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Abstract

The main goal of this online supplementary material is to provide a comprehensive and

reproducible account of the data generation, the derivation of the analytic formulae

presented in the illustration section of the paper, and the numeric results. Further-

more, we provide a justification of the zero-one matrices defined to formulate do-type

interventions using matrix algebra and complete the proof of local identification of the

example model. Finally, we provide software code for the analytic derivations (using

Mathematica) and the numeric calculations (using R).
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S.1 Introduction

Equations and tables from the supplementary material are labeled with S (e.g., Table

S.1, Equation [S.1]) to distinguish them from those in the paper. The supplementary

material is structured as follows. The data generation as used in the illustrative example

is presented in Section S.2. A detailed account of the derivation of the formulae presented

in the illustration section of the paper is given in Section S.3. In Section S.4, we justify

the matrix operations introduced in Definition 1 of the paper to formalize the changes

to a system of linear equations induced by the do-operator. In Section S.5, we provide

the full proof of local identification of the example model. We provide computer code

for the software packages R (R Core Team, 2019) that enables readers to reproduce

all numerical results from the paper in Section S.6. Please note that at the time of

publication, an R package with the tentative title “causalSEM” is being developed which

will be made available via the Comprehensive R Archive Network (CRAN) shortly after

the publication of the paper. The computer code for the computer algebra system

Mathematica (Wolfram Research Inc., 2018) used to evaluate the rank of the Jacobian

matrix in the proof of local identification is provided in Section S.7.

S.2 Data Generation and Estimation

The population values of the parameters used in the illustration are loosely based on

prior empirical work by Ito et al. (1998). Unfortunately, we could not get access to

the raw data (which were requested from the publisher), so we read off the available

time series data for one healthy patient from Figure S.1 (line with empty circles). The

resulting data is included in the R-code in Section S.6.

Ito et al. (1998) use a bivariate vector autoregressive model of order one (VAR[1])

to model the insulin-glucose dynamics. A VAR(1) model can be represented as follows:

Xt+1

Yt+1


︸ ︷︷ ︸

Yt+1

=

mx

my


︸ ︷︷ ︸

m

+

cxx cxy

cyx cyy


︸ ︷︷ ︸

B

Xt

Yt


︸ ︷︷ ︸

Yt

+

εx,t+1

εy,t+1


︸ ︷︷ ︸

εt+1

t ∈ N (S.1)
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Figure S.1

Time Series Data From Prior Empirical Study

(a) time series of insulin (b) time series of glucose

Note. Time series data (T = 31) for a diabetic individual (line with filled circles) and
a non-diabetic individual (line with empty circles) for blood insulin levels (panel a) and
blood glucose levels (panel b). Figures are reprinted with permission from Ito et al.
(1998, p. 30).

As commonly done in the context of linear VAR(1) models, we impose the following

set of assumptions and regularity conditions (Lütkepohl, 2005):1

1. innovations εt are independent white noise, that is, independent draws from the

following normal distribution:

εxt
εyt

 iid∼ N2

(0

0

 ,

 ψx ψxy

ψxy ψy


︸ ︷︷ ︸

Ψε

)
t ≥ 2 (S.2)

2. regularity conditions on B:

(a) all eigenvalues of B have an absolute value less than one;

(b) the matrix (I2 −B) is nonsingular (I2 is the 2× 2 identity matrix).

Under Assumptions 1. and 2. as stated above, the solution to the stochastic difference

equation displayed in Equation (S.1) is covariance-stationary. We use the package vars

(Pfaff, 2008) of the software R (R Core Team, 2019) to fit the bivariate VAR(1) model

to the data of the non-diabetic individual (lines with empty circles in panels (a) and (b)

of Figure S.1), yielding the results displayed in Table S.1.

1See Bollen (1987), Hamilton (1994) and Lütkepohl (2005) for formal details and other regularity
conditions.
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Table S.1

Estimation Results and Numeric Population Values Used in the Illustration

mx my cxx cxy cyx cyy ψx ψy ψxy
Estimate -8.04 0.80 0.19 0.39 -0.58 1.20 18.95 44.02 3.00
Est. ASE 3.73 5.69 0.15 0.08 0.23 0.12 − − −
Value for Illustration 0 0 0.05 0.40 -0.60 1.20 20 40 3.00

Note. Row 1 of Table S.1 contains the estimated parameter values of the VAR(1)-model
for a non-diabetic individual. Row 2 contains the estimated asymptotic standard errors
(ASE). An empty cell (denoted by ‘−’) indicates that the information is not routinely
reported by the software. The third row of Table S.1 contains the values we use for
the data generation underlying our numerical illustration. In the illustration we assume
mean-centered variables and therefore set the intercepts mx and my to zero in the last
row of the table.

The mean structure was not modeled in our illustration since we assumed mean-

centered data. Thus, the parameters corresponding to mx and my are set to zero. The

numeric population values of all remaining parameters that were used in the illustration

were chosen to be relatively close to the estimated values. The choice of cxx = .05

(instead of a value closer to ĉxx = .19) was motivated by the fact that ĉxx is not

significantly different from zero (ĉxx = .19, ŝ.d.(ĉxx) = .15, α = .05). For the estimated

process the roots of the characteristic polynomial are real and have absolute values less

than one (λ̂1 = .86, λ̂2 = .52), that is, the regularity conditions for B̂ are met.

So far we have focused on the time series (T = 31) of a single person (N = 1).

In our illustration, we assumed a panel design for N individuals and time series of

fixed length T = 3. Thus, the situation in our illustrative example differs in three

important aspects. First, the number of time points T is fixed and equal to three.

Second, we simulate a situation where we draw a sample of N = 100 individuals i from

a homogeneous population. Third, we allow for serial correlations in the error terms.

3
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The equations of the modified model (T = 3) are given by:

Xi1 = εxi1

Yi1 = εyi1

Xi2 = cxxXi1 + cxyYi1 + εxi2

Yi2 = cyxXi1 + cyyYi1 + εyi2

Xi3 = cxxXi2 + cxyYi2 + εxi3

Yi3 = cyxXi2 + cyyYi2 + εyi3 , i = 1, ..., N (S.3)

Note that in Equations (S.3) we use the subscript i to indicate that the units of analysis

are individuals and to clearly distinguish between quantities that vary across persons

(values of observed variables and error terms) and those that are assumed not to vary

across persons (structural coefficients). In the remainder, we drop the person index i for

ease of presentation. Restating the system of Equations (S.3) in matrix notation yields:



X1

Y1

X2

Y2

X3

Y3


︸ ︷︷ ︸

V

=



0 0 0 0 0 0

0 0 0 0 0 0

cxx cxy 0 0 0 0

cyx cyy 0 0 0 0

0 0 cxx cxy 0 0

0 0 cyx cyy 0 0


︸ ︷︷ ︸

C



X1

Y1

X2

Y2

X3

Y3


+



εx1

εy1

εx2

εy2

εx3

εy3


︸ ︷︷ ︸

ε

(S.4)

The covariance matrix of the (6 × 1) vector of error terms ε in Equation (S.4) is given

by:

Ψ =



ψx1x1 ψx1y1 ψx1x2 0 0 0

ψx1y1 ψy1y1 0 ψy1y2 0 0

ψx1x2 0 ψxx ψxy ψx2x3 0

0 ψy1y2 ψxy ψyy 0 ψy2y3

0 0 ψx2x3 0 ψxx ψxy

0 0 0 ψy2y3 ψxy ψyy


(S.5)
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Where ψx1x1 , ψy1y1 , ψx1y1 denote the (co-)variances of the initial variables X1 and Y1.

ψxx, ψyy, ψxy denote the (co-)variances of the error terms εxt and εyt, t = 2, 3. ψx1x2 and

ψx2x3 denote the serial covariances between successive measurements of blood insulin

levels. ψy1y2 and ψy2y3 denote the serial covariances between successive measurements

of blood glucose levels. The numeric population values used for data generation in the

illustration section are displayed in the first row of Table S.2. We simulate a sample

of N = 100 values using the simulateData-function of the R package lavaan (R Core

Team, 2019; Rosseel, 2012). Finally, the model is fitted to the sampled data using the

sem-function of the lavaan package. The resulting point estimates are displayed in the

second row of Table S.2.

Table S.2

Parameters in the Linear Graph-Based Model

structural coefficients

cxx cxy cyx cyy
Population 0.05 0.4 −0.6 1.2
Estimate 0.08 0.39 −0.52 1.18
Est. ASE 0.08 0.03 0.09 0.04
z-value 1.00 13.00 −5.78 29.50

variance-covariance parameters

ψx1x1 ψy1y1 ψx1y1 ψxx ψyy ψxy ψx1x2 ψx2x3 ψy1y2 ψy2y3
Population 131.76 632.94 254.12 20 40 3 15 2 35 10
Estimate 126.32 601.85 241.19 22.15 35.88 1.71 16.57 2.31 28.96 9.03
Est. ASE 17.02 83.23 35.83 2.58 3.93 1.93 2.71 1.78 7.07 3.29
z-value 7.42 7.23 6.73 8.59 9.13 0.89 6.11 1.30 4.10 2.74

Note. The true population values used for data simulation are reported together with the
estimation results θ̂ML for the model parameters θ (using a covariance-based maximum
likelihood estimator with N = 100). The z-values are reported for the null hypothesis
of a population quantity equal to zero. Structural coefficients are displayed in the upper
part and the variance-covariance parameters are displayed in the lower part. ASE =
asymptotic standard error.

S.3 Formulae Used in the Illustration Section of the Paper

In this section we show in a step-by-step fashion how the analytic results presented

in the illustration section of the paper can be computed from the general formulae.

The starting point is the vector of observed variables V = (V1, V2, V3, V4, V5, V6)
ᵀ =

(X1, Y1, X2, Y2, X3, Y3)
ᵀ, where we used the same ordering of the observed variables as

5
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in Equation (S.4). In this ordering, variable X2 is the third entry of the vector V.

The joint distribution of observed variables P (V) is multivariate normal with zero

mean and the model-implied covariance matrix can be denoted in matrix notation as

follows (Bollen, 1989):

ΣV = (In −C)−1Ψ(In −C)−ᵀ (S.6)

Note that the entries of the model-implied covariance matrix are lengthy. Therefore, we

only state those entries explicitly that are used for calculations later in this section:

V(X2) = c2xxψx1x1 + c2xyψy1y1 + 2cxxcxyψx1y1 + ψxx + 2cxxψx1x2 (S.7a)

V(Y3) = (cxxcyx + cyxcyy)
2ψx1x1 + (cxycyx + c2yy)

2ψy1y1 (S.7b)

+ 2(cxxcyx + cyxcyy)(cxycyx + c2yy)ψx1y1

+ c2yxψxx + (1 + c2yy)ψyy + 2cyxcyyψxy

+ 2cyx(cxxcyx + cyxcyy)ψx1x2 + 2cyy(cxycyx + c2yy)ψy1y2 + 2cyyψy2y3

COV(X2, Y3) = cxx(cxxcyx + cyxcyy)ψx1x1 + cxy(cxycyx + c2yy)ψy1y1 (S.7c)

+ (cxy(cxxcyx + cyxcyy) + cxx(cxycyx + c2yy))ψx1y1

+ cyxψxx + cyyψxy + (2cxxcyx + cyxcyy)ψx1x2 + cxycyyψy1y2

The marginal distribution P (Y3) can be obtained from the joint distribution P (V) via

marginalization (Rao, 1973). The marginal distribution P (Y3) is univariate normal with

(i) zero mean and (ii) a variance equal to the (6, 6)-th entry of the covariance matrix of

ΣV (recall that Y3 is the 6-th entry in the vector of variables given the above ordering

(V1, V2, V3, V4, V5, V6)
ᵀ := (X1, Y1, X2, Y2, X3, Y3)

ᵀ). Evaluating Equation (S.7b) at the

population values of the parameters (see the first row of Table S.2) yields V(Y3) = 766.91

and consequently:

P (Y3) = N1(0 , 766.91) (S.8)

The conditional distribution P (Y3 | X2 = x2) is univariate normal with (i) mean

equal to the 5-th entry of the conditional mean vector E(X1, Y1, Y2, X3, Y3 | X2 =

x2) and (ii) variance equal to the (5, 5)-th entry of the conditional covariance matrix

6
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V (X1, Y1, Y2, X3, Y3 | X2 = x2). Since the variables are joint normally distributed, the

conditional moments can be obtained via a linear regression of Y3 on X2. Consequently,

the conditional mean is given by:

E(Y3 | X2 = x2) =
COV(X2, Y3)

V(X2)
x2 = (cyx + s)x2 (S.9)

Note that the conditional mean is additively decomposed into an causal component cyx

and a non-causal component s (the non-causal component is sometimes called spurious).

The causal component of the conditional mean stems from the direct causal effect cyx

which quantifies the only causal path from X2 to Y3 in Figure 2 from the paper. The

non-causal component s of the conditional mean stems from all non-causal paths from

X2 to Y3 (e.g., X2 ← Y1 → Y2 → Y3, X2 ←→ Y2 → Y3) and is equal to:

s =
cxxcyxcyyψx1x1 + cxyc2yyψy1y1 + (cxycyxcyy + cxxc2yy)ψx1y1 + cyyψxy + cyxcyyψx1x2 + cxycyyψy1y2

c2xxψx1x1 + c2xyψy1y1 + 2cxxcxyψx1y1 + ψxx + 2cxxψx1x2

Similarly, the conditional variance of Y3 given X2 = x2 can be obtained from the linear

regression of Y3 on X2 and is given by the following formula:

V(Y3 | X2 = x2) = V(Y3)−
COV(X2, Y3)

2

V(X2)
(S.10)

The conditional variance V(Y3 | X2 = x2) could be expressed as a function of the

parameters θ by plugging in Equations (S.7a), (S.7b), and (S.7c) into Equation (S.10).

Since the resulting expression is lengthy and does not provide any immediate insights,

we refrain from doing so. Evaluating expressions (S.9) and (S.10) at the population

values of the parameters (see the first row of Table S.2), yields:

P (Y3 | X2 = x2) = N1(1.76x2 , 353.99) (S.11a)

P (Y3 | X2 = 11.54) = N1(1.76 · 11.54 , 353.99) = N1(20.31 , 353.99) (S.11b)

The interventional distribution P (Y3 | do(x2)) can be calculated from Results 3

and 4 stated in the paper. We start with Equation (7a) from the paper, which states

that the interventional distribution is given by:

V | do(x) ∼ Nn−Kx
n ( a1x , T1ΨTᵀ

1 ) (S.12)
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The mean vector and the covariance matrix of the interventional distribution can be

computed according to Equations (6a) and (6b) in the paper, respectively, which we

restate here for the sake of completeness:

E(V | do(x)) = a1x = (In − INC)−11Ix (S.13a)

V(V | do(x)) = T1ΨTᵀ
1 = (In − INC)−1INΨIN (In − INC)−ᵀ (S.13b)

The matrices C and Ψ are stated in Equation (S.4) and Equation (S.5), respectively.

The zero-one matrices In, IN , 1I are uniquely defined according to Definition 1 from

the paper.

We are interested in the intervention do(X2 = 11.54), that is, we intervene on

a single variable. Consequently, the set of interventional variables is given as X =

{X2} and the number of interventional variables is given by Kx = 1. Based on the

ordering V = (X1, Y1, X2, Y2, X3, Y3)
ᵀ, the interventional variable is the third entry of

the vector of observed variables and the set of interventional indexes is given by I = {3}.

Altogether, there are six variables in the system and consequently n = 6. The index set

of non-interventional variables is defined as N = {1, 2, 3, 4, 5, 6} \ {3} = {1, 2, 4, 5, 6}.

Note that the zero-one matrices in Definition 1 are uniquely determined by n = 6,

I = {3}, and N = {1, 2, 3, 4, 5, 6}. In denotes the (6× 6) identity matrix. IN is defined

as a (6× 6) diagonal matrix with zeros and ones as diagonal values. The i-th diagonal

value is equal to one if i ∈ N and zero otherwise. 1I collects all (6 × 1) unit vectors

that correspond to the set of interventional indexes I. In the running example, I = {3}

and thus 1I is equal to the third canonical unit vector of the R6.

n = 6, X = {X2}, Kx = 1, I = {3}, N = {1, 2, 4, 5, 6} (S.14)

x = x2 = 11.54, 1I =



0

0

1

0

0

0


, IN =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
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Plugging in C (from Equation [S.4]), Ψ (from Equation [S.5]), and the quantities stated

in Equation (S.14) into the general formulae for the interventional mean as stated in

Equation (S.13a) yields:

E(V | do(X2 = 11.54)) = E(



X1

Y1

X2

Y2

X3

Y3


| do(X2 = 11.54)) =



0

0

11.54

0

cxx · 11.54

cyx · 11.54


=



0

0

11.54

0

0.577

−6.924


(S.15)

The last equality sign is the numeric evaluation at the population values of the param-

eters (see the first row of Table S.2).

The numeric values of the interventional covariance matrix can be obtained by

evaluation Equation (S.13b) analogously to the procedure demonstrated for the inter-

ventional means.

V(



X1

Y1

X2

Y2

X3

Y3


| do(X2 = 11.54)) =



131.76 254.12 0 225.89 90.36 271.07

254.12 632.94 0 642.06 256.82 770.47

0.00 0.00 0 0.00 0.00 0.00

225.89 642.06 0 716.93 286.77 870.32

90.36 256.82 0 286.77 134.71 351.13

271.07 770.47 0 870.32 351.13 1096.39


(S.16)

Note that Equation (S.15) states the interventional mean both as a function of the

parameters θ and the corresponding numeric evaluation. By contrast, Equation (S.18)

only contains the numeric evaluation due to space limitations. However, each entry of

the interventional covariance matrix can be expressed as a function of the parameters

9
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θ, as exemplified for the (6,6)th entry in the equation below.

V(Y3 | do(x2)) = c2yxc
2
yyψx1x1 + c4yyψy1y1 + 2cyxc

3
yyψx1y1 (S.17a)

+ (1 + c2yy)ψyy + 2c3yyψy1y2 + 2cyyψy2y3

The third row and the third column of the interventional covariance matrix in Equation

(S.18) contains zeroes. The reason for this is, that the variable X2 (third entry in V =

(X1, Y1, X2, Y2, X3, Y3)
ᵀ) is no longer random given the intervention do(X2 = 11.54).

To avoid working with singular matrices, one often focuses on the interventional distri-

bution of all non-interventional variables. The vector of non-interventional variables is

denotes as VN and is given by VN = (X1, Y1, Y2, X3, Y3)
ᵀ in the running example. The

corresponding interventional covariance matrix is given by:

V(



X1

Y1

Y2

X3

Y3


| do(X2 = 11.54)) =



131.76 254.12 225.89 90.36 271.07

254.12 632.94 642.06 256.82 770.47

225.89 642.06 716.93 286.77 870.32

90.36 256.82 286.77 134.71 351.13

271.07 770.47 870.32 351.13 1096.39


(S.18)

Following Result 4 from the paper, the resulting marginal interventional distribu-

tion P (Y3 | do(x2)) is univariate normal and can be obtained from the joint interventional

distribution by selecting the 6th entry of the interventional mean and the (6,6)-th entry

of the interventional covariance matrix. The general formulae from Result 4 is restated

below for the sake of completeness:

P (y | do(x)) ∼ NKy ( 1ᵀ
Iya1x , 1ᵀ

IyT1ΨTᵀ
11Iy ) (S.19)

In the running example, the set of outcome variables is given by Y = {Y3} and conse-

quently |Y| = Ky = 1. The index set of the outcome variables is Iy = {6} since Y3 is

the 6th entry in V = (X1, Y1, X2, Y2, X3, Y3)
ᵀ. The corresponding selection matrix 1Iy

is given by (0, 0, 0, 0, 0, 1)ᵀ. Evaluating Equation S.19 for these values yields following

10
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marginal interventional distribution:

P (Y3 | do(x2)) = N1(−.6x2 , 1096.39) (S.20)

P (Y3 | do(11.54)) = N1(−.6 · 11.54 , 1096.39) = N1(−6.92 , 1096.39)

Based on the result stated in Equation (S.20), namely that the marginal inter-

ventional distribution is univariate normal, the corresponding interventional probability

density function (pdf) f(y3 | do(x2)) is given by:

f(y3 | do(x2)) = (2πV (Y3 | do(x2)))−
1
2 exp

(
−1

2

(y3 − E(Y3 | do(x2)))2

V (Y3 | do(x2))

)
(S.21)

=(2π)−
1
2 (c2yxc

2
yyψx1x1 + c4yyψy1y1 + 2cyxc

3
yyψx1y1 + (1 + c2yy)ψyy + 2c3yyψy1y2 + 2cyyψy2y3)−

1
2

× exp

(
−1

2

(y3 − cyxx2)2

c2yxc
2
yyψx1x1 + c4yyψy1y1 + 2cyxc3yyψx1y1 + (1 + c2yy)ψyy + 2c3yyψy1y2 + 2cyyψy2y3

)

Evaluating expression (S.21) at the population values of the parameters (see the first

row of Table S.2) and do(X2 = 11.54), yields:

f(y3 | do(x2)) = (2π)−
1
2 (1096.39)−

1
2 exp

(
−1

2

(y3 + 0.6x2)
2

1096.39

)
f(y3 | do(11.54)) = (2π)−

1
2 (1096.39)−

1
2 exp

(
−1

2

(y3 + 6.92)2

1096.39

)
(S.22)

The interventional probability P (ylow ≤ Y3 ≤ yup | do(x2)) can be obtained via

integration over the interventional pdf in Equation (S.21), yielding:

P (ylow ≤ Y3 ≤ yup | do(x2)) =

∫ yup

ylow
f(y3 | do(x2))dy3 =

∫ yup−E(Y3|do(x2))√
V (Y3|do(x2))

ylow−E(Y3|do(x2))√
V (Y3|do(x2))

φ(u)du

= Φ

(
yup − E(Y3 | do(x2))√

V (Y3 | do(x2))

)
− Φ

(
ylow − E(Y3 | do(x2))√

V (Y3 | do(x2))

)
(S.23)

The second equation sign follows from integration by substitution where φ and Φ denote

the pdf and the cumulative distribution function of the standard normal distribution,

respectively. Evaluating expression (S.23) at the values ylow = −40 and yup = 80 and

the population values of the parameters (see the first row of Table S.2), yields:

P (−40 ≤ Y3 ≤ 80 | do(x2)) = Φ

(
80 + .6x2
1096.39

)
− Φ

(
−40 + .6x2

1096.39

)
(S.24a)
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For the interventional level do(X2 = 11.54) we obtain:

P (−40 ≤ Y3 ≤ 80 | do(11.54)) = Φ

(
80 + 6.92

1096.39

)
− Φ

(
−40 + 6.92

1096.39

)
= .8368 (S.24b)

S.4 Structural Equations Given do-Type Interventions

In this section we show that the interventional equations (Equation [3] in the paper)

provide an adequate description of the way the system of linear equations is modified

by a do-type intervention. The starting point is a linear structural equation model as

described in the section entitled “Graph-Based Causal Models with Linear Equations”

of the paper. The following statements summarize some properties of the selection

matrices introduced in Definition 1 of the paper.

1. replace rows/columns by zeroes Premultiplying (Postmultiplying) C by the ma-

trix IN : For all i ∈ I the entries of the i-th row (column) of C are replaced by

zeroes while all other entries are left unchanged.

2. select rows/columns Premultiplying (Postmultiplying) C by the matrix 1ᵀ
I (1I):

selects all row (column) vectors of C with an interventional index i ∈ I.

Thus, premultiplying C and ε by IN replaces all rows with an interventional index

i ∈ I by rows of zeros while leaving all other rows unchanged. Thus, for the system of

equations V = INCV + INε the i-th component on the right-hand side is equal to zero

for all i ∈ I. This accounts for the fact that, due to the intervention do(x), the value of

Vi, i ∈ I, is exogenous and no longer determined by other variables Vj or the error term

εi. However, the values of the interventional variables VI are not equal to zero but are

set to the constant interventional levels x. This is accounted for by adding 1Ix on the

right-hand side, yielding V = INCV+ INε+1Ix, which is equal to the expression given

in Equation (3) of the paper.

S.5 Proof of Local Identification

Let V = CV + ε be a linear SEM as defined in Equation (2) of the paper. In the

following, we focus on the linear SEM used in the illsutration section, where n = 6, and

C and Ψ are given in Equation (S.4) and Equation (S.5), respectively. The proof of
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local identification is based on a result from Bekker, Merckens, and Wansbeek (1994).

To prepare our proof, we first reconcile the different notations used in the paper and

in the book by Bekker et al. (1994). The latter use the following notation to denote a

system of linear structural equations (see, e.g., Equation [3.2.1], page 47):

By + Γx = ζ (S.25)

Where y is an (m × 1) random vector of endogenous variables, x is an (k × 1) random

vector of exogenous variables, and ζ is an (m× 1) random vector of disturbances. The

(m × m) matrix B and the (m × k) matrix Γ are real valued matrices of structural

coefficients. The (m×m) covariance matrix of the disturbances is denoted as Σζ . When

translating the notation from Bekker et al. (1994) to the notation used throughout this

paper, we set k = 0 and Γ = 0. In other words, we treat all observed variables as

endogenous and Equation (S.25) simplifies accordingly:2

By = ζ (S.26)

A detailed comparison of the notation in Bekker et al. (1994) and the notation used

throughout the paper suggests a translation as summarized in Table S.3.

Table S.3

Comparison of Notation

notation used in notation used in relation
the paper Bekker et al. (1994)

vector of observed variables V y V = y
vector of error terms ε ζ ε = ζ
matrix of structural coefficients C B (I−C) = B
covariance matrix of error terms Ψ Σζ Ψ = Σζ

number of endogenous variables n m n = m

Note. Table S.3 displays the notation used throughout the paper (column 1) and the
notation used in Bekker et al. (1994) (column 2). Column 3 provides the relation between
the symbols.

Following Equation (3.3.5) in Bekker et al. (1994), we denote the zero restrictions and the

equality constraints imposed on the matrix of structural coefficients and the covariance

2Note that in the graph-based framework, each observed variable is affected by an unobserved error
term (see Equation [S.4]) and consequently all observed variables are endogenous. This convention
differs from other notations proposed in the literature (e.g., the LISREL notation).
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matrix of error terms as follows:

ρ =

 ρI(Ψ)

ρII((I−C))

 = 0 (S.27)

Starting with an unconstrained symmetric covariance matrix as stated below,



ψ11 ψ12 ψ13 ψ14 ψ15 ψ16

ψ22 ψ23 ψ24 ψ25 ψ26

ψ33 ψ34 ψ35 ψ36

ψ44 ψ45 ψ46

ψ55 ψ56

ψ66


the zero restrictions and the equality constraints imposed on the covariance matrix of

the error terms in Equation (S.5) are denoted by ρI(Ψ) = 0, where ρI is a vector-valued

function with values in RrI . In the example model, rI = 11 and the explicit formula of

the restriction function ρI is stated in Equation (S.30) at the end of this section. The

upper eight entries of ρI(Ψ) correspond to zero restrictions, while the lower three entries

of ρI(Ψ) reflect those equality constraints, which do not result from the symmetry of

the covariance matrix.

Similarly, starting with an unconstrained matrix of structural coefficients (we use

the identity matrix minus an unconstrained matrix of structural coefficients as displayed

in Table S.3) as stated below,



1− c11 −c12 −c13 −c14 −c15 −c16

−c21 1− c22 −c23 −c24 −c25 −c26

−c31 −c32 1− c33 −c34 −c35 −c36

−c41 −c42 −c43 1− c44 −c45 −c46

−c51 −c52 −c53 −c54 1− c55 −c56

−c61 −c62 −c63 −c64 −c65 1− c66


the zero restrictions and the equality constraints imposed on the matrix of structural

coefficients in Equation (S.4) are denoted as ρII((I − C)) = 0, where ρII is a vector-
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valued function with values in RrII . In the example model, rII = 32 and the explicit

formula of the restriction function ρII is stated in Equation (S.30) at the end of this

section. The upper 28 entries of ρII((I −C) correspond to zero restrictions, while the

lower four entries of ρII((I−C) reflect equality constraints.

Stacking the restrictions together as in Equation (3.3.5) in Bekker et al. (1994) and

calculating the Jacobian of the resulting stacked function ρ(Ψ, (I−C)) yields:

ρ(Ψ, (I−C)) =

 ρI(Ψ)

ρII((I−C))

 ,
∂ρ

∂(vecᵀ((I−C)ᵀ), vecᵀ(Ψ))
=

 0 RΨ

RC 0


(S.28)

The (11×36) matrix RΨ and the (32×36) matrix RC are stated explicitly in Equations

(S.31) and (S.32), respectively. We are now in a position to use Theorem 3.3.1 from

Bekker et al. (1994), which states the parameter vector θ is locally identified, if, and

only if, the Jacobian matrix J̃ defined in Equation (S.29) has full column rank.

J̃ =

RΨ(I36 + K6)(I6 ⊗Ψ)

RC(I6 ⊗ (I−C)ᵀ)

 (S.29)

The rank evaluation of the ((32 + 11) × 36) matrix J̃ is performed using the computer

algebra system Mathematica (Wolfram Research Inc., 2018). The corresponding code

used to evaluate the rank of J̃ is provided in Section S.7. The result obtained from

Mathematica states that rank(J̃) = 36, which completes the proof.
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ρI(Ψ) =



ψ14

ψ15

ψ16

ψ23

ψ25

ψ26

ψ36

ψ45

ψ33 − ψ55

ψ34 − ψ56

ψ44 − ψ66



= 0 , ρII((I−C)) =



c11 − 1

c12

c13

c14

c15

c16

c21

c22 − 1

c23

c24

c25

c26

c33 − 1

c34

c35

c36

c43

c44 − 1

c45

c46

c51

c52

c55 − 1

c56

c61

c62

c65

c66 − 1

c31 − c53

c32 − c54

c41 − c63

c42 − c64



= 0 (S.30)
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S.6 R Code

The calculations were done on Windows 10 Pro (64-bit), platform: x86 64-w64-mingw32/x64

(64-bit), with R-Studio (version 1.1.463), R (version 3.5.2), lavaan (version 0.6-3), vars

(version 1.5-3), and matrixcalc (version 1.0-3). The following R script was used to cre-

ate all reported numerical results in the main body of the paper and the supplementary

material. Before running the script, please ensure that the packages vars, matrixcalc,

and lavaan are installed on the device. Please note that at the time of publication,

an R package with the tentative title “causalSEM” is being developed which will be

made available via the Comprehensive R Archive Network (CRAN) shortly after the

publication of the paper.

# Please note that at the time of publication, an R package with the

# tentative title ‘‘causalSEM’’ is being developed which will be made

# available via the Comprehensive R Archive Network (CRAN)

# shortly after the publication of the paper

library(vars)

library(matrixcalc)

library(lavaan)

# PART I: DATA GENERATION --------------------------------------------

# read in data and obtain estimates of a bivariate vector autoregression

# data is taken from Figure S.1 (lines with empty circles)

insulin <- c(17, 21, 25, 37, 43, 43, 43, 40, 57, 48, 45, 43, 28, 31, 29,

24, 23, 23, 25, 24, 24, 22, 22, 21, 22, 23, 24, 26, 31, 18)

glucose <- c(65, 75, 85, 105, 115, 125, 120, 123, 118, 110, 100, 85, 80,

75, 70, 75, 75, 70, 70, 73, 75, 80, 78, 75, 70, 70, 68, 65,

63, 60)

d <- data.frame(insulin = (insulin - mean(insulin)),

glucose = (glucose - mean(glucose)))

VAR1 <- VAR(d, p = 1, type = "const")

summary(VAR1) # output contains the values of Table S.1

B <- matrix(nrow = 2, c(0.05, 0.4, -0.6, 1.2), byrow = T)

print(abs(eigen(B)$values)) # check if regularity conditions are met

# population values as in the first row of Table S.2

# (see also: Table 1 of the paper)

theta_dgp <- c(0.05, 0.4, -0.6, 1.2, 131.76, 632.94, 254.12, 20, 40, 3,

15, 2, 35, 10)

# specification of the data generating process (dgp)

model_dgp <- "

#error terms

ex1 =~ 1.0*x1

ex2 =~ 1.0*x2

ex3 =~ 1.0*x3

ey1 =~ 1.0*y1

ey2 =~ 1.0*y2

ey3 =~ 1.0*y3

ex1 ~~ 131.76*ex1

ey1 ~~ 632.94*ey1

ex2 ~~ 20*ex2
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ey2 ~~ 40*ey2

ex3 ~~ 20*ex3

ey3 ~~ 40*ey3

ex2 ~~ 3*ey2

ex3 ~~ 3*ey3

ex1 ~~ 254.12*ey1

ex1 ~~ 15*ex2

ex2 ~~ 2*ex3

ey1 ~~ 35*ey2

ey2 ~~ 10*ey3

# regressions

x2~ 0.05*x1 + 0.4*y1

y2~ -0.6*x1 + 1.2*y1

x3~ 0.05*x2 + 0.4*y2

y3~ -0.6*x2 + 1.2*y2

# zero covariance restrictions

ex1~~0*ex3

ex1~~0*ey2

ex1~~0*ey3

ey1~~0*ex2

ey1~~0*ex3

ey1~~0*ey3

ex2~~0*ey3

ey2~~0*ex3

"

# specification of the model

model_sem<-"

#error terms

ex1 =~ 1.0*x1

ex2 =~ 1.0*x2

ex3 =~ 1.0*x3

ey1 =~ 1.0*y1

ey2 =~ 1.0*y2

ey3 =~ 1.0*y3

ex1 ~~ psix1x1*ex1

ey1 ~~ psiy1y1*ey1

ex2 ~~ psix*ex2

ey2 ~~ psiy*ey2

ex3 ~~ psix*ex3

ey3 ~~ psiy*ey3

ex2 ~~ psixy*ey2

ex3 ~~ psixy*ey3

ex1 ~~ psix1y1*ey1

ex1 ~~ psix1x2*ex2

ex2 ~~ psixx*ex3

ey1 ~~ psiy1y2*ey2

ey2 ~~ psiyy*ey3

# regressions

x2 ~ cxx*x1 + cxy*y1

y2 ~ cyx*x1 + cyy*y1

x3 ~ cxx*x2 + cxy*y2

y3 ~ cyx*x2 + cyy*y2

# zero covariance restrictions

ex1 ~~ 0*ex3

ex1 ~~ 0*ey2

ex1 ~~ 0*ey3
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ey1 ~~ 0*ex2

ey1 ~~ 0*ex3

ey1 ~~ 0*ey3

ex2 ~~ 0*ey3

ey2 ~~ 0*ex3

"

# sample N = 100 individuals from the population and obtain estimates

set.seed(34995)

d_100 <- simulateData(model_dgp, sample.nobs = 100, seed = 45903)

d_100 <- d_100[, c(1, 4, 2, 5, 3, 6)]

fit_100 <- lavaan(model_sem, data = d_100)

# estimated values as in the second row of Table S.2

# (see also: Table 1 of the paper)

# (sample quantities are marked with _s)

theta_s <- coef(fit_100)[c("cxx", "cxy", "cyx", "cyy", "psix1x1", "psiy1y1",

"psix1y1", "psix", "psiy", "psixy", "psix1x2",

"psixx", "psiy1y2", "psiyy")]

# further numeric values used in the main paper

x2 <- 11.54 # interventional level

ylow <- -40 # lower bound of outcome range

yup <- 80 # upper bound of outcome range

# PART II: RESULTS ON THE POPULATION LEVEL ------------

# FROM THE ILLUSTRATION SECTION -----------------------

n <- 6 # number of observed variables

# covariance matrix of error terms as stated in Equation S.5

# (see also: Equation 20 of the paper)

Psi <- matrix(nrow = n, ncol = n, 0)

Psi[1,1] <- theta_dgp[5]

Psi[3,3] <- theta_dgp[8]

Psi[5,5] <- theta_dgp[8]

Psi[2,2] <- theta_dgp[6]

Psi[4,4] <- theta_dgp[9]

Psi[6,6] <- theta_dgp[9]

Psi[1,2] <- theta_dgp[7]

Psi[2,1] <- theta_dgp[7]

Psi[1,3] <- theta_dgp[11]

Psi[3,1] <- theta_dgp[11]

Psi[2,4] <- theta_dgp[13]

Psi[4,2] <- theta_dgp[13]

Psi[3,5] <- theta_dgp[12]

Psi[5,3] <- theta_dgp[12]

Psi[4,6] <- theta_dgp[14]

Psi[6,4] <- theta_dgp[14]

Psi[3,4] <- theta_dgp[10]

Psi[4,3] <- theta_dgp[10]

Psi[5,6] <- theta_dgp[10]

Psi[6,5] <- theta_dgp[10]

is.positive.definite(Psi) # check if matrix is positive definite

# matrix of structural coefficients as stated in Equation S.4

# (see also Equation 19 of the paper)

C <- matrix(nrow = n, ncol = n, 0)

C[3,1] <- theta_dgp[1]

C[3,2] <- theta_dgp[2]
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C[4,1] <- theta_dgp[3]

C[4,2] <- theta_dgp[4]

C[5,3] <- theta_dgp[1]

C[5,4] <- theta_dgp[2]

C[6,3] <- theta_dgp[3]

C[6,4] <- theta_dgp[4]

# expected values of error terms are zero

E_epsilon <- rep(0, n)

# model implied mean vector of the joint distribution

# of observed variables (see Equation 2 of the paper)

I_Cinv <- solve(diag(1, nrow = n) - C)

E_V <- I_Cinv %*% E_epsilon

# model implied covariance matrix of the joint distribution of

# observed variables as stated in Equation S.6

# (see also: Equation 2 of the paper)

Sigma_V <- I_Cinv %*% Psi %*% t(I_Cinv)

# variances and covariances as stated in Equations S.7a, S.7b, and S.7c

V_X2 <- Sigma_V[3,3]

V_Y3 <- Sigma_V[6,6]

COV_X2V3 <- Sigma_V[3,6]

# conditional variance of Y3 given X2=11.54

# as stated in Equation S.9

E_Y3condx2 <- COV_X2V3 / V_X2 * x2

# conditional variance of Y3 given X2=11.54

# as stated in Equation S.10

V_Y3condx2 <- V_Y3 - ((COV_X2V3 ^ 2) / V_X2)

# interventional mean and covariance matrix for do(x2)

# zero-one matrices according to Definition 1 of the paper

# (see also Equation 21 of the paper and Equation S.14)

ONE_I <- c(0, 0, 1, 0, 0, 0) # select interventional variables

IN <- diag(c(1, 1, 0, 1, 1, 1))

# matrices of the linear transformation as stated

# in Equation 4 of the paper

T1 <- solve(diag(1, nrow = n)-IN %*% C) %*% IN

a1 <- solve(diag(1, nrow =n )-IN %*% C) %*% ONE_I

# interventional mean as stated in Equation 6a of the paper

# (see also Equation S.13a)

E_dox2 <- a1*x2

# interventional variance as stated in Equation 6b of the paper

# (see also Equation S.13b)

V_dox2 <- T1 %*% Psi %*% t(T1)

# causal quantity gamma2 as defined in Equation 13 of the paper

# as the half-vectorized interventional covariance matrix

V_dox2_vech <- lav_matrix_vech(V_dox2)

# unconditional, conditional and interventional probabilities

# as plotted in Figure 7 of the paper

P_Y3unconditional <- (pnorm(yup, mean = E_V[6], sd = sqrt(Sigma_V[6,6])) -

pnorm(ylow, mean = E_V[6], sd = sqrt(Sigma_V[6,6])))
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P_Y3dox2 <- (pnorm(yup, mean = E_dox2[6], sd = sqrt(V_dox2[6,6])) -

pnorm(ylow, mean = E_dox2[6], sd = sqrt(V_dox2[6,6])))

P_Y3condX2 <- (pnorm(yup, mean = E_Y3condx2, sd = sqrt(V_Y3condx2)) -

pnorm(ylow, mean = E_Y3condx2, sd = sqrt(V_Y3condx2)))

# unconditional, conditional and interventional intervall forecasts as stated

# in the subsection "Interventional Distribution vs. Conditional Distribution"

uncond_low <- E_V[6] - qnorm(0.975) * sqrt(Sigma_V[6,6])

uncond_up <- E_V[6] + qnorm(0.975) * sqrt(Sigma_V[6,6])

cond_low <- E_Y3condx2 - qnorm(0.975) * sqrt(V_Y3condx2)

cond_up <- E_Y3condx2 + qnorm(0.975) * sqrt(V_Y3condx2)

int_low <- E_dox2[6] - qnorm(0.975) * sqrt(V_dox2[6,6])

int_up <- E_dox2[6] + qnorm(0.975) * sqrt(V_dox2[6,6])

# interventional probability density function f(y3|do(X2=11.54))

# evaluated at y3=0

y3 <- 0

f_y3_dox2 <- dnorm(y3, mean = E_dox2[6], sd = sqrt(V_dox2[6, 6]))

# interventional probability P(-40 < Y3 < 80 | do(X2=11.54))

P_y3_dox2 <- pnorm(80, mean = E_dox2[6], sd = sqrt(V_dox2[6, 6])) -

pnorm(-40, mean = E_dox2[6], sd = sqrt(V_dox2[6,6]))

# PART III: ESTIMATION RESULTS -----------------------

# FROM THE ILLUSTRATION SECTION -----------------------

# sample quantities are marked with _s ----------------

# extract the asymptotic covariance matrix

AV_theta_s <- vcov(fit_100)

# reorder the entries of the asymptotic covariance matrix

AV_theta_s_r <- AV_theta_s[c("cxx", "cxy", "cyx", "cyy", "psix1x1",

"psiy1y1", "psix1y1", "psix", "psiy", "psixy",

"psix1x2","psixx", "psiy1y2", "psiyy"), ]

AV_theta_s <- AV_theta_s_r[, c("cxx", "cxy", "cyx", "cyy", "psix1x1",

"psiy1y1", "psix1y1", "psix", "psiy", "psixy",

"psix1x2", "psixx", "psiy1y2", "psiyy")]

# asymptotic standard errors as displayed in Table 1

ASE_theta_s <- sqrt(diag(AV_theta_s))

# approximate z-values as displayed in Table 1

# which are computed based on rounded values

z_theta_rounded_s <- (round(round(theta_s, 2) / round(ASE_theta_s, 2), 2))

# estimated covariance matrix of error terms

# (sample quantities are marked with _s)

Psi_s <- matrix(nrow = n, ncol = n, 0)

Psi_s[1,1] <- theta_s[5]

Psi_s[3,3] <- theta_s[8]

Psi_s[5,5] <- theta_s[8]

Psi_s[2,2] <- theta_s[6]

Psi_s[4,4] <- theta_s[9]

Psi_s[6,6] <- theta_s[9]

Psi_s[1,2] <- theta_s[7]

Psi_s[2,1] <- theta_s[7]

Psi_s[1,3] <- theta_s[11]

Psi_s[3,1] <- theta_s[11]

Psi_s[2,4] <- theta_s[13]

Psi_s[4,2] <- theta_s[13]

Psi_s[3,5] <- theta_s[12]
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Psi_s[5,3] <- theta_s[12]

Psi_s[4,6] <- theta_s[14]

Psi_s[6,4] <- theta_s[14]

Psi_s[3,4] <- theta_s[10]

Psi_s[4,3] <- theta_s[10]

Psi_s[5,6] <- theta_s[10]

Psi_s[6,5] <- theta_s[10]

# check if matrix is positive definite

is.positive.definite(Psi_s)

# matrix structural coefficients

# (sample quantities are marked with _s)

C_s <- matrix(nrow = n, ncol = n, 0)

C_s[3,1] <- theta_s[1]

C_s[3,2] <- theta_s[2]

C_s[4,1] <- theta_s[3]

C_s[4,2] <- theta_s[4]

C_s[5,3] <- theta_s[1]

C_s[5,4] <- theta_s[2]

C_s[6,3] <- theta_s[3]

C_s[6,4] <- theta_s[4]

# model implied covariance matrix of the joint distribution of

# observed variables as stated in Equation S.6

# see also: Equation 2 of the paper; sample quantities are marked with _s

I_Cinv_s <- solve(diag(1, nrow = n) - C_s)

Sigma_V_s <- I_Cinv_s %*% Psi_s %*% t(I_Cinv_s)

# matrices of the linear transformation as stated

# in Equation 4 of the paper (sample quantities are marked with _s)

T1_s <- solve(diag(1, nrow = n) - IN %*% C_s) %*% IN

a1_s <- solve(diag(1, nrow = n) - IN %*% C_s) %*% ONE_I

# interventional mean as stated in Equation 6a of the paper

# (see also Equation S.13a) (sample quantities are marked with _s)

E_dox2_s <- a1_s * x2

# interventional variance as stated in Equation 6b of the paper

# (see also Equation S.13b) (sample quantities are marked with _s)

V_dox2_s <- T1_s %*% Psi_s %*% t(T1_s)

# causal quantity gamma2 as defined in Equation 13 of the paper

# as the half-vectorized interventional covariance matrix

V_dox2_vech_s <- lav_matrix_vech(V_dox2_s)

# AV of the estimator of gamma1 according to Equation 17 ---------------

# gamma1 is the interventional mean vector -----------------------------

# as defined in Equation 12a of the paper ------------------------------

# first factor of the Kronecker product in the Jacobian in Equation 18a

F11_s <- x2 * t(ONE_I ) %*% t(I_Cinv_s)

# second factor of the Kronecker product in the Jacobian

F12_s <- I_Cinv_s %*% IN

# entire Kronecker product inside the bracket in Equation 18a

F1_s <- kronecker(F11_s, F12_s, FUN = "*", make.dimnames = FALSE)

# Jacobian of C(theta) with respect to theta

D_C_theta <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

, ncol = 14, nrow = 36, byrow = T)

# Jacobian of g1 with respect to theta as stated in Equation 18a

D_Edox2_s <- F1_s %*% D_C_theta

# AV of estimator of the interventional mean according to Equation 17

AV_gamma1_s <- D_Edox2_s %*% AV_theta_s %*% t(D_Edox2_s)

# ASE of the estimate of E(Y3|do(X2=11.54)) as in Table 2

ASE_gamma1_s <- sqrt(AV_gamma1_s[6, 6])

# approximate z-values as displayed in Table 2

# which are computed based on rounded values

z_gamma1_rounded_s <- round(round(E_dox2_s[6], 4) / round(ASE_gamma1_s, 4),4)

# AV of the estimator of gamma2 according to Equation 17 -------------

# gamma2 is the half-vectorized interventional covariance matrix -----

# as defined in Equation 13 of the paper ----------------------------

# define zero-one matrices

I6 <- diag(1, nrow = n) # identity matrix

K6 <- commutation.matrix(n, n) # commutation matrix

# first factor of the matrix product in G2C in Corollary 11

G2C_1_s <- (diag(1, nrow = n ^ 2) + K6)
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# second factor of the matrix product in G2C in Corollary 11

G2C_2_s <- kronecker(T1_s %*% Psi_s %*% IN, I6, FUN = "*",

make.dimnames = FALSE)

# third factor of the matrix product in G2C in Corollary 11

I_Cdox2_inv_s <- solve(diag(1, nrow = n)-IN %*% C_s)

G2C_3_s <- kronecker(t(I_Cdox2_inv_s), T1_s, FUN = "*",

make.dimnames = FALSE)

# G2C in Corollary 11

G2C_s <- G2C_1_s %*% G2C_2_s %*% G2C_3_s

# first factor of the matrix product in G2Psi in Corollary 11

G2Psi_1_s <- kronecker(I_Cdox2_inv_s, I_Cdox2_inv_s, FUN = "*",

make.dimnames = FALSE)

# second factor of the matrix product in G2Psi in Corollary 11

G2Psi_2_s <- kronecker(IN, IN, FUN = "*", make.dimnames = FALSE)

# G2Psi in Corollary 11

G2Psi_s <- G2Psi_1_s %*% G2Psi_2_s

# Jacobian of Psi(theta) with respect to theta; we use the derivative of

# vec(PSI(theta)) and NOT the HALF-vectorized version

D_Psi_theta <- matrix(

c(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)
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, ncol = 14, nrow = 36, byrow = T)

# Jacobian of g2 with respect to theta as stated in Equation 18b

# note that gamma2 is defined as the HALF-vectorized interventional

# covariance matrix in Equation 13

D_n <- matrixcalc::elimination.matrix(n = n)

D_Vdox2_s <- D_n %*% (G2Psi_s %*% D_Psi_theta + G2C_s %*% D_C_theta)

# AV of estimator of the half-vectorized interventional

# covariance matrix according to Equation 17

AV_gamma2_s <- D_Vdox2_s %*% AV_theta_s %*% t(D_Vdox2_s)

# ASE of the estimate of V(Y3|do(X2=11.54)) as in Table 2

# note that the half-vectorized 6x6 covariance matrix

# has (6*(6+1))/2=21 entries

ASE_gamma2_s <- sqrt(AV_gamma2_s[21,21])

# approximate z-values as of V(Y3|do(X2=11.54)) displayed in Table 2

# Note: values are rounded and computed based on rounded values;

# half-vectorized 6x6 covariance matrix has (6*(6+1))/2=21 entries

z_gamma2_rounded_s <- round(round(V_dox2_vech_s[21], 4) /

round(ASE_gamma2_s, 4), 4)

# AV of the estimator of gamma3 according to Equation 17 ---------------

# gamma3 is the interventional probability density function (pdf) ------

# as defined in Equation 14 of the paper ------------------------------

# NOTE: caluculations in this section of the R-script are performed for

# the univariate outcome y3 given the intervention do(X2=11.54)

# we evaluate f(y3|do(X2=11.54)) at y3=0

f_y3_dox2_s <- dnorm(y3, mean = E_dox2_s[6], sd = sqrt(V_dox2_s[6, 6]))

# G3mu in Corollary 11 (here: we have univariate outcome Y3)

G3mu_s <- (y3 - E_dox2_s[6]) * (V_dox2_s[6, 6]) ^ (-1)

# G3SIGMA in Corollary 11 (here: we have univariate outcome Y3)

G3SIGMA_s <- 1 / 2 * ((y3 - E_dox2_s[6]) ^ 2 * V_dox2_s[6, 6] ^ (-2) -

V_dox2_s[6, 6] ^ (-1))

# first component of rightmost vector in Equation 18c

D_Edox2_Y3_s <- D_Edox2_s[6,]

# second component of rightmost vector in Equation 18c

D_Vdox2_Y3_s <- D_Vdox2_s[21,]

# Jacobian of g3 with respect to theta as stated in Equation 18c

D_f_y3_dox2_s <- f_y3_dox2_s * matrix(c(G3mu_s, G3SIGMA_s), nrow = 1) %*%

matrix(c(D_Edox2_Y3_s, D_Vdox2_Y3_s), nrow = 2, byrow = TRUE)

# AV of estimator of the interventional pdf according to Equation 17

AV_gamma3_s <- D_f_y3_dox2_s %*% AV_theta_s %*% t(D_f_y3_dox2_s)

# ASE of of the estimate of f(Y3|do(X2=11.54)) as in Table 2

ASE_gamma3_s <- sqrt(AV_gamma3_s)

# approximate z-values as displayed in Table 2

# which are computed based on rounded values

z_gamma3_rounded_s <- round(round(f_y3_dox2_s, 4) /

round(sqrt(AV_gamma3_s), 4), 4)

# AV of the estimator of gamma4 according to Equation 17 ---------------
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# gamma4 is the interventional probability -----------------------------

# as defined in Equation 15 of the paper -------------------------------

# NOTE: caluculations in this section of the R-script are performed for

# the univariate outcome y3 given the intervention do(X2=11.54)

# gamma4 is the univariate interventional probability

# P(-40 < Y3 < 80 | do(X2=11.54))

P_y3_dox2_s <- pnorm(80, mean = E_dox2_s[6], sd = sqrt(V_dox2_s[6, 6])) -

pnorm(-40, mean = E_dox2_s[6], sd = sqrt(V_dox2_s[6,6]))

# G4mu in Corollary 11

densup_s <- dnorm(yup , mean = E_dox2_s[6], sd = sqrt(V_dox2_s[6,6]))

denslow_s <- dnorm(ylow , mean = E_dox2_s[6], sd = sqrt(V_dox2_s[6,6]))

G4mu_s <- - 1 / sqrt(V_dox2_s[6,6]) * (densup_s - denslow_s)

# G4sigma in Corollary 11

zlow_s <- (ylow - E_dox2_s[6]) / sqrt(V_dox2_s[6, 6])

zup_s <- (yup - E_dox2_s[6]) / sqrt(V_dox2_s[6, 6])

G4sigma_s <- - 1 / (2 * (sqrt(V_dox2_s[6, 6])) ^ 2) *

(densup_s * zup_s - denslow_s * zlow_s)

# Jacobian of g4 with respect to theta as stated in Equation 18d

D_P_y3_dox2_s <- matrix(c(G4mu_s, G4sigma_s), nrow = 1) %*%

matrix(c(D_Edox2_Y3_s, D_Vdox2_Y3_s), nrow = 2, byrow = TRUE)

# AV of the estimator of the interventional probability

# according to Equation 17

AV_gamma4_s <- D_P_y3_dox2_s %*% AV_theta_s %*% t(D_P_y3_dox2_s)

# ASE of estimate of P(ylow < Y3 < yup | dox2) as in Table 2

# with ylow=-40 and yup=80

ASE_gamma4_s <- sqrt(AV_gamma4_s)

# approximate z-values as displayed in Table 2

# which are computed based on rounded values

z_gamma4_rounded_s <- round(round(P_y3_dox2_s, 4) /

round(sqrt(AV_gamma4_s), 4), 4)

S.7 Mathematica Code

The calculations were done on Windows 10 Pro (64-bit), platform: x86 64-w64-mingw32/x64

(64-bit), with Mathematica (Version Number: 11.3.0.0) (Wolfram Research Inc., 2018).

The following code is used to compute the analytic expressions stated in Section S.3.

(* --- SET UP THE LINEAR SEM FROM THE ILLUSTRATION SECTION --- *)

(* matrix of structural coefficients as in Equation S.4 (see also Equation 19 of the paper); since the symbol C is protected in

Mathematica, we label the matrix as C6, where 6 is the number of observed variables*)

C6={{0,0,0,0,0,0},{0,0,0,0,0,0},{cxx,cxy,0,0,0,0},{cyx,cyy,0,0,0,0},{0,0,cxx,cxy,0,0},{0,0,cyx,cyy,0,0}};

(* covariance matrix of the error terms stated in Equation S.5 (see also: Equation 20 of the paper) *)

PSI={{psix1x1,psix1y1,psix1x2,0,0,0},{psix1y1,psiy1y1,0,psiy1y2,0,0},{psix1x2,0,psixx,psixy,psix2x3,0},{0,psiy1y2,psixy,psiyy,0,

psiy2y3},{0,0,psix2x3,0,psixx,psixy},{0,0,0,psiy2y3,psixy,psiyy}};

(* mean vector of the error terms which is zero *)

Eepsilon={{0},{0},{0},{0},{0},{0}};
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(* --- COMPUTE THE MODEL IMPLIED DISTRIBUTION OF OBSERVED VARIABLES --- *)

(* model implied mean vector of the observed variables (see Equation 2 of the paper) *)

EV=Inverse[IdentityMatrix[6]-C6].Eepsilon;

(* model implied covariance matrix of the observed variables as stated in Equation S.6 (see also: Equation 2 of the paper) *)

SigmaV=Inverse[IdentityMatrix[6]-C6].PSI.Transpose[Inverse[IdentityMatrix[6]-C6]];

(* collect terms in the model implied covariance matrix of the observed variables *)

SigmaV=Collect[SigmaV,{psix1x1,psiy1y1,psix1y1,psixx,psiyy,psixy,psix1x2,psix2x3,psiy1y2,psiy2y3}];

(* model implied variance of X2 as stated in Equation S.7a *)

VX2=SigmaV[[3,3]];

(* model implied variance of Y3 as stated in Equation S.7b *)

VY3=SigmaV[[6,6]];

(* model implied covariance of X2 and Y3 as stated in Equation S.7c *)

COVX2Y3=SigmaV[[3,6]];

(* conditional mean of Y3 given X2=x2 as stated in Equation S.9 *)

EY3condX2=COVX2Y3/VX2*x2;

(* conditional variance of Y3 given X2=x2 as stated in Equation S.10 *)

VY3condX2= VY3-(COVX2Y3^2/VX2);

(* --- CALCULATE THE INTERVENTIONAL MOMENTS FOR do(X2=x2) --- *)

(* selection matrix for the interventional variable as stated in Equation S.14 (see also Equation 21 of the paper) *)

e3={{0},{0},{1},{0},{0},{0}};

(* zero-one matrix that sets the interventional rows to zero as stated in Equation S.14 (see also Equation 21 of the paper) *)

IN={{1,0,0,0,0,0},{0,1,0,0,0,0},{0,0,0,0,0,0},{0,0,0,1,0,0},{0,0,0,0,1,0},{0,0,0,0,0,1}};

(* transformation matrix T1 as stated in Equation 4 of the paper *)

T1=Inverse[IdentityMatrix[6]-IN.C6].IN;

(* vector a1 as stated in Equation 4 of the paper *)

a1=Inverse[IdentityMatrix[6]-IN.C6].e3;

(* inverventional mean vector as stated in Equation Equation S.13a (see also Equation 6a of the paper) *)

Edox2=a1*x2;

(* inverventional covariance matrix as stated in Equation Equation S.13b (see also Equation 6b of the paper) *)

Vdox2=T1.PSI.Transpose[T1];

(* collect terms in the model implied covariance matrix of the observed variables *)

Vdox2=Collect[Vdox2,{psix1x1,psiy1y1,psix1y1,psixx,psiyy,psixy,psix1x2,psix2x3,psiy1y2,psiy2y3}];

(* interventional mean of Y3 given do(X2=x2) as stated in Equation S.15 (see also Equation 22a of the paper) *)

EY3dox2=Edox2[[6]];

(* interventional variance of Y3 given do(X2=x2) as stated in Equation S.16 (see also Equation 22b of the paper) *)

VY3dox2=Vdox2[[6,6]];
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The following code is used to evaluate the rank of the Jacobian matrix stated in Equation

(S.29) in Section S.5.

(* matrix of structural coefficients

according to Equation 3.2.1 in Bekker et al. (1994);

this matrix corresponds to the matrix I-C from the paper;

see also Table S.3 of this electronic supplementary material *)

IminusC6={{1,0,0,0,0,0},{0,1,0,0,0,0},{-cxx,-cxy,1,0,0,0},

{-cyx,-cyy,0,1,0,0},{0,0,-cxx,-cxy,1,0},{0,0,-cyx,-cyy,0,1}};

(* Covariance matrix of error terms according to Bekker et al. (1994);

this matrix corresponds to the matrix Psi from the paper;

see also Table S.3 of this electronic supplementary material *)

Psi={{psix1x1,psix1y1,psix1x2,0,0,0},{psix1y1,psiy1y1,0,psiy1y2,0,0},

{psix1x2,0,psixx,psixy,psix2x3,0},{0,psiy1y2,psixy,psiyy,0,psiy2y3},

{0,0,psix2x3,0,psixx,psixy},{0,0,0,psiy2y3,psixy,psiyy}};

(* restriction matrix R_Psi;

see Equation (S.31) of this electronic supplementary material *)

RPsi={{0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0}};

Dimensions[RPsi]

(* restriction matrix R_C;

see Equation (S.32) of this electronic supplementary material *)

RC={{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0},
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{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1},

{0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0}};

Dimensions[RC]

(* commutation matrix for m=n=6, see Equation 1.5.1 in Bekker et al. (1994) *)

K6={{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0},

{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0},

{0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0},

{0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0},

{0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0},

{0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}};

(* M-matrix;

see Section 1.5 (below Equation 1.5.1) in Bekker et al. (1994) for p=6 *)

M6=1/2*(IdentityMatrix[36]+K6);

(* Kronecker product in the first entry of the matrix on the right-hand side

of Equation 3.3.6 in Bekker et al. (1994);

see also Equation (S.29) of this electronic supplementary material *)
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FPsi=KroneckerProduct[IdentityMatrix[6],Psi];

(* First entry of the matrix on the right-hand side

of Equation 3.3.6 in Bekker et al. (1994);

see also Equation (S.29) of this electronic supplementary material *)

J1=2*RPsi.M6.FPsi;

(* Kronecker product in the second entry of the matrix on the right-hand side

of Equation 3.3.6 in Bekker et al. (1994);

see also Equation (S.29) of this electronic supplementary material *)

FC=KroneckerProduct[IdentityMatrix[6],Transpose[IminusC6]];

(* Second entry of the matrix on the right-hand side

of Equation 3.3.6 in Bekker et al. (1994);

see also Equation (S.29) of this electronic supplementary material *)

J2=RC.FC;

(* Join first and second entry of the matrix on the right-hand side

of Equation 3.3.6 in Bekker et al. (1994) to obtain the Jacobian matrix;

see also Equation (S.29) of this electronic supplementary material *)

J=Join[J1,J2];

(* Rank evaluation of the Jacobian matrix *)

MatrixRank[J]

NullSpace[J]

Dimensions[J]

32

https://doi.org/10.1007/s11336-021-09811-z


PSYCHOMETRIKA https://doi.org/10.1007/s11336-021-09811-z

References

Bekker, P. A., Merckens, A., & Wansbeek, T. J. (1994). Identification, equivalent models, and

computer algebra. San Diego, CA: Academic Press.

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological

Methodology , 17 , 37–69. https://doi.org/10.2307/271028

Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: John Wiley &

Sons. https://doi.org/10.1002/9781118619179

Hamilton, J. (1994). Time series analysis. Princeton, NJ: Princeton University Press.

Ito, K., Wada, T., Makimura, H., Matsuoka, A., Maruyama, H., & Saruta, T. (1998). Vector

autoregressive modeling analysis of frequently sampled oral glucose tolerance test results. The

Keio Journal of Medicine, 47 (1), 28–36. https://doi.org/10.2302/kjm.47.28

Lütkepohl, H. (2005). New introduction to multiple time series analysis. Berlin, Germany:

Springer-Verlag. https://doi.org/10.1007/978-3-540-27752-1

Pfaff, B. (2008). VAR, SVAR and SVEC models: Implementation within R package vars.

Journal of Statistical Software, 27 (4). https://doi.org/10.18637/jss.v027.i04

R Core Team. (2019). R: A language and environment for statistical computing [Computer

software manual]. Vienna, Austria. Retrieved from https://www.R-project.org/

Rao, C. (1973). Linear statistical inference and its applications (2nd ed.). New York, NY:

Wiley.

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical

Software, 48 (2), 1–36. https://doi.org/10.18637/jss.v048.i02

Wolfram Research Inc. (2018). Mathematica, Version 11.3 [Computer software manual]. Cham-

paign, IL. Retrieved from https://www.wolfram.com/mathematica

33

https://doi.org/10.1007/s11336-021-09811-z
https://www.R-project.org/
https://www.wolfram.com/mathematica

	Introduction
	Data Generation and Estimation
	Formulae Used in the Illustration Section of the Paper
	Structural Equations Given do-Type Interventions
	Proof of Local Identification
	R Code
	Mathematica Code

