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This file contains additional simulation results in Section 1 and the proofs of all lemmas and

propositions in Section 2.

1 Additional Simulation Studies

1.1 Estimating Randomly Sampled Q-Matrix

In this section, we consider randomly sampled Q-matrix in a way that can simulate potentially

more challenging scenarios. In specific, we include the one-, two- and three-attribute item designs.

The exact construction of the Q-matrix is as follows. Similar to the construction in the main article,

we still fix the dimension of the Q-matrix to be 3K by K, i.e. 3K items with K attributes. For

each row j, we first determine which item design it will take by a random sampling scheme. Let

M =
(
K
1

)
+
(
K
2

)
+
(
K
3

)
. The number of required attributes (denoted by n) for each item is randomly

sampled from {1, 2, 3} with probabilities {
(
K
1

)
/M,

(
K
2

)
/M,

(
K
3

)
/M}. Then, n attributes are sampled

without replacement from {1, 2, ...,K} with equal probabilities, the corresponding entries in qj will

be set to 1 and the rest to 0. Note that this random construction of the Q-matrix would somewhat

simulate the extreme situations where the easiest learned one-attribute items will be sampled with

the smallest probabilities. For example, when K = 15, the probability to select a one-attribute

item is only 0.0261. Furthermore, we also point out that under this random design, there will be

a high chance the sampled Q-matrix is not identifiable, making the estimation even more difficult.

∗This research is partially supported by NSF CAREER SES-1846747, DMS-1712717, SES-1659328.
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100 replications for each of K = 5, 10, ..., 25 are considered and the average results are presented

in Figure 1. For illustration purpose, we only consider the settings when N = 2000 and when the

attributes are independent, for the DINA, the ACDM, and a mixture of the DINA, ACDM, and

DINO data. For the data from a mixture of three models, the data are generated from the DINA,

ACDM and DINO models with proportions 0.35, 0.35, and 0.3 respectively, respectively. All the

other set-ups remain the same as the independent settings in Section 4 of the main article.

From Figure 1, we can observe that the OE’s of our proposed method remain controlled for

three types of data. However, we can also see that the OE’s worsen and the OTP’s become much

more volatile compared to the fixed Q-matrix design in Section 4 of the main article. This is not

surprising because of the increased difficulty in the design where the Q-matrices contain more two-

and three-attribute items and the number of non-identifiable Q-matrices increases significantly. In

line with our observations in the main article, we also observe the increased uncertainty level impact

most negatively on the OTP. However, overall, the proposed method still possesses certain degrees

of learning power of the Q-matrix even in such extreme situations.
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Figure 1: Plots of different performance metrics against the sizes of the Q-matrix. Rows 1 to 3
correspond to the DINA data, the ACDM data and a mixture of the DINA, ACDM and DINO data,
respectively. For the DINA and DINO data, two uncertainty levels are represented by gj = sj = 0.1
and gj = sj = 0.2 for all items j, where subscripts j are omitted in the legends. For both the
ACDM data and the GDINA data, cases 1 and 2 represent the settings when δj,0 = 0.1, pj = 0.9
and δj,0 = 0.2, pj = 0.8 for all j = 1, ..., J respectively.

1.2 Attribute Classifications in Correlated Settings

In this section, we explore the potential of our proposed method in learning the latent attribute

patterns. As discussed in the main article, the marginal distributions of the latent attributes are

mis-specified in RBMs. Therefore, we would like to explore to what extent our proposed method

can perform latent attribute classifications directly when the conditional independence assumption

is intensely violated. Similarly, ACC rate is used to assess the performance. Recall that the ACC
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of the k’th attribute is defined as

ACC(k) :=
1

N

N∑
i=1

|α̂ik − αik|,

where α̂ik and αik represent the estimated value and the true value respectively.

The simulation set-ups remain the same as the dependent settings in Section 4 of the main

article. The recovered latent attribute matrix corresponding to the optimal estimated Q-matrix is

returned. All the DINA, ACDM and GDINA data are considered. For each of the 100 replications,

the ACC rate for every attribute in each of the settings with K = 5, 10, ..., 25 is evaluated. The

setting-wise average ACC rate is evaluated by computing the average ACC for each attribute out

of 100 repetitions first, and then averaging out of all the K latent attributes for each settings of

K = 5, 10, ..., 25. The results are summarized in Table 1.

Overall, we can see that the proposed method performs well in attribute classifications with all

ACC rates above 0.85. Furthermore, we also observe that the ACC rates drop as the number of

attributes increases in the model. The attribute patterns would increase as the number of attributes

increments, making the estimation more difficult. Similar to the observations made in the main

article, we see the ACC rates are generally higher when the correlations amongst attributes are

higher. We also point out that increasing sample size can in general improve ACC rates using the

proposed method. The performance of the proposed method is better on the ACDM data and the

GDINA data than on the DINA data. This is especially obvious when K is relatively small at 5

and 10. This observation is in line with our discussions in Section 2.3 of the main article.

N = 2000 N = 10000
ρ = 0.25 ρ = 0.75 ρ = 0.25 ρ = 0.75

DINA ACDM GDINA DINA ACDM GDINA DINA ACDM GDINA DINA ACDM GDINA
0.898 0.916 0.916 0.917 0.927 0.924 0.903 0.916 0.917 0.918 0.932 0.931
0.897 0.896 0.900 0.888 0.902 0.903 0.901 0.907 0.911 0.885 0.911 0.912
0.878 0.876 0.880 0.880 0.888 0.893 0.891 0.887 0.893 0.880 0.897 0.900
0.875 0.863 0.869 0.879 0.885 0.889 0.883 0.879 0.882 0.874 0.894 0.893
0.866 0.853 0.857 0.875 0.883 0.887 0.877 0.868 0.874 0.874 0.887 0.890

Table 1: Average ACC rates for using RBM on the DINA data, the ACDM data and the GDINA
data. Rows 1 to 5 correspond to the settings with K = 5, 10, ..., 25 respectively.
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2 Proofs of Lemmas and Propositions

Before proving our main propositions 2.1 and 2.2, we first give a lemma which would be used in

the proof of the main propositions.

Lemma 1. Assume α are independent and αk ∼ Ber(pk) for k = 1, ...,K. If true model with

response R satisfies either the GDINA model Equation (3) or the DINA model P (R = 1 | α) =

g + (1 − s − g)α1α2...αK∗ for some s, g satisfying g < 1 − s, then the mis-specified linear additive

model of R regressed on (α1, α2, ..., αK) has the corresponding mean function in the form of E∗[R |

α] = β0 + β1α1 + β2α2 + ...+ βKαK with βk = 0 for k = K∗ + 1, ...,K.

Proof of Lemma 1. By the independence assumption and the linear regression theory, we have for

k = 1, . . . ,K,

βk =
1

V ar(αk)
Cov

(
αk, R

)
=

1

pk(1− pk)
Cov

(
αk, R

)
.

Denote α1,...,K∗ := {α1, ..., αK∗}, then by the Law of Total Covariance, we have for k = K∗+1, ...,K,

Cov
(
αk, R

)
= E

[
Cov

(
αk, R | α1,...,K∗

)]
+ Cov

(
E
[
αk | α1,...,K∗

]
,E
[
R | α1,...,K∗

])
. (1)

Applying the independence assumption again, we have

Cov
(
E
[
αk | α1,...,K∗

]
,E
[
R | α1,...,K∗

])
= Cov

(
pk,E[R | α1,...,K∗ ]

)
= 0.

Hence, we only need to consider the first term of (1). Referring to Figure 2, we know that in both

the DINA and the GDINA model setting, R ⊥⊥ αk | α1,...,K∗ for all k = K∗ + 1, ...,K.

E
[
Cov

(
αk, R | α1,...,K∗

)]
= 0.

Therefore,

βk =
0

pk(1− pk)
= 0 ∀k = K∗ + 1, ...,K.
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Figure 2: Illustration of the conditional independence relationship between R and αk given
α1, ..., αK∗ for all k = K∗ + 1, ...,K

.

Next we give the proofs of our main propositions.

Proof of Proposition 1. First note that by Lemma 1, we have βk = 0 for k = K∗ + 1, ...,K.

In the DINA setting, we have

P (R = 1 | α) =


1− s if α < 1K∗

g otherwise,

or,

R | α ∼


Ber(1− s) if α < 1K∗

Ber(g) otherwise.

(2)

Under the independence condition, for any k = 1, ...,K∗, we have

βk =
1

V ar(αk)
Cov

(
αk, R

)
=

1

pk(1− pk)
Cov(αk, R).

Consider the following two events which partition the sample space of α,

E0,k :=
{
α1, ..., αk−1, αk+1, ..., αK∗ |

∏K∗

i=1,i 6=k αi = 0
}

and E1,k :=
{
α1, ..., αk−1, αk+1, ..., αK∗ |∏K∗

i=1,i 6=k αi = 1
}

. Denote α1,...,K∗\k :=
{
α1, ..., αk−1, αk+1, ..., αK∗

}
. By the Law of Total Covari-
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ance, we have

Cov
(
αk, R

)
= E

[
Cov

(
αk, R | α1,...,K∗\k

)]
+ Cov

(
E
[
αk|α1,...,K∗\k

]
,E
[
R | α1,...,K∗\k

])
. (3)

Applying the independence condition,

Cov
(
E
[
αk | α1,...,K∗\k

]
,E
[
R | α1,...,K∗\k

])
= Cov

(
pk,E

[
R | α1,...,K∗\k

])
= 0.

Hence, we only need to consider the first term of (3),

E
[
Cov

(
αk, R | α1,...,K∗\k

)]
= E

[
E
[
αkR | α1,...,K∗\k

]
− E

[
αk | α1,...,K∗\k

]
· E
[
R | α1,...,K∗\k

]]
. (4)

For a fixed k, define another two events: E2,k :=
{
α | αk = 0

}
and E3,k :=

{
α | αk = 1

}
. Then in

the event of E0,k,

(4) = E
[
E
[
αkR | E0,k

]
− E

[
αk | E0

]
E
[
R | E0,k

]]
= E

[
E
[
αkR | E0,k, E3,k

]
P (E3,k) + E

[
αkR | E0,k, E2,k

]
P (E2,k)− E

[
αk]E

[
R | E0,k

]]
= E

[
g · pk − pk · g

]
= 0.

In the event of E1,k,

(4) =E
[
E
[
αkR | E1,k

]
− E

[
αk | E1,k

]
E
[
R | E1,k

]]
=E

[
E
[
αkR | E1,k, E3,k]P (E3,k) + E

[
αkR | E1,k, E2,k]P (E2,k)

− E
[
αk

]
· E
[
R | E1,k, E3,k

]
· P (E3,k)− E

[
αk

]
· E
[
R | E1,k, E2,k

]
· P (E2,k)

]
=E

[
(1− s)pk + 0− pk(1− s)pk − pkg(1− pk)

]
=pk(1− pk)(1− s− g).
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Since the above reasoning works for any k = 1, 2, ...,K∗, we must have for each k = 1, 2, ...,K∗,

βk =
1

pk(1− pk)
Cov

(
αk, R

)
=

1

pk(1− pk)

(
0 · P (E0,k) + pk(1− pk)(1− s− g) · P (E1,k)

)
= (1− s− g)

K∗∏
i=1,i 6=k

pi

6= 0.

Proof of Proposition 2. Note that by Lemma 1, we have βk = 0 for k = K∗ + 1, ...,K.

Under the independence condition, for any k = 1, ...,K∗, we have

βk =
1

V ar(αk)
Cov

(
αk, R

)
=

1

pk(1− pk)
Cov(αk, R). (5)

Denote S :=
{

1, 2, 3, ...,K∗
}

. We consider the following 2K
∗

events: E0 :=
{
α | αl = 0,∀l ∈ S},

E1,i :=
{
α | αi = 1, αj = 0, ∀j 6= i ∈ S

}
for some i ∈ S (i.e. events that only one of the required

variables taking value of 1 and all others being 0), E2,(i,j) :=
{
α | αi = αj = 1, αk = 0,∀k 6= i, j ∈

S
}

for some i 6= j ∈ S (i.e. events that any two of the required variables are 1 and all others being

0), ..., EK∗ :=
{
α | αl = 1, ∀l ∈ S

}
. Note that E0, E1,i for i ∈ S, E2,(i,j) for some i 6= j ∈ S, ...,

EK∗ partition the sample space of α. The response R would have the following distribution.

R|α ∼



Ber(δ0) if E0

Ber(δ0 + δi) if E1,i

Ber(δ0 + δi + δj + δi,j) if E2,(i,j)

...

Ber
(
δ0 +

∑K∗

k=1 δk + ...+ δ12...K∗
)

if EK∗ .

(6)
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By the Law of Total Covariance, we have

Cov
(
αk, R

)
= E

[
Cov

(
αk, R | α1,...,K∗\k

)]
+ Cov

(
E
[
αk|α1,...,K∗\k

]
,E
[
R | α1,...,K∗\k

])
. (7)

Similar to the DINA case, we also have

Cov
(
E
[
αk | α1,...,K∗\k

]
,E
[
R | α1,...,K∗\k

])
= Cov

(
pk,E

[
R | α1,...,K∗\k

])
= 0.

Hence, we only need to consider the first term of (7),

E
[
Cov

(
αk, R | α1,...,K∗\k

)]
= E

[
E
[
αkR | α1,...,K∗\k

]
− E

[
αk | α1,...,K∗\k

]
· E
[
R | α1,...,K∗\k

]]
. (8)

Fix a k ∈ S. Let S′ :=
{

1, 2, ..., k − 1, k + 1, ...,K∗
}

. We can define new 2K
∗−1 events: E∗0 :={

α1,...,K∗\k | αl = 0 ∀l ∈ S′}, E∗1,i :=
{
α1,...,K∗\k | αi = 1, αl = 0, ∀l 6= i ∈ S′

}
for some

i ∈ S′, E∗2,(i,j) :=
{
α1,...,K∗\k | αi = αj = 1, αl = 0,∀l 6= i, j ∈ S′

}
for some i 6= j ∈ S′,...,

E∗K∗−1 :=
{
α1,...,K∗\k | αl = 1 ∀l ∈ S′

}
. And define E′0 :=

{
α | αk = 0

}
and E′1 :=

{
α | αk = 1

}
.

In the event of E∗0 ,

(8) =E
[
E
[
αkR | E∗0

]
− E

[
αk | E∗0

]
E
[
R | E∗0

]]
=E

[
E
[
αkR | E∗0 , E′1

]
P (E′1) + E

[
αkR | E∗0 , E′0

]
P (E′0)

− E
[
αk

]
E
[
R | E∗0 , E′1

]
P (E′1)− E

[
αk

]
E
[
R | E∗0 , E′0

]
P (E′0)

=E
[
(δ0 + δk)pk + (1− pk) · 0− (δ0 + δk)p2k − δ0(1− pk)pk

]
=pk(1− pk)δk.
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In the event of E∗1,i for some i ∈ S′,

(8) =E
[
E
[
αkR | E∗1,i

]
− E

[
αk | E∗1,i

]
E
[
R | E∗1,i

]]
=E

[
E
[
αkR | E∗1,i, E′1

]
P (E′1) + E

[
αkR | E∗1,i, E′0

]
P (E′0)

− E
[
αk

]
E
[
R | E∗1,i, E′1

]
P (E′1)− E

[
αk

]
E
[
R | E∗1,i, E′0

]
P (E′0)

]
=E

[
(δ0 + δi + δk + δik)pk + (1− pk) · 0− (δ0 + δi + δk + δik)p2k − (δ0 + δi)(1− pk)pk

]
=pk(1− pk)(δk + δik).

In the event of E∗2,(i,j) for some i 6= j ∈ S′,

(8) =E
[
E
[
αkR | E∗2,(i,j)

]
− E

[
αk | E∗2,(i,j)

]
E
[
R | E∗2,(i,j)

]]
=E

[
E
[
αkR | E∗2,(i,j), E

′
1

]
P (E′1) + E

[
αkR | E∗2,(i,j), E

′
0]P (E′0)

− E
[
αk

]
E
[
R | E∗2,(i,j), E

′
1

]
P (E′1)− E

[
αk

]
E
[
R | E∗2,(i,j), E

′
0

]
P (E′0)

]
=E

[
(δ0 + δi + δj + δk + δij + δik + δjk + δijk)pk + (1− pk) · 0

− (δ0 + δi + δj + δk + δij + δik + δjk + δijk)p2k − (δ0 + δi + δj + δij)(1− pk)pk
]

=pk(1− pk)(δk + δik + δjk + δijk).

Continuing this process and substitute the relevant values into Equation (5), we can show that

βk =



δk if E∗0

δk + δik if E∗1,i

δk + δik + δjk + δijk if E∗2,(i,j)

...

δk +
∑K∗

i=1,i 6=k δik + ...+ δ1...K∗ if E∗K∗−1.

(9)
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Since the above holds for all k = 1, 2, 3, ...K∗, we have for each k = 1, 2, 3, ...K∗,

βk =δk · P (E∗0) +
∑
i∈S′

(δk + δik) · P (E∗1,i) +
∑

i,j∈S′,i 6=j

(δk + δik + δjk + δijk) · P (E∗2,(i,j)) + ...

+
(
δk +

K∗∑
i=1,i 6=k

δik + ...+ δ1...K∗
)
· P (E∗K∗−1) (10)

Assuming monotonicity in acquiring an additional skill, we can show all the terms in (10) are

greater than 0. The first term is positive as both δk and P (E∗0) are positive. To see why the second

term is positive, consider two examinees, one with skill set α1 =
{
α | αi = 1, αl = 0, ∀l 6= i ∈ S

}
while the other with skill set α2 =

{
α | αi = αk = 1, αl = 0, ∀l 6= i, k ∈ S

}
. Then we know

according to Equation (3), P (R = 1 | α1) = δ0 + δi and P (R = 1 | α2) = δ0 + δi + δk + δik. The

monotonicity assumption then implies P (R = 1 | α2) − P (R = 1 | α1) = δk + δik > 0. Hence the

second term is positive. We can use a similar strategy to show all the terms in (10) are positive

and thus reach the conclusion that βk 6= 0 for each k = 1, 2, 3, ...K∗.

Discussion of Remark 2. Conditional on α1, α2, ..., αK∗ , consider adding one αk, for any k = K∗+

1, ...,K, into the main effect regression model, then its coefficient can be expressed as

βk =
Cov

(
R− E∗[R | α1, ..., αK∗ ], αk − E∗[αk | α1, ..., αK∗ ]

)
V ar

(
R− E∗[R | α1, ..., αK∗ ]

) ,

where E∗[A | B] is the the regression mean function of A on B. In the special case when K∗ = 1,

we seek to show βk = 0. When K∗ = 1, note that we must have E∗[R | α1] = E[R | α1]. This is

because α1 can only take values of 0 or 1. These two variability’s can be modeled exhaustively by

the free intercept and the only coefficient in the regression mean function. Note that when K∗ > 1,

this may not hold in general. Note by the Law of Total Covariance,

Cov
(
R− E∗[R | α1], αk − E∗[αk | α1]

)
=E
{
Cov

(
R− E[R | α1], αk − E[αk | α1] | α1

)}
(11)

+ Cov
{
E
(
R− E[R | α1] | α1

)
, E

(
αk − E[αk | α1] | α1

)}
. (12)
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Note (12) = 0 and

(11) = E
{
E
[(
R− E[R | α1]

)(
αk − E[αk | α1]

)
| α1

]
+ E

[
αk − E[αk | α1] | α1

]
E
[
αk − E[αk | α1] | α1

]}
= E

{
E
[
(R− E[R | α1])(αk − E[αk | α1]) | α1

]}
= E

{
E
[
Rαk −RE(αk | α1)− αkE(R | α1) + E(R | α1)E(αk | α1) | α1

]}
= E

{
E[Rαk | α1]− E[Rαk | α1]− E[Rαk | α1] + E[Rαk | α1]

}
= 0.

Where the second line follows from E
[
αk − E[αk | α1] | α1

]
= 0 and the third line follows from

the fact that E[R | α1]E[αk | α1] = E[Rαk | α1] by the conditional independence between R and αk

given α1. Therefore, βk = 0.
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