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Small Sample Behavior of the Structural Change Test using a Binary Auxiliary
Variable

In this section we demonstrate the distribution of the p-value for the structural change
test under the Null-hypothesis when testing a binary auxiliary variable. Data were simulated
for a linear regression model with two, four, and eight covariates/regression coefficients k,
for n is 50, 200 and 1000 cases. We sampled 5,000 datasets for each combination of k and
n.

Results are shown in Figure S1. For the linear regression model, the p-value distri-
bution is misspecified for all values of k in small samples. With increasing sample size, the
p-value approximates a uniform distribution. For the Gaussian graphical model (GGM), the
p-value is properly specified for models with five nodes independent of sample size. How-
ever, for larger models, the p-value distribution does not approximate a uniform distribution
independent of sample size.

These findings align with the results we obtained when simulating a continuous aux-
iliary variable. The main difference arises for a GGM with 15 nodes. For a binary auxiliary
variable, the misspecification does not improve with increasing sample size, however, for
a continuous variable, the p-value misspecification noticeably improves for large samples.
To conclude, the p-value distribution is misspecified independent of the type of auxiliary
variable.
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Figure S1 . Empirical cumulative distributions (ECD) for the p-value under the null-
hypothesis for different models and simulation settings. The auxiliary variable was sim-
ulated of binary nature. The top row shows the linear regression model results and the
bottom row of the results for the GGM. Here, n represents the sample size and k the
amount of covariates for the linear regression model and amount of nodes for the GGM. In
each plot, the black, dashed line shows the expected uniform distribution.

Small Sample Behavior of the Structural Change Test using the Double Maxi-
mum and Crámer-von Mises statistics

In this section, we elaborate on the results of the p-value and sampling distribution
for structural change tests (SCTs) when applying the double maximum (DM; see Eq. (2) in
the original paper) and the Cramér-von Mises (CvM; see Eq. (3) in the original paper) test
statistic. Data were simulated for a linear regression model with two, four, and eight covari-
ates k, for n is 50, 200, and 1000 cases. We sampled 5,000 datasets for each combination of
k and n.

The simulated p-value distributions are shown in Figure S2. The simulated p-value
distributions in the top row are for the DM statistic, and those in the bottom row are
for the CvM statistic. Observe that the p-values for the DM statistic do not follow the
expected uniform distribution —shown as a black, dashed line— in the smaller sample sizes
but converge to it as the sample size grows. The simulated p-value distributions for the
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Figure S2 . Empirical cumulative distributions (ECD) for the p-value under the null-
hypothesis for a linear regression model for different test statistics and simulation settings.
The top row shows the DM results and the bottom row the CvM results. Here, n represents
the sample size and k the amount of covariates for the linear regression model. In each plot,
the black, dashed line represents the expected uniform distribution.

CvM statistic also do not resemble a uniform distribution in smaller sample sizes. However,
contrary to what we find for the other statistics, the p-value distribution also does not
resemble a uniform distribution for larger sample sizes. The CvM p-value distributions
appear to converge much slower than those of the other two statistics.

The simulated sampling distributions are shown in Figure S3 for the DM statistic and
in Figure S4 for the CvM statistic. The asymptotic sampling distributions are indicated
with a black solid line in these graphs. They were generated by repeatedly simulating values
from a Brownian bridge and then computing the statistic on the generated data (e.g., see
Andrews, 1993; Zeileis, 2006). For both statistics, the theoretical sampling distributions
do not match the empirical sampling distributions for smaller sample sizes, but their fit
improves for the larger sample sizes.

To conclude, the p-value and sampling distributions for the SCT appear to be misspec-
ified for the three test statistics investigated in this paper. This means that the problems
are not isolated to the use of one of the test statistics.
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Figure S3 . Distributions of the DM statistic under the null hypothesis for the linear
regression model. The expected sampling distribution is depicted as a black line and was
obtained by simulating observations from a Brownian bridge and applying the DM statistic
to them (e.g., see Zeileis (2006)).

Assessing the Nature of the Misspecification

From the assessment thus far, it remains unclear where the misspecification comes
from. The k-independent Brownian bridges approximation depends on two assumptions: the
normal approximation of the scores and the accuracy of the information matrix estimate.
In order to assess these two fundamental assumptions, we conducted some small scale
simulations.

First, we will consider the distribution of the scores. Here, we simulated data for
a GGM without any parameter invariance for two combinations of nodes (i.e., k = 5 and
15) and observations (i.e., n = 200 and 2, 000). The SCT was fitted using the R package
networktree from which the estimated scores were extracted (Jones, Mair, Simon, & Zeileis,
2020). The distribution of scores are depicted in Figure S5 for a threshold parameter
µ and in Figure S6 for an interaction parameter ρ. For the threshold parameter, the
score distributions follow the expected one acceptably well, except for a GGM with 15
nodes and 200 observations. For the interaction parameters, the normal approximation of
the distributions are poor; the distributions are skewed, multi-model and highly peaked.
Overall, there is no difference between the distribution of the networks with fewer nodes
and/or more observations, as might have been expected. Note, the distribution of the scores
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Figure S4 . Distributions of the CvM statistic under the null hypothesis for the linear
regression model. The expected sampling distribution is depicted as a black line and was
obtained by simulating observations from a Brownian bridge and applying the CvM statistic
to them (e.g., see Zeileis (2006)).

does not appear normal, however, even in situations where the distribution of the p-value
under the null is correctly specified (e.g., for k = 5 and n = 2, 000). Thus, the not-normally
distributed scores can give an indication whether the sampling distribution and thus the p-
value distribution is valid, but they do not fully explain the misspecification. Furthermore,
it seems surprising that the distribution of the interaction scores is so poorly approximated,
despite it being a fundamental requirement of the SCT. But this might be the central limit
theorem at work.

Second, we want to assess the biasedness of the Fisher Information matrix (FIM)
estimate. We simulated networks with varying number of nodes and observations and
compared the true vs. the estimated FIM. We made use of the property that the FIM can
be obtained through the Kronecker product of the covariance matrix (i.e., Σ ⊗ Σ), where Σ
denotes the covariance matrix and ⊗ the Kronecker product (Bilodeau & Brenner, 2008).
The bias of the FIM was estimated as the Frobenius norm of the difference matrix of the
true and estimated FIM. Results are shown in Figure S7. For a small network with 5 nodes,
the bias does not depend on the sample size. In larger networks with 10 or 15 nodes the
bias reduces with sample size, which is especially noticeable for the largest network (i.e.,
with 15 nodes).
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(a) Threshold parameter for k = 5 & n = 200
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(b) Threshold parameter for k = 5 & n = 2, 000
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(c) Threshold parameter k = 15 & n = 200
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(d) Threshold parameter k = 15 & n = 2, 000

Figure S5 . Distribution of the scores of a threshold parameter µ, which was simulated from
a GGM with various number of nodes (i.e., k = 5 and 15) and observations (i.e., n = 200
and 2, 000).

In sum, these small scale simulations gave some first insights into the nature of the
issue. First, the normal approximation is poor, however, even in situations where the null-
distribution is properly specified. Second, the bias of the information matrix reduces with
increasing sample size for large networks. We conclude that the fundamental requirements
of the test are not met and provide an avenue for more thorough investigations.
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(a) Interaction parameter for k = 5 & n = 200
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(b) Interaction parameter for k = 5 & n = 2,000
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(c) Interaction parameter for k = 15 & n = 200

−4 −2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Distribution of scores

D
en

si
ty

Observed
Expected

(d) Interaction parameter for k = 15 & n = 2,000

Figure S6 . Distribution of the scores of an interaction parameter ρ, which was simulated
from a GGM with various number of nodes (i.e., k = 5 and 15) and observations (i.e.,
n = 200 and 2, 000).

Small Sample Behavior of CTree under the Null Hypothesis

Contrary to the other sections, we here assess the behavior of another parameter
invariance test – CTree. CTree is an alternative recursive partitioning algorithm assessing
parameter invariance using permutation approaches to obtain the sampling distribution
(Schlosser, Hothorn, & Zeileis, 2019). The algorithm tests whether there is any association
between the transformed responses h(Y ) and each of the transformed splitting variables
g(Zj). CTree requires the specification of an influence function h(·) and the transformed
split variable function g(·). In case a parametric model is fitted to the observed data, one
can obtain a model-based transformation function h(·), for example, a score-function. Here,
CTree closely resembles the SCT, however, leveraging a conditional inference framework.

In this section we demonstrate the distribution of the p-value for CTree under the
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Figure S7 . Bias of the estimated vs true Fisher information matrix of various sample sizes
(n = 200, 500, 2000) and nodes in the network (k = 5, 10, 15).

null-hypothesis when testing a binary auxiliary variable. Data were simulated for a GGM
with five, ten, and fifteen nodes k, for n is 200, 500 and 2000 cases. We sampled 1,000
datasets for each combination of k and n. Results are shown in Figure S8. The p-value
distribution is uniform for all setups of k and n. CTree circumvents the small sample issues
in finite samples also for large models. Thus, it can serve as an additional alternative to
the permutation approach.
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Figure S8 . Distributions of the CvM statistic under the null hypothesis for the linear
regression model. The expected sampling distribution is depicted as a black line and was
obtained by simulating observations from a Brownian bridge and applying the CvM statistic
to them (e.g., see Zeileis (2006)).

References

Andrews, D. (1993). Tests for parameter instability and structural change with unknown change
point. Econometrica, 61 , 821–856.

Bilodeau, M., & Brenner, D. (2008). Theory of multivariate statistics. Springer Science & Business
Media.

Jones, P. J., Mair, P., Simon, T., & Zeileis, A. (2020). Network Trees: A Method for Recursively
Partitioning Covariance Structures. Psychometrika, 85 , 926–945. doi: 10.31219/osf.io/ha4cw

Schlosser, L., Hothorn, T., & Zeileis, A. (2019). The Power of Unbiased Recursive Partitioning: A
Unifying View of CTree, MOB, and GUIDE. arXiv:1906.10179 [stat].

Zeileis, A. (2006). Implementing a class of structural change tests: An econometric com-
puting approach. Computational Statistics & Data Analysis, 50 , 2987–3008. doi:
10.1016/j.csda.2005.07.001


