o, po) \ 700
dpoT, L op |’ (40)

9%; (10, po) - - -
= VeCT [lgEO <W (ngODg,(l)Bg,O) ngODg,é
g

1
— ¢r {D;éng (BgOD;éBg,o) Ey (

82&‘ (7'0, po) T . 0 log {VeC (7‘-0)}
B — 1, | diag (vec (7)) ap

9L (10, po) 17 dvec ()
dpoTy, dp

vecT [Df;gBh,o (BLoDisBuo)  Eo (

-1
= vecl [D,;(I)B;LO <B}7;0D;;(1)Bh,0) Ey (

3251‘ (7'0, Po) o

— _1 —
= tr {1hEO (W) (B?;ODh’éBh,O) B}T;ODh,ép}

02; (10, po) N -1 _, 0w
= tr {Eo <8p83{0 (Blff,oDh,éBhp) BioDh,éaipolh : (41)

Since

o (7'07 Po)
2N A dq =04
ap 0 an 9p h

we can see that and are both 0. Further,

T
19

vec! (AT) diag (vec (7)) Olog {\éepc (70)} = vecl (AT) Ovee (mo)

since

920; (70, po) _ ¥ I; (a,b) O*7may (70, po) I; (a,b) (87rab(7'0,p0)>2]

9p? o7 | Tab (70, Po) dp? - 72, (7o, po) dp
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and
E, (82&(7'0,po)> _ -y [ 1 ((%ab (7‘0,,00)>2] .y [mogﬂab (70, Po) OTap (To, Po)
op? < | mab (70, po) dp y; dp dp
Therefore, using the expression of I' given by , we get
vec! (T') diag (vec (1)) dlog {‘gj)c (m0)}
1
= vecl (AT> diag (vec (7)) Olog {\(;epc (mo)}
et (1,5 (S ) (B1,D,48,0) B3 ) ain (e ) 2 L)
+vec! <Df;(1JBh,U (szztonZéBh,0>_1 Ey (W) 1;{) diag (vec () Iog {\(;e: (mo)}
- g (Phma)

which means that the mean of the asymptotic distribution of \/n (p — po) is equivalent to

0*. In other words,

vec! (T') varg (2q) vec (T)
Ey (awm,po))r

Op?

\/ﬁ(ﬁ_ptrue) i N O’

The proof for the polychoric correlation coefficient estimator between two variables is
completed.

Regarding the asymptotic distribution of more than one polychoric correlation
estimators, the proof by and large follows from the one estimator case. Our proof above

implies that

1
_E, (3251'(Tgh,0,,09h,0)>

Vi — ) Vite (T (POV — )} 4o (1) (42)

0p?

holds for any pair of gth indicator and hth indicator, provided that all regularity conditions
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hold. Here indices are added to indicate the pair of indicators. Thus,

824, (+ \/_tr {F(12 ( ( ) 77(()12)>}
R ( 12,0512 0)
V1 (P12 — p120) “Eo| — 27—

= + op (1)
5 _ 1 1, (q—1,9) _ (-1
\/ﬁ (pq_lvq pq_lzq’(]) EO (82Z7; (Tq_l,q,Oqu—l,q,0)> \/_tr { q q (P I ¢ 7‘-0 )}
_ o
vec (P(12) — 7r((]12))
vec (P(13) — ﬂ_((]13))
= —/nH'E + op (1), (43)

vec (P(Q*L‘I) — W((]q_l’Q)>

where
H = ding (B (P4} ... Fy (Shmopgnn) ),
vecT (I‘(12)) 0 . 0
P 0 vec” (T19)) ... 0
0 0 oo vecT (1‘@—17(1))_

Hence, the asymptotic distribution of the vector of all polychoric correlation estimators

V1 (P — Pirue) depends on the joint distribution of
T
P = (veeT (P12 — ) veeT (PU) — ™) .. vec (Pl — =) )

where p is a 37 ZJ _ir1mym; x 1 vector. In the univariate case, we use . to denote

(gh) (g

w2 and g to denote 7y’ ") In the multivariate case, we redefine

Tirue = (vecT< 1536) vec (ﬂ'tme> oo vecT (nguel’q)))Tv (44)

Ty = (VeCT <7r(() ) vec ( ) o vecl (ﬂéq_l’Q)>)T, (45)

as a generalization of vec (wﬁfffg) and vec (71'0 ) Using the newly defined g, we will first

generalize and to multivariate cases. Let y9" be the mgmy, X 1 vector with
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entries [ {zx, = a and x;, = b} for all possible combinations of a, and b. Let y,, be the

i Y5 _i1mimy x 1 vector that stacks all y9") on top of another for all possible pairs
(g, h). Without loss of generality, we assume that the entries in y,, are sorted such that
Eirve (Yn) = True. We also define y(()gh) and gy, as analogues to yflgh) and vy, respectively,
but £, (y(()gh)) = vec (w(()gh)) and Ej (yo) = mo. Y, and gy, are simply the generalizations of
z, and zy from the univariate case to the multivariate case. By stacking for all pairs

(g, h) from the univariate case, we get

(12) dlog 712 (112, 0,P12,0)6*
11,0 9p1,2 12
(12)
_ (12)  9logTm)my (T12,0,012,0) o4 ( —1)
Etrye (yn) Ey (yO) + Tmima,0 dp1.2 5 /\/ﬁ +0(n ’ (46)
-1,
(g—1,9) 810g7f£gq,1qulq (T4-1,4,0:Pq-1,4,0) ¢y
mMg—1Mq,0 8pq,1,q q—1,q

where 47, is the local parameter in §* corresponding to pg,. As we showed in Result [T} the
partial derivatives are bounded. Hence, implies that Eye (Yyn) = Eo (yo) + O (n—l/ 2).
The entries in var.,. (y,) are either var,.,. ( ﬁlgh)> O COVipye ( 7(1 h) (St ) for g < h and

s < t. Equation is directly applicable to vary.,. (yggh)) yielding

VaTiue ( 7(19’1)) = var (y(()gh ) +0 (n‘l/ 2). For covyye ( (gh) yﬁf“), note that the entries in

Eirue [ (gh) (yfft))T] are of the form Ey. [[ {x, = a and x, = b} I {z5; = ¢ and z; = d}],

; (9192) (919293) (91929394)
which can be 07 or Tayas,trues or ﬂ-alagag,true? or 7Ta1a2a3a4,true By . we get

Eiye [[{zy =a and zj, = b} [ {z; = c and z; = d}]

= Ey[I{rg=aand z, =b} [ {z; =cand 2, =d}] + O (n—l/z)’

n

coVirue (49, yl") = Etm[ o (y") ] Burue (¥ [Birae (v57)]"

= [ ()] - B () [ (0] 0 (072).

= F {y(gh) (y(5t> } - O( _1/2). Hence,

Therefore,

Varyue (Ya) = varo (yo) + O (n?), (47)
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which is a generalization of to the multivariate case.

To apply the Lindeberg-Feller theorem, we consider y,, —

0. Since Hyfﬁh) -

2
Etrue (yn,z)

Eire (y,(ﬁh))HQ < 2 for any pair (g, h), then

Hyn,z -

n

> FE

NG

Hence, the Lindeberg condition holds since, for every € > 0, ||y, —

Etrue (yn,i>

yn,i -
NG

for a sufficiently large n. Note that

=1

q(q—l)'

N

Etrue (yn,z)
N4

2 . —
8

NG

=1

- ni_Erue n,t
Zvartrue <y : L (y ’)> -

by . Therefore, the central limit theorem implies

Z Yn,i —

By (46), we further get

(12) dlog 7112 (712,0,p12, 0)5*
11,0 Fp1.2

d (12 8log7r( (712,0,012,0)
Valp—Ey(yo)] & N R R
1,q
7-[-(‘1_17‘1) Blogﬂ'ﬁnqq 12,1(1 (Tg—1,4,0,P4—1,4,0) 5*
Mg—1Mq,0 Opq—1,q

E

Etrue ynz>] i N(O,V&I‘g (yO))

q—1,q

30

Eirue (Yn), which has mean

Eire (ym)H2 < ne? and

= 0

Valirye (yn,l) — Varp (yO)

, varg (yU) )

where the asymptotic covariance matrix varg (y) is evaluated at (79, po), rather than

(70, Prruc)- Hence, implies that

H;'E,

71_(12) dlog 71 (112,0,012,0)

(12)
mima,0

(¢—1,9)
mg—1mgq,0

*
11,0 9p1.2 012

Olog wgnllnz(nz 0,£12,0) (5*
Op1,2

1
8log7r$3q lq,zlq(rq 1,4,0:P4—1,,0) ¢y

qu 1,q q

1,9

,Hy'Egvarg (yo) EIH;*
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As we have showed for the univariate case,
vecl (I‘(gh)) diag (Vec (w(()gh)» dlog {Vec {ﬂ'(gh) (Tégh), pghp)} }

82 (73" pgn.o ap
_E() ( (OaPQ ’ )

for all g and h. Thus,

* _ *
Ogn = Ogh,

V(P — po) % N (5*7 H, ' Eyvarg (yo) Ho_lEoT)
and
Vi (p = piuc) 5 N (0, Hy' Eovar, (yo) Hy 'Ef )

This means that the local asymptotic framework affects asymptotic mean but the
asymptotic covariance matrix remains the same as the one under the standard asymptotic

framework. The proof for the multivariate case is completed.

2.5 Simulation Study

A simulation is conducted to investigate the property of p under the local asymptotic
framework. Theorem (1| means that p is a consistent estimator of py also under the local
asymptotic framework. Theorem [2| means that the estimated asymptotic covariance matrix

from standard SEM package remains valid under the local asymptotic framework. However,

V(P — Prrue) 4N (0,Y) does not necessarily imply lim,, .o E[/7 (p — Pirue)] = 0.

Consider the function h (x) = <h1 (z1) -+ hy (Ip)), where x is a p X 1 vector,
L, |'TZ| S Ma
M7 |ZE2| > M7

and M is a fixed constant. It is easy to see that h (x) is a continuous and bounded
function. Then, for a sufficiently large M, lim, . E [h{\/n (P — pirue)}] is approximately
0 and lim,,_,o, F [h{\/n(p — po)}] is approximately h (6*) by Jiang (2010, pp 45).
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Continuous data are generated from the multivariate normal distribution with mean

0 and covariance matrix

1 0.4+ 6*n"Y2 0.3+ 5*n"1/2
0.4 4 §*n~1/2 1 0.35 + §*n~1/2
0.3+ 6*n"Y2 0.35+ 6*n~1/2 1

Hence, there are three correlation coefficients and six estimates of asymptotic
covariances/variances. We consider five different ¢* values, namely, §* = 0, 0.1, 0.2, 0.3, and
0.4. When ¢* = 0, we are simply working with the standard asymptotic framework. The
population thresholds are chosen such that the probabilities of belonging to each category
are 0.24, 0.41, 0.22, 0.1, and 0.03, which is the moderate asymmetry setting in Rhemtulla
et al.| (2012)). The sample size considered here is n = 100, 200, 400, 1000, 5000, and 10, 000.
The number of replication is 10,000. We use the lavaan (Rosseel, 2012) package to estimate
the polychoric correlation coefficient and its asymptotic covariance/variance.

Figure (1] illustrates the estimated density of p — py for each pair of indicators. If
Theorem (1| holds, p — po will be sufficiently close to 0 as n increases. It is seen that the
estimated density becomes more concentrated around 0 as n increases. This implies that
P (|p — po| > €) may be sufficiently small for a small e.

As mentioned above, if Theorem [2 holds, lim,, o E [h{\/1 (p — ptrue)}] = 0 and
lim,, oo E [h{\/1 (P — ptruc) }] = 0* for all correlation coefficients if M is sufficiently large.
In our simulation, the realized /n (p — pyrue) is always bounded between —10 and 10. We
can let M > 10 without changing the sample mean of \/n (p — pyue). Figure |2 illustrates

the the bias of the polychoric correlation estimators, where the bias is defined by
1 & 1 &
R;h{\/ﬁ<p7‘_ptrue)} or R;h{\/ﬁ(pr_pO)}

pr is the estimator at iteration r, and R is the number of replications. As expected, it is
seen that the R™* % h {\/n (p, — pirue)} Temains low, whereas R~ S8 h{\/n (p, — po)}

is approximately 6*.
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delta*=0 delta*=0.1 delta*=0.2 delta*=0.3 delta*=0.4
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Bias

Figure 1. Estimated density of p — pg. Columns correspond to different 6* values and rows

correspond to different correlation coefficients.

Regarding the asymptotic covariance estimator, we do not know the true value.
Nevertheless, if Theorem [2| holds, the estimated asymptotic covariance matrix from lavaan
should be close to the sample covariance of the estimated correlation coefficients. Figure
illustrates the relative bias of asymptotic covariance/variance estimators of polychoric

correlation estimators, where the relative bias is defined by

where Yr is the estimate of T at iteration r, and TO is the sample covariance of the
estimated correlation coefficients. It is seen from Figure [3] that the relative bias of the

asymptotic covariance/variance estimators is generally small, as the sample size increases.

3 Frequentist Model Averaging

In the context of SEM with normally distributed continuous data, |Jin and Ankargren
0, — 6
(2019) derived the asymptotic distribution of \/n ° | in their equation (6) and the

'3/5 - ’70,5
asymptotic distribution of \/n (ft — ) in their equation (9). For the purpose of

presentation, their results are placed in the following lemma.
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n=100 n=200 n=400 n=1000 n=5000 n=10000

Bias

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.0 0.1 0.2 0.3 0.40.0 0.1 0.2 0.3 0.40.0 0.1 0.2 0.3 0.40.0 0.1 0.2 0.3 0.40.0 0.1 0.2 0.3 0.40.0 0.1 0.2 0.3 0.4
6*

—e— sqgrt(n)*(rho_hat-rho_0) —4— sqrt(n)*(rho_hat-rho_true)

Figure 2. Bias of polychoric correlation estimators. Different colors correspond to the bias

of estimating pg or prye.

Lemma 1. Suppose that J is invertible and all third-order partial derivatives of the fit
function F (8o, 0.5, Yo0,sc) in a neighborhood of (8y,7y) are dominated by functions with

finite means. Then,

0, — 6 J, M
Jn 0 :Js_l Oy P +0p (n—1/2) ' (48)

Ys — Yo.s s Jyy 7w, IN

and

_ ou A ou . ou _
\/ﬁ (I*l' - #’true) = = ; Cs\/"_l (08 - 00) + Z Cs#\/ﬁ (78 - 70,5) - qu,(s + OP (n 1/2)
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—e— (rho[12],rho[12]) -=— (rho[12],rho[23]) —#- (rho[13],rho[23])
—4— (rho[12],rho[13]) —+ (rho[13],rho[13]) —*- (rho[23],rho[23])

Figure 3. Relative bias of asymptotic covariance/variance estimators of polychoric

correlation estimators. Different colors correspond to the asymptotic covariance between

estimators of different correlation coeflicients.

where Hirue = K (00770 + 5/\/5); Mo = [ (00>70)7 W = gg%qJe_elJH'y - g,y&’%;
K'=J, I J5'de K, = (n,K"'x?) ", KO = nTK,m.,
D=6-KJjJ;;'M+ KN, and

_ 1 8F(,80) JGW M
2\/% 6/3 nyfy N

(Jin and Ankargren|, |2019).

The fit function F' used in [Jin and Ankargren| (2019) is the maximum likelihood fit

function that will be denoted by Fj;;,. When the observed indicators are ordinal, the least
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squares fit function is commonly used, which will be denoted by Fpg. Since both Fj;;, and
Fp s can be viewed as distance functions between p and o, Lemma [I| remains valid for
ordinal SEM, if F' = Fg and Assumptions to also hold. Hereafter, we assume all
these assumptions hold.

We first derive the joint distribution of M and IN under the assumptions in Theorem

2l Here M and N are defined by

1 0F s (Bo) Joy d M
2V OB Iy N

simply replacing F' by Fpg in all partial derivatives.
Proof of joint distribution of M and IN. Note that

OFs(B) 95 (B)\" « .
WPl — o (%0 2) Voo ),

where V is a consistent estimator of V. By Theorem , p is a consistent estimator of

oo =0 (Bo). Then,

LOF(By)

—_— 2
n 9BoFT J ruit
where
80'0 80'0
Jun <8ﬂT> V@,BT'
Hence,

1 OFps (Bo) Joy <8UO>T A Joy
- - 5 = Vi 220) V(p— oy - 5

[e5)
5
N———
~
<>

<

<
R

§
v&v
~
<
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where the last equality holds from and Assumption . By Theorem ,
dog TV N
(W) \/ﬁ (P - o'true) d 80'0 80'0
T A — N |0, W VTVW .
(220) Vi (5~ o0u)
Hence, the joint distribution of M and IN is multivariate normal with mean 0 and the

covariance matrix

60’0 T 80’0

Derivation of the qudratic programming @ (c¢). By , the mean of the limiting
distribution of \/n (ft — piyye) is ¢ =W {I — (ZS cSK(S)) Kﬁl} d and the corresponding

covariance matrix is

007 00"
+W (Z csK(8)> K 'var (D) K™ <Z csK(5)> w’

J99 cov (M DT) K! (Z CSTFZKSTFS> wt

T
Q = Ono e Jp var (M) g, <<9M)>

O
007

s — — aﬂo ’
-w (Z ¢ K! >) K 'cov (D, M") Jy,' (am)
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The limit of nE (p — utrue)T (8 — Ptrye) s then
Q T _ aMOJ M) J-L o !

tl"{ +¢¢ } = tr 207 oo var (M) Jg, 907

+tr {W (Z csK(5)> K 'var(D)K™' (Z cSK(S)) WT}

op _
—tr { 5 HTJ% cov (M, D") K™ (Z csersws> WT}
tr{ W KO K-tcov (D, M7) gz (2H0)
T
+tr {W [I — (Z csK(5)> K‘ll 56" [I — (Z cSK(5)> K‘ll WT}
o [0 4
= tr {00;(]90 var (M) J,," (80;> }
+tr {W [ZchctK(s)Klvar (D)K 'K 1 WT}
s t
a T (s) T

—2tr 00TJ99 cov (M D ) ZCSK w

+tr {W [55T -2 <Z csK@) 155T] WT}

+tr {W (Z cSK(S)) K '66" K™ (Z o K¢ ) WT}

s t
which can be simplified to
o 5 A g (20 | wsstw
tr 507 go var (M) J g, 267 +

+2chtr{—WK<5>K—155TWT gg§J99 cov (M, D") K—1K<8>WT}

+3 ) ecsptr {W [K(S)K'_1 (Var (D) + 55T) K¢ } WT}
st
Recall that D = & — KJJ Js' M + KN, so that
cov (M, DT) = cov (M, NT) K —var (M) Jy,' Jp, K
var (D) = Kvar(N)K + KJj Jy,'var (M) Jg' Jo, K

—Kcov (N, MT) Jog' Jo, K — KJ1 Jg5'cov (M, NT) K.
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Hence,
™ Opo 4 R Opto T -
tI‘{Q—l—CC } = ftr W«]gg\f&l‘( )J%’ W T W W
+2265tr{A1K(5)WT}
+). D catr {W {K(S)Aﬂ{(t)} WT} ’
s ¢
where
8 10 90 —
Ay :87121;)111991 (Var (M) Jz5' Jp, — Cov (MjNT)) _WSTK

Ay =T, J3' Var (M) J5' Jo, + Var (N) = 207, J5'Cov (M, N") + K166 K",

The first term in tr {Q + CCT} does not depend on the weights. Hence, minimizing

tr {Q +¢ CT} is equivalent to minimizing
Q(e) =Y cutr {AKOW} + L3N coatr [WKOAKOWT) . (30)
S S t

The proof is completed.

Unbiased estimator of & and 687. Using the inverse of a 2 x 2 block matrix,

o Jog + Joo Joywl Koo J Jogt =g Joywl K,

S

-K sﬂngng_gl K,
Then, equation implies that

8 = /1 (Apur —v0) > 86— KJLJg M+ KN ~N (8, GHG"),
where G = <_KJ(;-F7J6—91 K) and

M 80'0 T 80'0
H = var N = <8BT> VTVaI‘ﬁ

Hence, the mean of the asymptotic distribution of 4 is still 8. The mean of the asymptotic
distribution of 667 is 667 + GHGT. An asymptotically unbiased estimator of 687 is then

AA A

667 — GHG.
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Heuristic proof of the joint convergence. In practice, ¢ is estimated by maximizing
chtr{ S)WT}~|— Zchcttr{WK S)AQK )WT},

subject to the unit simplex, where W and K are consistent estimators of W and K )
respectively. Since d = V1 (A fur — Yo) N D, Al and AQ are not consistent estimators of
A, and A,. They are only asymptotically unbiased. Hence, Q (¢) 2 Qr (c) for some

Q* (¢), of which the distribution depends on the joint distribution of M and IN. If the
quadratic programming is positive definite, then ¢*, the minimizer of @Q* (¢), is unique. In

the context of linear regression, |Liu (2015)) showed that
o d_ Oto —— -
\/ﬁ (IJ’ <C> - l-l'true) aeTJGHIM + W {5 - (Z CsK( )> K lD} ) (51)

where ¢é is the minimizer of Q (¢) and ¢* is the minimizer of Q* (¢). Suppose that é 2 e,
Since the distribution of Q* (¢) depends on the joint distribution of M and N, the
distribution of ¢* also depends on M and IN. Recall that the asymptotic distribution of
V1 (fbs — Pirue) also depends on the joint distribution of M and N by Lemma
Therefore, there is joint convergence in the distribution of é and \/n (fis — ftrue ), and
holds.

A rigorous proof of é < ¢* should be based on the argmax continuous mapping
theorem (e.g., [Van der Vaart, and Wellner], 1996, Theorem 3.2.2). Intuitively speaking,
since ¢ is the minimizer of Q (c), the distribution of é depends on the distribution of 5.
Hence, the asymptotic distribution of ¢ depends on the joint distribution of M and IN. If
the quadratic programming is positive definite, then its minimizer ¢ is unique and
¢ = Op (1). As the minimizer, Q (&) < irgf@ (c) + op (1). Hence, the assumption é 4 e s

likely to hold.

Proof of the equivalence of confidence intervals. Equation indicates that

- 0
\/ﬁ(ll’full - utrue) = agg J@@lM + W (5 D) + Op ( 1/2) .
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Hence, the full model confidence interval for pu; is

. Ri R Ri

i, full — Zl—a/QT;La i, futl + Zl—a/QT;L )
where fi; i is the ith entry of fiyuu, z1-q/2 is the 1 — «/2 quantile of the standard normal
distribution, and &; is (i,7)th entry of the covariance matrix of gHL%JQ’glM — WD with &;
being its estimator. Contrasting it with equation (6) in the main text, it suffices to show

that
pa(e)— W [1 - (Z esfc@)) fcl] 8/vn = figun+op (n7'?). (52)

Since W, K and K are consistent estimators of W, K and K®) respectively, we get
W =W +o0p(1) and KOK ' = K& K-! 4 0p (1). Since the entries of & are bounded

between 0 and 1, éop (1) = op (1). Hence,
1% [I - (Z ésfc<s>f(1>] 8/vn = (W +op(1)) [1 ~S e KOK T+ Y é0p (1)] 8/v/n
= W [I -3 ésK“)K—l] 8/v/n+op (n71?), (53)

where the last equality holds since & % D and op (1) 8 2 0. In the likelihood context,

Wang and Zhou (2013) showed that
n(é)—w [I — (Z éSK(S)> Kll 8/\/n = i+ op (n*1/2) . (54)

Even though they only considered the likelihood context, it turns out that their proof is
directly applicable to the context of SEM with ordinal data, which means that also

holds in ordinal SEM. Hence, and lead to .
]

Theorem 3. Let the focus parameter be p = B. Support that the assumptions in Lemma
hold, that the Assumptions[Ad] to [A5] hold, and that the joint convergence in distribution
holds. Then, Trapra = Truy + op (1), where Ty =n(p — &full)T 174 (p— G run) is the

test statistic for the full model.
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Proof of Theorem[3. Since both Trp4 and T}, are quadratic forms, it suffices to show that

o (B full) A o

Vn(p—a)+ 95T W(I—ZéSK(S)K‘1>6 = Vn(p—o (i) +op(1).

Because of , we get

oo ,éfu A ~ f(s) fr— 5
o (1 ek )
_ (022@0) + op (1)) [W (I — ES:GSK(S)K_1> &+ op (1)1
&géﬁo)w (I - ;ésK(S)K*) d+op (1), (55)

where the second equality holds since éop (1) = op (1), % D and op (1)§ 5 0. Note that

_ o L _
o = ot 25 3 (0) - ] + On (1)
by , and
R Jo . _
o(fra) = o0+ a’(ﬁ“O) (£t fu — o) + Op (n 1)
by . Then
_ . 0 o . _
o = o ) + 255 (3 (0) ~ g + Op (7). (56)
Hence, using , , and , we further obtain
oo (Brar) . NN N
Vn(p—o)+ a(gill)W (I—z:ésK'(s)K'1 o
= Vn(p—0o)+ aggo) wW (I = ésK(S)K1> 8 +op (1)

— V(o= o ()~ VT (&) - g+ 2T

= Vn(p—o (ftyur) +op (1),

which completes the proof.
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