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A Theory of Bayesian Identification

It is known that a Bayesian model is a combination of both a likelihood function and a prior probability
distribution. However, in order to grasp the relevance of identifiability in a Bayesian framework, it seems
useful to recall the general construction of a Bayesian model.

A.1 Construction of a Bayesian model

The starting point for building a Bayesian model is the statistical model. A statistical model involves
three components:

1. The space of observations, commonly called sample space, which is represented by a measurable
space (S,S), where S is the σ-field of subsets of S: S contains the events of interest.

2. A family of probability distributions P a defined on the sample space (S,S), where a is a param-
eter. These probabilities are called sampling probabilities in order to emphasize that a statistical
model specifies the observations.

3. The parameter space A.

Thus, a statistical model is a family of sampling distributions indexed by a parameter, and it is compactly
written as

Es = {(S,S), P a : a ∈ A};

the subscript s emphasizes the fact that a statistical model deals with the sampling process generating the
observations; for details, see Fisher (1922), Cox and Hinkley (1974), Basu (1975), Raoult (1975), Barra
(1981), Florens, Mouchart, and Rolin (1990) and McCullagh (2002). In the context of the statistical
model Es, the parameter a is said to be s-identified if the mapping a 7−→ P a is injective

Remark A.1 The statistical model Ec not only includes the so-called parametric models, but also non-
parametric and semi-parametric models. As a matter of fact, if the parameter space A is (a subset of a)
vector space of finite dimension, then the statistical model is called parametric statistical model; if A
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is (a subset of a) vector space of infinite dimension, then the statistical model is called non-parametric
statistical model; finally, if A is (a subset of a ) cartesian product of a finite dimensional vector space
and an infinite dimensional vector space, then the statistical model is called semi-parametric statistical
model.

Once the statistical model Ec is given, it is necessary to endow the sampling probabilities with a mea-
surability structure at the parameter space level. More specifically, for each observable event W ∈ S ,
it is introduced a σ-field A of subset of the parameter space A such that P •(W ) : A −→ [0, 1] is
A-measurable, that is,

[P •(W )]−1
(
B[0,1]

)
⊂ A for W ∈ S, (A.1)

where B[0,1] denotes the Borel σ-field of [0, 1] and [P •(W )]−1(•) denotes the pre-image of P •(W )
as a function of the parameter. Thus, the sampling probabilities become sampling transitions, namely
P •(•) : A× S −→ [0, 1] such that

1. For each parameter a ∈ A, P a(•) is a sampling probability defined on (S,S).

2. For each observable event W ∈ S, P •(W ) is A-measurable.

Thus, a classical statistical model is obtained, which is compactly written as

Ec = {(S,S), P a : a ∈ (A,A)}.

This structure deserves two fundamental comments:

1. If the sampling transitions {P a : a ∈ (A,A)} are represented through density probability func-
tions {pa : a ∈ (A,A)} –which is valid provided that {P a : a ∈ (A,A)} are dominated by a
σ-finite measure λ (as the Lebesgue measure)–, Ec is equivalently rewritten as

Ec = {(S,S), pa : a ∈ (A,A)}.

The density probability function pa is the likelihood function: it is actually an A-measurable func-
tion from A× S into [0, 1]. In most applications, it is only required that the likelihood function be
continuous (hence, measurable) as a function of the parameter.

2. From (A.1) it follows that the smallest σ-field that makes the sampling probabilities measurable as
a function of the parameter is given by∨

W∈S
[P •(W )]−1

(
B[0,1]

)
, (A.2)

where, for B1 and B2 σ-fields, B1 ∨ B2 denotes the smallest σ-field containing B1 ∪ B2.
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3. To ensure that the sampling probabilities become sampling transitions it is enough to choose the
σ-field A such that it contains (A.2). However, this is precisely the origin of the identification
problem: the modelling challenge is that the parameters are measurable functions of the sampling
transitions, that is,

A ⊂
∨
W∈S

[P •(W )]−1
(
B[0,1]

)
. (A.3)

In this way, the parameters can be considered as representing features of the population of interest.
This statement become explicit if we introduce the theory of Bayesian identification, which in turn
requires defining the concepts of sufficient parameter and minimal sufficient parameter. This will
be done next.

On the parameter space (A,A), we introduce a probability measure µ, typically called prior dis-
tribution. It follows that there exists a unique probability measure Π defined on the product space
(A× S,A ∨ S) such that

Π(E × Y ) =

∫
E
P a(Y )µ(da) E × Y ∈ A× S.

For details and references, see Florens et al. (1990, Chapter 1). By construction, P a becomes a regular
version of the restriction to S of the conditional probability Π given A and, therefore, it is denoted as
PA. The prior distribution µ corresponds to the marginal probability Π(•×S) on (A,A). The marginal
probability on (S,S) given by P (W ) = Π(A×W ) for W ∈ S is called predictive distribution.

The unique probability measure Π can be decomposed into the predictive distribution P and a regular
conditional probability given S, represented by a transition denoted a µS : this is the so-called posterior
transition.

A.2 Conditional independence

In order to develop the theory of Bayesian identification, we need to define the measurable completion
of a σ-field as well as the concept of conditional independence. Let (M,M, P ) be a probability space.
Let M0 = {∅,M} be the trivial σ-field. The completed trivial σ-field M0 is defined as

M0 = {E ∈ M : P (E)2 = P (E)}.

Note that this completed σ-filed is still a sub-σ-field of M because we complete it through measurable
sets of probability 0 or 1 (also called null sets). We also denote, for N a sub-σ-field of M,

N = N ∨M0.

This is the smallest σ-field containing N and the measurable null sets and it is usually called the com-
pleted sub-σ field N .

Let N be a sub-σ-field of M. We denote by [N ]+ the set of positive N -measurable random variables.
Let M1,M2,M3 be sub-σ-fields of M. M1 is independent of M2 conditionally on M3, which we
write as M1 ⊥⊥ M2 | M3, if and only if one of the following equivalent conditions hold:
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1. E(m1m2 | M3) = E(m1 | M3)E(m2 | M3) for all m1 ∈ [M]+1 and m2 ∈ [M]+2 .

2. E(m1 | M2 ∨M3) = E(m1 | M3) for all m1 ∈ [M]+1 .

For a proof, see Florens et al. (1990, Theorem 2.2.1).
The first condition mimics the definition of mutual independence of σ-fields. However, it shows that

the conditional independence M1 ⊥⊥ M2 | M3 is symmetric in M1 and M2. The second condition
provides a semantic meaning of it, namely M1 ⊥⊥ M2 | M3 means that the process generating m1

conditionally on M2 ∨ M3 only depends on M3. As it is well known, this is quite useful when for
specifying a statistical model. But it is not only a semantic interpretation, but also corresponds to a
characterization of the conditional independence in terms of measurability:

M1 ⊥⊥ M2 | M3 ⇐⇒ E(m1 | M2 ∨M3) ∈ [M3]
+ ∀m1 ∈ [M1]

+; (A.4)

that is, the conditional expectation E(m1 | M2 ∨M3) is a.s. a measurable fucntion of M3. Note that
the a.s.-condition involves null sets: this will be critical for defining Bayesian identification. For a proof
of the previous equivalence, see Florens et al. (1990, Theorem 2.2.6).

A.3 Sufficient parameters

The advantage of this general construction is that all sub-σ-field T of S corresponds to a statistics,
whereas all sub-σ-field B of A corresponds to a parameter of interest. If all these σ-fields are generated
by random variables, the Lemma of Dynkin-Doob (Rao, 2005, Chapter 2.1, Proposition 3) ensures this
interpret.

Let B ⊂ A be a parameter of interest. B is a sufficient parameter for S if and only if

S ⊥⊥ A | B. (A.5)

Using the semantic interpretation of a conditional independence, and noticing that B ⊂ A ⇐⇒ A =
A ∨ B, it holds that

1. E(f | A) = E(f | B) for all f ∈ [S]+. That is, the sampling process is fully characterized by the
parameter B, being A non-informative; or, equivalently,

2. E[b | A ∨ S] = E[b | A] for all b ∈ [B]+. That is, conditionally on A, the prior distribution on B
is not updated by the data S.

Once a sufficient parameter have been made explicit, it is possible to find multiples sufficient parameters.
As a matter of fact, using the properties of conditional independence, it follows that

C ⊂ A and Condition (A.5) =⇒ S ⊥⊥ A | B ∨ C,

which means that B ∨ C is also a sufficient parameter for S .
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A.4 Minimal sufficient parameter

This last implication raises the question of how to construct a minimum sufficient parameter, that is, one
that conditionally to A is not updated by the observations and that if there is another sufficient parameter,
the former is a function of the latter. In order to answer this question, let ℑ = {B ⊂ A : S ⊥⊥ A | B}
be the class of all sufficient parameters for S. Since A ∈ ℑ, it follows that ℑ ̸= ∅ and therefore it is
possible to choose two sufficient parameters B1 and B2 ∈ ℑ for S . Using the characterization (A.4), it
follows that

S ⊥⊥ A | B1 ⇐⇒ E(s | A) ∈ [B1]
+ for all s ∈ [S]+,

S ⊥⊥ A | B2 ⇐⇒ E(s | A) ∈ [B2]
+ for all s ∈ [S]+,

from which it follows that

E(s | A) ∈ [B1 ∩ B2]
+ for all s ∈ [S]+ ⇐⇒ S ⊥⊥ A | B1 ∩ B2,

where Bj = Bj ∨ {E ∈ A : µ(E)2 = µ(E)} where µ is the prior probability distribution defined as
µ(E) = Π(E × S). Consequently, the minimal sufficient parameter Bmin ∈ ℑ always exists and it is
given by

Bmin =
⋂
B∈ℑ

B. (A.6)

It is possible to show that Bmin = Bmin. This equality implies that the minimum sufficient parameter
contains all the events of priori probability 0 or 1; these events are sometimes interpreted as dogmatic
beliefs that, in the case of a Bayesian dominated model, are not updated by observations; for a proof, see
Mouchart (1976) and San Martı́n (2018).

The minimal sufficient parameter Bmin can be expressed in an operational terms. As a matter of fact,
since Bmin is a sufficient parameter, if follows from (A.4) that

S ⊥⊥ A | Bmin ⇐⇒ E(s | A) ∈ [Bmin]
+ for all s ∈ [S]+.

But the σ-field generated by every version of the sampling expectations σ{E(s | A) : s ∈ [S]+} is
the smallest sub-σ-field of A which makes measurable those sampling expectations; this follows by the
definition of a σ-field generated by a random variable. Consequently,

σ{E(s | A) : s ∈ [S]+} ⊂ Bmin.

On the other hand, σ{E(s | A) : s ∈ [S]+} ⊂ A. Therefore, by the definition of conditional
independence, it follows that

S ⊥⊥ A | σ{E(s | A) : s ∈ [S]+},
that is, σ{E(s | A) : s ∈ [S]+} is sufficient parameter for S. Consequently,

Bmin ⊂ σ{E(s | A) : s ∈ [S]+}.

Thus, the minimal sufficient parameter is given by σ{E(s | A) : s ∈ [S]+}, which corresponds to the
smallest sub-σ-field of A that makes measurable the sampling expectations.
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A.5 Bayesian identification

Following Florens et al. (1990), a Bayesian model (A×S,A∨S,Π) is said to be b-identified if A is the
minimal sufficient parameter, which means that

A ⊂ σ{E(s | A) : s ∈ [S]+}. (A.7)

This definition deserves the following comments:

1. This concept of b-identification is related to the concept of s-identification. More specifically,
if A is a Blackwell space and S is a separable σ-field, then s-identification always implies b-
identification for all prior distribution defined on (A,A); for details and proofs, see Florens,
Mouchart, and Rolin (1985) and Florens et al. (1990, Chapter 4.6.2). In the context of the models
discussed in the main text, both the sample space and the parameter space are Euclidean spaces
and, therefore, are separable and Blackwell; for details on Blackwell spaces, see Blackwell (1956).

2. Relationship (A.7) shows that a parameter A is b-identified if and only if it is a measurable function
of the minima sufficient parameter; or, equivalently, the parameter A is b-identified if it can be
written as a measurable function of sampling expectations.

3. We have pointed out above that the identification problem arises when a measurability structure
is introduced on the sampling distributions as functions of the parameters. Specifically, the iden-
tification problem is related to the possibility or not of expressing the parameters as functions of
the sampling transitions; see relation (A.3). b-identifiability explicitly is focused on this aspect as
relation (A.7) shows. Moreover, it can be proved that∨

W∈S
[P •(W )]−1

(
B[0,1]

)
∨ {E ∈ A : µ(E)2 = µ(E)} = σ{E(s | A) : s ∈ [S]+}

where µ is the prior probability distribution defined on (A,A); for a proof, see Florens et al. (1990,
Theorem 4.4.12).

4. The previous relation shows that the a priori distribution plays no role in identifiability except
by means of events of prior probability 0 or 1; these probabilities can be interpreted as dogmatic
restrictions. Consequently, it is not correct to state that a “good or correct prior elicitation” can
overcome the identification problems.

5. Identifiability is rather related to the minimal sufficient parameter, which by definition captures all
the information provided by the sampling process. In our view, this perfectly fits the Likelihood
Principle: For a given model the only information the data S contains about the parameter a is
given by the likelihood function (Lindley, 1983).

6. Moreover, the minimal sufficient parameter (or the b-identified parameter) is the only one which is
updated by the data. As a matter of fact, let C ⊂ A a parameter of interest, which is not necessarily
a sufficient parameter. The sufficiency of Bmin implies that S ⊥⊥ C | Bmin. Therefore,

E(c | S) = E[E(c | Bmin ∨ S) | S] = E[E(c | Bmin) | S] for all c ∈ [C]+,
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where the first equality follows from the iterative property of the conditional expectation (Rao,
2005, Chapter 2.2, Proposition 1) and the second one follows from the sufficiency of Bmin. It can
be seen that in a Bayesian model it is not possible to learn by the observations of any parameter
except the identified one. Moreover, what is learned by observations of any other parameter is
reduced to the learning of the identified parameter.

7. This theory of b-identification has been used to correct claims that it is possible to update uniden-
tified parameters and that, therefore, the Bayesian framework can make inferences that are impos-
sible in the sampling theory framework. Some examples are the following:

(a) Poirier (1998), in a series of examples, illustrates how it is possible to update unidentified
parameters. Two of these examples are discussed in San Martı́n, Rolin, and Castro (2013):
a basic case in Poirier (1998, Section 3.1) and a hierarchical model in Poirier (1998, Sec-
tion 3.2). In the first example, the reasoning error lies in modifying the sampling process by
marginalizing a nuisance parameter. However, Bayesian inference begins by fixing a sam-
pling process, which cannot be subjectively changed unless the research question is modified.
The second example intends to show that it is possible to calculate the a posteriori distribu-
tion of an unidentified parameter and, consequently, to update it. However, San Martı́n et al.
(2013) show that such a posteriori distribution is a function of the a posteriori distribution
of the identified parameter. Let us mention that this example has been used to claim that
the behavior of Markov chains in a Gibbs procedure is affected by the lack of identifiability;
see, among many others, Kass, Carlin, Gelman, and Neal (1998), Carlin and Louis (2000),
Eberly and Carlin (2000) and Xie and Carlin (2006). However, this perspective is erroneous:
identifiability has nothing to do with the convergence of the Gibbs sampler; for a discussion,
see San Martı́n et al. (2013, Section 5.2).

(b) “Unidentifiability causes no real difficulty in the Bayesian framework”, claimed Lindley
(1983). In this line, Wechsler, Izbicki, and Esteves (2013) discuss a simple example where
it is possible to compute the posterior distribution of an unidentified parameter and to make
inferences. The example can be related to classification through a diagnostic test. How-
ever, using the characterization of minimal sufficient parameter when the parameter space
is discrete (San Martın & González, 2010, Section 3), San Martı́n (2018) show that such a
posterior distribution is the posterior distribution of the identified parameter. Consequently,
unidentifiability causes real difficulty in the Bayesian framework also.

Let us finish this section by pointing out that part of this theory has been presented in the psychometric
literature by San Martı́n, Jara, Rolin, and Mouchart (2011).

A.6 Consequences for the present manuscript

The main text deals with the specification of a cohort varying, temporally dynamic, value-added models.
Such a specification is motivated by the theory above presented in at least two aspects:
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1. The specification of the likelihood function or sampling distribution. As discussed above, a
Bayesian model is constructed by fixing the sampling process, by introducing a measurement
structure over the sampling distributions and finally by endowing the parameter space with a pri-
ori probability distribution. As it is discussed in the main text, value-added models are typically
specified either in a fixed-effect framework or in a random -effect one. Under the first approach,
the school effect is a parameter of the likelihood function. However, under the second approach,
it corresponds to a unobserved random variable and consequently the likelihood function is ob-
tained after integrating out the school effect. Motivated by the meaning of a school underlying
random-effect paradigm, we specify a Bayesian model such that the likelihood function or sam-
pling process corresponds to the distribution which is obtained after integrating out the school
effect. The parameters of this distribution are accordingly endowed with the prior specification.
At the estimation level, we work in the structural model generating jointly the observations and
the random effects, conditionally on the covariates. However, at this level, the Bayesian infer-
ence is done on the identified parameters. Let us remark that if the distributions of school effects
are viewed as priori distributions, the corresponding Bayesian specification and the subsequent
inference is the counterpart of a fixed-effect model.

2. The identification analysis developed in the main text is essentially based on the Bayesian concept
of identification. As a matter of fact, after inducing the likelihood function, the identifiability of the
parameters of interest is obtained by proving that they are function of both the conditional expec-
tation and conditional variance-covariance matrix of the likelihood. Note that all the information
provided by the sampling process is a function of the two first moments because the likelihood
function is a normal distribution.

3. Finally, the statistical meaning of the parameters of interest as well as of the value-added indi-
cators is based on an identifiability analysis. This is in agreement with the Likelihood Principle
which, according to pur discussion of Bayesian identifiability, fits the very nature of parameter
identification.

B Choosing Between Fixed-Effects and Random-Effects Models: A Pro-
posed Modelling Criterion

Value-added models can be approached from two perspectives: fixed effects and random effects. In this
paper, we adopt the latter. The question arises: how should we decide between these two approaches? To
address this query, let’s delve into a standard value-added model that delineates the association between
a ni-dimensional vector Yi of measurements from school i, incorporating both a school effect αi and an
ni × p matrixXi of covariates (excluding a column of 1’s). The model is expressed as follows:

Yi =Xiβ + αiıni + ϵi, ϵi ∼ N (0, σ2Ini). (B.1)

As widely recognized, this specification embodies a random-effects model if the school effect αi is ran-
dom. In such instances, (B.1) should be incorporated within a marginal-conditional framework, defined
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by:

(i) (Yi |Xi, αi) ∼ N (Xiβ + αiıni , σ
2Ini);

(ii) (αi |Xi)
iid∼ N (ϕ0, τ

2), i = 1, . . . , I;
(iii) Xi is left unspecified.

(B.2)

This specification yields a statistical model that explicates the generation of observable data only:

(Yi |Xi) ∼ N (ϕ0ın1 +Xiβ, τ
2Jn1 + σ2In1), (B.3)

where Jn1 = ın1ı
′
n1

, In1 is the n1 × n1 identity matrix, and ın1 is a n1-dimensional vector of 1’s.
It is well-established that this model implies correlation between the scores of two examinees:

cor(Yij , Yik |Xi) =
τ2

τ2 + σ2
, j ̸= k.

This correlation is induced by the school effect due to:

cov(Yij , Yik |Xi) = cov[E(Yij | αi,Xi), E(Yik | αi,Xi) |Xi] + E[cov(Yij , Yik | αi,Xi) |Xi]

= Var(αi |Xi) + 0,

where the component equal to 0 is implied by (B.2.i).
This equality leads to the characterization of the school effect: αi explains the unexplained hetero-

geneity in the Yij scores that is not accounted for by the covariatesXi. Consequently, under the random
effects approach, schools are perceived as entities that introduce heterogeneity in students’ achievements
as measured by test scores Yij (after adjusting for observable covariates at both student and school levels).
If we accept this characterization of a school, then the random-effects approach is preferable.

Conversely, if αi in (B.1) is considered fixed, then the corresponding statistical model is:

(Yi |Xi) ∼ N (Xiβ + αiın1 , σ
2Ini). (B.4)

It is evident that the statistical model (B.4) diverges significantly from (B.3). In particular, in (B.4), the
school effect only influences the predicted score of Yij , adding the same quantity to the predicted scores
of all examinees. This implies that, under this approach, schools are characterized by a common feature:
each school acts as an entity that has the same effect on student achievements by adding an additive
factor, but it does not establish relationships between these scores. If we accept this characterization of a
school, then we should opt for a fixed-effects approach.

C Joint distribution for the case of T = 2 cohorts

For T = 2, the following arguments prove relationships (2.10)-(2.12) of the main text. The modelling
process is based on the following marginal-conditional decomposition, which is displayed taking into

9



account the temporal order of the phenomenon:

p(Y2i,Y1i,X2i,X1i, α2i, α1i,ψ2,ψ1) = p(Y2i | Y1i,X2i,X1i, α2i, α1i,ψ2,ψ1)× p(α2i | Y1i,X2i,X1i, α1i,ψ2,ψ1)×
p(Y1i |X2i,X1i, α1i,ψ2,ψ1)× p(α1i |X2i,X1i,ψ2,ψ1)×
p(X2i,X1i | ψ2,ψ1)× p(ψ2,ψ1)

= p(Y2i |X2i, α2i,β2, σ
2
2)× p(α2i | Y1i, α1i, ϕ02, ϕ12, γ2, τ

2
2 )×

p(Y1i |X1i, α1i,β1, σ
2
1)× p(α1i | ϕ01, τ21 )× p(X2i,X1i)× p(ψ2,ψ1).

The second equality allows us to make explicit the structural assumptions underlying the model:

(i) Y2i ⊥⊥ Y1i,X1i, α1i,ψ2,ψ1 |X2i, α2i,β2, σ
2
2;

(ii) α2i ⊥⊥ X2i,X1i,ψ2,ψ1 | Y1i, α1i, ϕ02, ϕ12, γ2, τ
2
2 ;

(iii) Y1i ⊥⊥ X2i,ψ2,ψ1 |X1i, α1i,β1, σ
2
1;

(iv) α1i ⊥⊥ X2i,X1i,ψ2,ψ1 | ϕ01, τ
2
1 ;

(iv) X1i,X2i ⊥⊥ ψ2,ψ1.

(C.1)

The specification of the model is completed by the following assumptions:

(i) (Y2i |X2i, α2i,β2, σ
2
2) ∼ N (X2iβ2 + α2iın2i , σ

2
2In2i)

(ii) (α2i | Y1i, α1i, ϕ02, ϕ12, γ2, τ
2
2 ) ∼ N (ϕ02 + ϕ12α1i + γ2 Y 1i•, τ

2
2 (1− ϕ2

12))

(iii) (Y1i |X1i, α1i,β1, σ
2
1) ∼ N (X1iβ1 + α1iın1i , σ

2
1In1i)

(iv) (α1i | ϕ01, τ
2
1 ) ∼ N (ϕ01, τ

2
1 )

(v) The distribution of (X2i,X1i) remains unspecified

(vi) (ψ2,ψ1) ∼ πψ.

(C.2)

Conditions (C.1) and (C.2) corresponds to conditions (2.1)-(2.9) of the main text for T = 2.
In what follows, we obtain the joint distribution of (Y2i,Y1i, α2i, α1i | X2i,X1i,ψ2,ψ1), which is

normal. Each component of the mean is computed as follows:

• E(α1i | X2i,X1i,ψ2,ψ1) = E(α1i | ϕ01, τ
2
1 ) = ϕ01 by successively applying (C.1.iv) and

(C.2.iv).
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• Applying successively (C.1.iii), (C.2.iii), (C.1.iv) and (C.2.iv) we obtain

E(Y1i |X1i,X2i,ψ2,ψ1) = E[E(Y1i |X1i,X2i, α1i,ψ2,ψ1) |X1i,X2i,ψ2,ψ1]

= E[E(Y1i |X1i, α1i,β1, σ
2
1) |X1i,X2i,ψ2,ψ1]

= E[X1iβ1 + α1iın1i |X1i,X2i,ψ2,ψ1]

= X1iβ1 + E[α1iın1i |X1i,X2i,ψ2,ψ1]

= X1iβ1 + E[α1iın1i | ϕ01, τ
2
1 ]

= X1iβ1 + ϕ01ın1i .

• Applying successively (C.1.ii), (C.2.ii), (C.1.iv), (C.2,iv) and the previous result, we obtain

E(α2i |X1i,X2i,ψ2,ψ1) = E[E(α2i | Y1i, α1i,X1i,X2i,ψ2,ψ1) |X1i,X2i,ψ2,ψ1]

= E[E(α2i | Y1i, α1i, ϕ02, ϕ12, γ2, τ
2
2 ) |X1i,X2i,ψ2,ψ1]

= E[ϕ02 + ϕ12α1i + γ2 Y 1i• |X1i,X2i,ψ2,ψ1]

= ϕ02 + ϕ12ϕ01 + γ2E(Y 1i• |X1i,X2i,ψ2,ψ1)

= ϕ02 + ϕ12ϕ01 +
γ2
n1i

ı′n1i
E(Y1i |X1i,X2i,ψ2,ψ1)

= ϕ02 + ϕ12ϕ01 +
γ2
n1i

ı′n1i
[ϕ01ın1i +X1iβ1]

= [ϕ02 + (ϕ12 + γ2)ϕ01] + γ2X1i•β1,

where X1i• =
1
n1i

ı′n1i
X1i is a 1× p1 vector of means at the school level and, therefore, X1i•β1 is

a 1× 1 matrix.

• Applying successively (C.1.i), (C.2.i) and the previous result, we obtain

E(Y2i |X1i,X2i,ψ2,ψ1) = E[E(Y2i | Y1i, α1i,X1i,X2i,ψ2,ψ1) |X1i,X2i,ψ2,ψ1]

= E[E(Y2i |X2i, α1i,β2, σ
2
2) |X1i,X2i,ψ2,ψ1]

= E[X2iβ2 + α2iın2i |X1i,X2i,ψ2,ψ1]

= X2iβ2 + E(α2i |X1i,X2i,ψ2,ψ1)ın2i

= X2iβ2 + [ϕ02 + (ϕ12 + γ2)ϕ01]ın2i + γ2X1i•β1ın2i .

Consequently, the mean of (Y ′
2i,Y

′
1i, α2i, α1i |X2i,X1i,ψ2,ψ1)

′ is given by
{ϕ02 + ϕ01(ϕ12 + γ2)}ın2i +X2iβ2 + γ2X1i•β1ın2i

ϕ01ın1i +X1iβ1

{ϕ02 + ϕ01(ϕ12 + γ2)}+ γ2X1i•β1

ϕ01

 .

Now, let compute each element of the variance-covariance matrix:

11



• V ar(α1i |X1i,X2i,ψ1,ψ2) = τ21 by (C.1.iv) and (C.2.iv).

• Applying successively (C.1.iii) and (C.2.iii), we obtain

V ar(Y1i |X1i,X2i,ψ1,ψ2) = V ar[E(Y1i | α1i,X1i,X2i,ψ1,ψ2) |X1i,X2i,ψ1,ψ2] +

+E[V ar(Y1i | α1i,X1i,X2i,ψ1,ψ2) |X1i,X2i,ψ1,ψ2]

= V ar[E(Y1i | α1i,X1i,β1, σ
2
1) |X1i,X2i,ψ1,ψ2] +

+E[V ar(Y1i | α1i,X1i,β1, σ
2
1) |X1i,X2i,ψ1,ψ2]

= V ar(α1iın1i |X1i,X2i, ϕ01, τ
2
1 ) + σ2

1In1i

= τ21 Jn1i + σ2
1In1i

where Jn1i = ın1i ı
′
n1i

.

• Applying successively (C.1.iii), (C.2.iii), (C.1.iv) and (C.2.iv) we obtain

cov(Y1i, α1i |X1i,X2i,ψ1,ψ2) = cov[E(Y1i | α1i,X1i,X2i,ψ1,ψ2),α1i |X1i,X2i,ψ1,ψ2]

= cov[E(Y1i | α1i,X1i,β1, σ
2
1),α1i |X1i,X2i,ψ1,ψ2]

= cov(α1iın1i , α1i |X1i,X2i, ϕ01, τ
2
1 )

= τ21 ın1i .

• Applying successively (C.1.ii), (C.2.ii), (C.1.iii) and the previous results, we obtain

cov(Y1i, α2i |X1i,X2i,ψ1,ψ2) = cov[Y1i, E(α2i | Y1i, α1i,X1i,X2i,ψ1,ψ2) |X1i,X2i,ψ1,ψ2]

= cov[Y1i, E(α2i | Y1i, α1i, ϕ02, ϕ12, γ2, τ
2
2 ) |X1i,X2i,ψ1,ψ2]

= cov(Y1i, ϕ12α1i + γ2 Y 1i• |X1i,X2i,ψ1,ψ2]

= ϕ12cov(Y1i, α1i |X1i,X2i,ψ1,ψ2) +

γ2cov(Y1i, Y 1i• |X1i,X2i,ψ1,ψ2)

= ϕ12τ
2
1 ın1i +

γ2
n1i

cov(Y1i,Y
′
1iın1i |X1i,X2i,ψ1,ψ2)

= ϕ12τ
2
1 ın1i +

γ2
n1i

V (Y1i |X1i,X2i,β, σ
2
1)ın1i

= ϕ12τ
2
1 ın1i +

γ2
n1i

[
τ21 Jn1i + σ2

1In1i

]
ın1i

=

[
ϕ12τ

2
1 + γ2

(
τ21 +

σ2
1

n1i

)]
ın1i .

• Applying successively (C.1.ii), (C.2.ii), (C.1.iv), (C.2.iv), (C.1.iii), (C.2.iii) and the previous re-

12



sults, we obtain

V ar(α2i |X1i,X2i,ψ1,ψ2) = V ar[E(α2i | Y1i, α1i,X1i,X2i,ψ1,ψ2) |X1i,X2i,ψ1,ψ2] +

E[V ar(α2i | Y1i, α1i,X1i,X2i,ψ1,ψ2) |X1i,X2i, ,ψ1,ψ2]

= V ar[E(α2i | Y1i, α1i, ϕ02, ϕ12, γ2, τ
2
2 ) |X1i,X2i] +

E[V ar(α2i | Y1i, α1i) |X1i,X2i, ϕ02, ϕ12, γ2, τ
2
2 ]

= V ar[ϕ12α1i + γ2 Y 1i• |X1i,X2i, ,ψ1,ψ2] + τ22 (1− ϕ2
12)

= ϕ2
12 τ

2
1 + γ22V ar

[
1

n1i
ı′n1i
Y1i |X1i,X2i, ,ψ1,ψ2

]
+

2ϕ12γ2 cov

[
α1i,

1

n1i
Y ′
1iın1i |X1i,X2i, ,ψ1,ψ2

]
+ τ22 (1− ϕ2

12)

= ϕ2
12 τ

2
1 +

γ22
n2
1i

ı′n1i
V ar(Y1i |X1i,X2i,β1, σ

2
1)ın1i +

2ϕ12
γ2
n1i

cov(α1i,Y
′
1i |X1i,X2i,ψ1,ψ2)ın1i + τ22 (1− ϕ2

12)

= ϕ2
12 τ

2
1 +

γ22
n2
1i

ı′n1i

[
τ21 Jn1i + σ2

1In1i

]
ın1i +

2ϕ12
γ2
n1i

τ21 ı
′
n1i

ın1i + τ22 (1− ϕ2
12)

= ϕ2
12 τ

2
1 + γ22τ

2
1 + γ22

σ2
1

n1i
+ 2ϕ12γ2τ

2
1 + τ22 (1− ϕ2

12)

= τ21 (ϕ12 + γ2)
2 + γ22

σ2
1

n1i
+ τ22 (1− ϕ2

12)

• Applying successively (C.1.ii), (C.2.ii) and the previous results, we obtain

cov(α2i, α1i |X1i,X2i,ψ1,ψ2) = cov[E(α2i | Y1i, α1i,X1i,X2i,ψ1,ψ2), α1i |X1i,X2i,ψ1,ψ2]

= cov[E(α2i | Y1i, α1i, ϕ02, ϕ12, γ2, τ
2
2 ), α1i |X1i,X2i,ψ1,ψ2]

= cov(ϕ12α1i + γ2 Y 1i•, α1i |X1i,X2i,ψ1,ψ2)

= ϕ12τ
2
1 +

γ2
n1i

ı′n1i
cov(Y1i, α1i |X1i,X2i,ψ1,ψ2)

= ϕ12τ
2
1 +

γ2
n1i

ı′n1i
ın1iτ

2
1

= τ21 (ϕ12 + γ2)

• Applying successively (C.1.i), (C.2.i) and the previous results, we obtain

cov(Y2i, α1i |X1i,X2i,ψ1,ψ2) = cov[E(Y2i | α1i, α2i,X1i,X2i,ψ1,ψ2), α1i |X1i,X2i,ψ1,ψ2]

= cov[E(Y2i | α2i,X2i,β2, σ
2
2), α1i |X1i,X2i,ψ1,ψ2]

= cov(α2iın2i , α1i |X1i,X2i,ψ1,ψ2)

= τ21 (ϕ12 + γ2)ın2i

13



• Applying successively (C.1.i), (C.2.i) and the previous results, we obtain

cov(Y2i, α2i |X1i,X2i,ψ1,ψ2) = cov[E(Y2i | α2i,X1i,X2i,ψ1,ψ2), α2i |X1i,X2i,ψ1,ψ2]

= cov[E(Y2i | α2i,X2i,β2, σ
2
2), α2i |X1i,X2i,ψ1,ψ2]

= cov(α2iın2i , α2i |X1i,X2i,ψ1,ψ2)

=

[
τ21 (ϕ12 + γ2)

2 + γ22
σ2
1

n1i
+ τ22 (1− ϕ2

12)

]
ın2i .

• Applying successively (C.1.i), (C.2.i) and the previous results, we obtain

cov(Y2i,Y1i |X1i,X2i,ψ1,ψ2) = cov[E(Y2i | Y1i, α2i,X2i,X1i,ψ1,ψ2),Y1i |X1i,X2i,ψ1,ψ2]

= cov[E(Y2i | α2i,X2i,β2, σ
2
2),Y1i |X1i,X2i,ψ1,ψ2]

= cov(α2iın2i ,Y1i |X1i,X2i,ψ1,ψ2)

=

[
ϕ12τ

2
1 + γ2

(
τ21 +

σ2
1

n1i

)]
ın2iı

′
n1i

• Applying successively (C.1.i), (C.2.i) and the previous results, we obtain

V ar(Y2i |X1i,X2i,ψ1,ψ2) = V ar[E(Y2i | α2i,X1i,X2i,ψ1,ψ2) |X1i,X2i,ψ1,ψ2] +

+E[V ar(Y2i | α2i,X1i,X2i,ψ1,ψ2) |X1i,X2i,ψ1,ψ2]

= V ar[E(Y2i | α2i,X2i,β2, σ
2
2) |X1i,X2i,ψ1,ψ2] +

+E[V ar(Y2i | α2i,X2i,β2, σ
2
2) |X1i,X2i,ψ1,ψ2]

= V ar(α2iın2i |X1i,X2i,ψ1,ψ2) + σ2
2In2i

=

[
τ21 (ϕ12 + γ2)

2 + γ22
σ2
1

n1i
+ τ22 (1− ϕ2

12)

]
Jn2i + σ2

2In2i

Consequently, the variance-covariance matrix of (Y ′
2i,Y

′
1i, α2i, α1i |X2i,X1i,ψ1,ψ2)

′ is given by
ω2i Jn2i + σ2

2In2i δ12i ın2iı
′
n1i

ω2iın2i (ϕ12 + γ2)τ
2
1 ın2i

τ21Jn1i + σ2
1In1i δ12 ın1i τ21 ın1i

ω2i (ϕ12 + γ2)τ
2
1

τ21

 , (C.3)

where

ω2i
.
= τ21 (ϕ12 + γ2)

2 +
γ22σ

2
1

n1i
+ τ22 (1− ϕ2

12), δ12i
.
= ϕ12τ

2
1 + γ2

(
τ21 +

σ2
1

n1i

)
. (C.4)

D Joint distribution for the general case T > 3

The preceding derivations provide the key to obtaining recursive equations for deriving the full distribu-
tion of Y t

1,i given (Xt
1i,ψ

T
1 ), which is a normal one. Its expectations are given by

E(Yti |XT
1i,ψ

T
1 ) = E(E(Yti |XT

1i, αti,ψ
T
1 ) |XT

1i,ψ
T
1 ) =Xtiβt + E(αti |XT

1i,ψ
T
1 )ιnti

14



for every t = 1, . . . , T . The sequential model (2.1)–(2.11) enables us to derive a recursive formula for
the conditional expectation of the random effect, which is

E(αti |XT
1i,ψ

T
1 ) = ϕ0t +

t∑
ℓ=2

t∏
k=ℓ

(ϕ1k + γk)ϕ0,ℓ−1

+ γtXt−1,iβt−1 +
t∑

ℓ=2

t∏
k=ℓ

(ϕ1k + γk)γℓ−1Xℓ−2,iβℓ−2

that holds true for every t = 3, . . . , T . The expectations for t = 1 and t = 2 have been provided in the
previous section. The derivation of the general formula for t > 2 follows using the techniques detailed
in the previous section.

For every 1 ⩽ s < t ⩽ T and from the sequential model (2.1)–(2.11) with similar techniques we
derive

cov(Ysi,Yti |XT
1i | ψT1 ) = cov(αti, αsi |Xt

1i,ψ
T
1 )ιntiι

t
nsi

=
t−s−1∏
k=0

(ϕ1,t−k + γt−k)V (αt−1,i |Xt
1i,ψ

T
1 )ιntiι

t
nsi

.

Similarly we derive the recursive equations on the variance of random effects. Denote at = V (αti |
Xt

1i,ψ
T
1 ) (for a fixed school i), then we can derive

at = (ϕ1t + γt)
2at−1 + n−1

t−1,iγ
2
t σ

2
t−1 + τ2t (1− ϕ2

1t) .

for every t > 2 (a1 and a2 were derived in the Section C). An explicit solution is given by

V (αti |Xt
1i,ψ

T
1 ) = V (α1i |Xt

1i,ψ
T
1 )

t−1∏
k=0

At−k +
t−2∑
k=0

k−1∏
l=−1

At−lBt−k

where Ak = (ϕ1,t−k+γt−k)
2 and Bk = n−1

t−k−1,iγ
2
t−kσ

2
t−k−1+τ2t−k(1−ϕ2

1,t−k) for every 0 ⩽ k ⩽ t−1
and A−1 = 1.

E Computation of (2.24)–(2.27)

In order to simplify the notation, let us denote V Ati(Xti) as V Ati for t = 1, 2. Then

E(V A2i | V A1i,X
2
1,i,ψ

2
1) = E

[
α2i − [ϕ02 + ϕ01(ϕ12 + γ2)]−

γ2
n2i

β′
1

n2i∑
j=1

E(X
′
1i• |X2ij) | V A1i,X

2
1,i,ψ

2
1

]

= E
[
α2i | V A1i,X

2
1,i,ψ

2
1

]
− [ϕ02 + ϕ01(ϕ12 + γ2)]−

γ2
n2i

β′
1

n2i∑
j=1

E(X
′
1i• |X2ij)

= E
[
α2i | α1i,X

2
1,i,ψ

2
1

]
− [ϕ02 + ϕ01(ϕ12 + γ2)]−

γ2
n2i

β′
1

n2i∑
j=1

E(X
′
1i• |X2ij)
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because the σ-field generated by {V A1i,X
2
1,i,ψ

2
1} is equivalent to the σ-field generated by {α1i,X

2
1,i,ψ

2
1}.

Now

E(α2i | α1i,X
2
1,i,ψ

2
1) = E

[
E(α2i | α1i,Y1i,X

2
1,i,ψ

2
1) | α1i,X

2
1,i,ψ

2
1

]
= E

[
ϕ02 + ϕ12α1i + γ2 Y 1i• | α1i,X

2
1,i,ψ

2
1

]
= ϕ02 + ϕ12α1i +

γ2
n1i

ı′n1i
E(Y1i | α1i,X

2
1,i,ψ

2
1)

= ϕ02 + ϕ12α1i +
γ2
n1i

ı′n1i
(X1iβ1 + ın1iα1i)

= ϕ02 + (ϕ12 + γ2)α1i + γ2X1i•β1.

It follows that

E(V A2i | V A1i,X
2
1,i,ψ

2
1) = (ϕ12 + γ2)(α1i − ϕ01) +

γ2
n2i

n2i∑
j=1

[
X1i• − E(X1i• |X2ij)

]
β1

= (ϕ12 + γ2)V A1i +
γ2
n2i

n2i∑
j=1

[
X1i• − E(X1i• |X2ij)

]
β1,

obtaining this (2.24); here we use the fact that

β′
1X

′
1i• =

(
β′
1X

′
1i•

)′
=X1i•β1

since β′
1X

′
1i• is of dimension 1× 1.

Equality (2.25) follows from the following arguments:

V ar
[
E(V A2i | V A1i,X

2
1,i,ψ

2
1) |X2

1,i,ψ
2
1

]
= V ar

[
(ϕ12 + γ2)V A1i |X2

1,i,ψ
2
1

]
= V ar

[
(ϕ12 + γ2)α1i |X2

1,i,ψ
2
1

]
= τ21 (ϕ12 + γ2)

2.

Similarly, (2.26) follows from the following argument:

V ar
[
V A2i |X2

1,i,ψ
2
1

]
= V ar

[
α2i |X2

1,i,ψ
2
1

]
= ω2i.

Finally, (2.27) follows because E
[
V A2i | V A1i,X

2
1,i,ψ

2
1

]
and V A2i−E

[
V A2i | V A1i,X

2
1,i,ψ

2
1

]
are

always orthogonal: it is enough to recall that a conditional expectation is a orthogonal projection in the
Hilbert space L2, which underlies our approach.
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