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Throughout the appendix we use several properties of conditional expectations and measure-theory,

which are stated in Appendix K for completeness.

APPENDIX A. A SIMPLE AND PRACTICALLY ORIENTED NUMERICAL ILLUSTRATION

In this section, we consider a simple simulation-based illustration using a very simple model sum-
marized in Figure 7. Example code in how to estimate the nonlinear trend using Bartlett factor scores
utilizing LOESS is given at the end of this section.
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FIGURE 7. An example SEM path diagram, where arrows between latent vari-

ables and manifest variables indicate linear relationships, while arrows among
latent variable indicate possible nonlinear relations. Residuals and measure-

ment errors are not shown for simplicity, but are present in the model.

The arrow between &1 and 71 denote an influence, and it may be non-linear. Its equation is
m = H(&) + ¢, &1,~N(0,1),¢1 ~ N(0,.34) and independent of each other.
Linear SEM assumes H(z) = y1z. Instead, we will assume
H(z) = —0.54 0.4z + 0.5 % z°

which is a clearly non-linear quadratic trend. The chosen parameters further imply Var n = 1.

The measurement model is linear, and given by
Ti = A2,i1 + €z, Yi = Ay + ey, 1=1,2,3.

We let Az,1 = Ay,1 = 1 fixed for identification and let Az 2 = Ay,2 = .65 and Az 3 = Ay,3 = .5. Further
let e, ~ N(0,¥,) and &, ~ N(0,¥,), with Cov e, = ¥, = Cov e, = ¥, = diag(.5625,.5775,.75),
where diag stacks the vector onto the diagonal of a corresponding square matrix. This is the same
model setting as chosen for the simulation study, further described in Section 4 and Appendix D.

We drew a sample with sample-size n = 200. The simulated values of (11,£1) are shown in Figure
8. Standard linear SEM goodness of fit measures report Xifzg = 10.11,p = 0.257, RMSFEA = 0.036,
SRMR = 0.030, CFI = 0.990, indicating an appropriate fit. This failure of standard linear SEM
estimations to detect non-linear deviations from the model is well-known, see e.g. Mooijaart and

Satorra (2009). The trend we have chosen for the illustration is of a simple quadratic kind. There are
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available tools to detect missing quadratic or interaction terms in SEM, such as the specification test
of Nestler (2015) or significance tests for non-linear SEM (Biichner & Klein, 2020). We here illustrate
how the non-linear trend can be detected using trend estimates based on factor scores.
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FIGURE 8. Simulated values of (11, &;) with the true trend H.

The data plotted in Figure 8 will never be known to us, and we need to use the manifest variables
Z1,T2,T3,Y1,Y2,ys to approximate the latent variables. In Figure 9, we have plotted the Bartlett factor
scores with trend estimates using the locally estimated scatterplot smoothing (LOESS) originating from
its weighted version (LOWESS, Cleveland et al., 1992) proposed by Cleveland (1979, Cleveland, 1981),
the cross-validated adaption of the local polynomial estimator by Delaigle et al. (2009, DFC-estimator)
proposed by Huang and Zhou (2017): the HZ-estimator (HZ for local linear estimators for solving errors-
in-variables problems, see Appendix D.3 for more details) specifically tailored for Bartlett factor scores
assuming normality of the prediction residual of the score (see Section 3 for further information), and
the nonlinear factor scores of Kelava et al. (2017) complemented by their implementation of a specific
BSpline (De Boor, 1978) method. In this particular simulation, the LOESS(BFS) has the least mean
integrated square error to the true trend line H, then HZCV(BFS), and finally BSpline(NLFS).

The plotted points of Figure 9 will only be an approximation to the true latent variables f in Figure
8 due to the relation f = f + r for the BFS. Individual realizations of the factors are not possible
to re-gain exactly (for an overview of factor score indeterminacy see, e.g., Grice, 2001), even in the
population. We caution against taking the individual factor scores as equal to the factors. The observed
differences between Figures 8 and 9 illustrate the type of difference one might expect in an empirical
study.

When studying the difference between the latent variables (Figure 8) and their approximation (Fig-
ure 9), it is clear that with a low sample size (n = 200) and a low number of measurement variables
(three per latent variable), there is a large degree of approximation error. Yet both LOESS(BFS)
and HZCV(BFS) clearly indicate that a non-linear trend appears needed, and that a quadratic trend



NON-PARAMETRIC REGRESSION AMONG FACTOR SCORES A3

;
’
1 7 Factor
/7 BFS
’
m 3
< & ‘
= N <4 Method
0 . 4
N, e BSpline(NLFS)
N 3 HZCV(BES)
X = LOESS(BFS)
TN == True
-1
-1 0 1
LA
Egrs

FIGURE 9. Estimated values (7'7'1,5.1) using Bartlett factor scores with the
true trend H (True) and estimated trends using LOESS based on BFS
(LOESS(BFS)), BSpline estimator based on NLFS (BSpline(NLFS)), and the
cross-validated HZ-estimator based on BFS (HZCV(BFS)) for n = 200.

appears reasonable. This is less apparent based on BSpline(NLFS), which did not work well in this
particular simulation.

The following R code uses lavaan (Rosseel, 2012) to estimate LOESS(BF'S) for this two factor model,
where & influences 71, all measured by three observations as represented by Figure 7. As per default
in lavaan, the latent mean per latent variable is fixed to zero, we manually overwrite this by fixing the
first manifest mean per latent variable to zero and freely estimating the latent means. This ensures
that the BFS are allowed to have means which is necessary for the nonparametric trend to converge
towards the population trend and not a linear combination thereof. The code to estimate all other
trends as well as the code resulting in the figures and the data of this section are given in the online

supplementary materials.
# fit model
model <- "

# measurement model formulation

Xil =" 1*x1 + x2 + x3
Etal =" 1*xyl + y2 + y3
Xi1 ~~ Etal

# fix first intercept per latent to zero for scaling
x1 70
y1 "0

# estimate latent means freely
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Xi1 ~1

Etal "1

n

fit <- lavaan::sem(model, data)

BFS <- as.data.frame(lavaan::lavPredict(fit, method = "Bartlett"))

# fit LOESS(BFS)
fitLOESS <- loess(Etal ~ Xil, data = BFS)
LOESS_BFS <- predict(£itLOESS)

# plot data

df <- data.frame(LOESS_BFS, BFS)

library(ggplot2)

ggplot(data = df, mapping = aes(x = Xil, y = LOESS_BFS)) +
geom_line()+

geom_point (mapping = aes(x = Xil, y = Etal))

APPENDIX B. NON-PARAMETRIC REGRESSION AMONG FACTOR SCORES FOR A FULL SEM: A
COMPONENT-WISE APPROACH

For a given SEM, the non-parametric estimation methodology developed in this paper can be used to
produce component-wise estimates of the influences onto each endogenous variable in the model. This
can be achieved by taking each endogenous component of the model, and estimating non-parametrically
its regression function using all variables that influence it as explanatory variables. Since this may
include variables that are endogenous in the full system, the explanatory variables of each step in the
component-wise estimates may be a mixture of both exogenous and endogenous variables.

In this section, we consider this procedure via illustrations following the SEM given in Figure 10.
We will illustrate the differences and similarities between considering the reduced form of the SEM and
a component-wise perspective through some example calculations.

In this example model we have one exogenous variable £ = £; and three endogenous variables
n = (n1,n2,m3)" in the full system. The reduced form representation of the whole system is the
conditional expectation of all endogenous variables given the exogenous variable £; distorted by noise

¢= (1,6, G)

n=(m,n2,m3) = H(&)+ ¢ E[|&a] =0,
where H : R+ R® is H(z) = E[n|¢& = z]. This reduced form representation considers how & = &
influences 7.

In contrast, we may use the structural model from Figure 10. By the existence of the conditional

expectations, we have that there exists functions H, ff% Hs with

m=Hi(&)+ G, E[Ql&a]=0,
me = Ha(&1,m) + G2, E[G2|é1,m] =0,
ns = Hs(&,m,m2) + ¢ E[Csl€,m,m2] =0,
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FIGURE 10. An example SEM path diagram, where arrows between latent
variables and manifest variables indicate linear relationships, while arrows
among latent variable indicate possible nonlinear relations. Residuals and mea-

surement errors are not shown for simplicity, but are present in the model.

so that

Hi(z1) = E[m & = ]
Ha(z1,31) = E[np2|é& = @1, m = y1]
Hs(z1,y1,92) = E[ns|é& = z1,m = y1,m2 = y2].

If we assume that all drawn errors in the path diagram indicate dependence, and missing errors
denote independence among variables, the conditional expectation of 13 further simplifies to E[ns|m =
Y172 = Y2l o

In general, the coordinate functions of H will not coincide with Hy, Hz, Hs, both because these
functions depend on other inputs than &1, but also because the reduced form equation including Hs
does not take into account for example the influence from 7; to 72, which is accounted for in Ho.

In NLSEM, traditional estimators make stronger assumptions on the error terms ¢; than the con-
ditional zero expectation property stated in the above display. Also independence to the variables
influencing each coordinate of n as well as other error terms are explicitly made (see, e.g., Holst &
Budtz-Jgrgensen, 2020; Lee et al., 2007; Mooijaart & Bentler, 2010; Mooijaart & Satorra, 2012; Wall
& Amemiya, 2000, 2001, 2003), or implicitly made via distributional assumption, such as multivariate
normality (see, e.g., Brandt et al., 2018; Kelava & Brandt, 2009; Kenny & Judd, 1984; Klein & Moos-
brugger, 2000; Marsh et al., 2004). In this section we will assume that the regression errors (1, (2, (s
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are independent to what is conditioned on for ease of computation. The rational of our paper is gen-
eral (see also discussion on non-additive errors in Appendix J). Since these independence assumptions
imply that the above stated conditional expectations are zero, we may non-parametrically estimate
ﬁl, Hz, H; using the techniques of the present paper.

Concretely, to estimate H 1, we input & as the explanatory variable for n;. To estimate I:IQ, we
input & and 71 as explanatory variables for 72. To estimate lffg, we input &1, 71, and 72 as explanatory
variables for ns.

In each step, the assumptions of the paper have to be fulfilled. In most cases, this is the case if it
holds globally. In a few cases, we may loose identification of the covariance parameters when considering
a measurement model for a reduced equation set. We do not consider this topic systematically here.

For simplicity, the structural part of Figure 10 is recursive, hence, there are no loops and no
correlated error terms. Loops are unproblematic to take into account when considering the model
component-wise: Say there would be an arrow also from 73 to 72. Then the equation for 72 would need

to include ns, giving

ne = Ha(&1,m,m3) + G2, E[C2l€1,m1,m3] = 0.

As for correlated errors in the structural part, we first recall why error terms defined through
conditional expectation requirements are uncorrelated with what is conditioned on. That is, recall that

(1, (2, 3 are defined by tautology through

¢ =m — E[mlé&]
G2 =m2 — E[n2(&1,m]
Gz =3 — E[n3|&1,m1,m2)-

Now firstly, we recall that e.g. E¢s = E[E[(3|€1,m1,7m2]] = E0 = 0, and similarly E(; = 0 for j = 1,2.

Since the error terms have zero mean, we get e.g. that

Cov (¢3,m) = E¢sm = E[E[¢3m]1, 82,71, 12]]

where here 71 is conditioned on, and can therefore be taken outside the inner expectation, giving

Cov (¢3,m) = E[mE[C]€1,m1,72]] = 0.

Similarly, all error terms are uncorrelated with the explanatory variables within each equation.

The definition of terms in ¢ = ({1, (2, (3)" does not imply that they are independent nor uncorrelated.
Consider the data generating mechanism to imply a correlation among ¢ and assume that the assump-
tions of the error terms hold. This then implies that the conditional expectation of the error terms
when conditioning on the same variables as when defining (i, (2, (s, is equivalent to the error terms
(1, 2, (3 because the conditional expectation is almost surely unique. Therefore, since it is possible to
have data generating mechanisms where the error terms in the structural part have correlation, also
the error terms (i1, (2, (3 may be correlated. Therefore, the possibility of correlated errors is embedded
within the framework we work with, and cannot be specified to be the case nor chosen away, as we are
simply estimating a conditional expectation and its implied residue (1, (2, (3.

Consequently, residual covariation among endogenous variables can be estimated using estimates for
the residual ¢ by applying its formula. We note the possible influence of approximation error and do

not consider this topic systematically here.
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We now consider a series of examples, first under model conditions, and then in the upcoming
sub-section under structural misspecification. In Section F, we consider similar issues, though under

measurement misspecification or non-linear measurement models.

Example 1. Consider the linear SEM resulting from the model in Figure 10 by setting all relations
among latent variables as linear. Hence, we get

m=oa1+7,1,1& + C,

N2 = a2 +71,2,161 + Br21m + (2

N3 = a3 + B1,3,1m + B1,3,2m2 + (3,
where we use v for the effects of £ to n and S for the effects among 1. Further, the first index in v and
B refers to the order of the effect. Here, only linear effects are present, hence, f1,3,1 refers to the linear
effect of n1 to ns.

Further, assume that the errors (1, (2, (s have zero means, variances E¢Z = 111, ECZ = )0, B2 =
133, and are mutually independent to all other error terms and £;. This implies that the error terms
are also independent to the explanatory variables used in the equation where the error term is written.
To see this, notice that the endogenous variables can sequentially be written in terms of £; and other
error terms (first insert the equation for 71 into the equation for 72, then the equation for 7, into the
equation for n3).

Let us calculate H (with components H;,j = 1,2,3) and IZI17];T27F~I3. We have Hi(z1) = fIl(xl),
because this equation does not depend on any of the endogenous variables. Since E[n:|&1] = a1 +
v1,1,1&1 + E[G1]&1]) = a1 + 71,1186 + E[G1] = a1 + 71,1,1&1 by the assumed independence properties for
¢1 and it being a residual with zero mean. Therefore, Hi(z1) = o, (1) = a1 +v1,1,121.

For 72, we have

E[n2|&1] = E[az + 71,2161 + Brzam + (2[&]
= a2 + 71,2161 + 1,21 E[m&] + E[C|&].

Now, we have E [1(|£1] = a1 + 71,1,161, and E [(2]&1] = E[¢2] = 0. Therefore,
E[nz2|é1] = a2 + Bi,2,101 + (71,21 + B1,2,1071,1,1)E1,
and, hence, Ha(z1) = a2 + B1,2,1001 + (71,2,1 + B1,2,171,1,1)x1. For H> we use Lemma 7 (p. A75) and get
Elnzl&1,m] = a2 + 11,218 + Brzam,

and, hence, Ha(z1,y1) = aa + 71,2121 + B1,2,191-
Finally, for the reduced form relationship between &; and 73, we have

E[ns|é1] = az + B1,3,1E[m&] + B1,3,2E[n2161] + E[¢3(&1],
for which we have E[(3|¢1] = 0, and, hence,
E[TI3|€1] = a3 + fi1,3,101 + B1,3,202 + B1,3,201,2,1001 + (51,3,171,1,1 + +B51,3,271,2,1 + ,31,3,2ﬂ1,2,1’71,1,1)§1-

Therefore, Hz(x1) = az+51,3,101401,3,202+061,3,201,2,100+(B1,3,171,1,1++51,3,271,2,1+51,3,201,2,171,1,1 ) T1-
For H3, we again use Lemma 7 (p. A75) and get

Ensl&1, m,n2] = as + Br,3,1m + B1,3,21m2,

and, hence, Hs(z1,y1,y2) = a3 + B1,3191 + B1.3.292.
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To summarize, we have that

Hi(z1) = o1 + 11,1121,
Hy(z1) = oo + fr2a00 4+ (711,101,210 +71,2,1) 1,

* *
Qg 71,2,1

Hs(xz1) = as + Pi3,101 + Pi,3,202 + B1,3,201,2,101 + (71,2,101,3,2 + 71,1,101,2,181,3,2 + 71,1,181,3,2) Z1,

* *
oz 71,3,1

and, in contrast, for H;(j = 1,2,3) we get

ﬁl(l’l) =1 +7,1,17%1,
Flg(x1,y1) =az+ 71,2121 + f1,2,191,
ﬁ3(x1,y1,y2) = a3 + f1,31y1 + B1,3,292.
Translating this into mediation analysis framework (see for an overview, MacKinnon et al., 2007),
Ho, for instance, refers to the total effect of &1 onto 72, while ﬁg describes the effect of & to n2 above
and beyond 71 in a regression sense. Hence, v1,2,1 within f[g is the unique linear relation between &;

and 72 above and beyond 71, while ¥] 2 ; is the total effect of &1 to 72, ignoring any relations mediated
by n1. |

Example 2. Consider the nonlinear SEM

m =o1+7,1,1& + (1,
N2 = az + 71,2,161 + Br,2m + ,32,2,177f + (2
N3 = a3 + B1,3,1m + B1,3,2m2 + 52,3,177% + 53,3,177? + (3,
as a nonlinear extension of the linear SEM of Example 1, again representing the (possible nonlinear)
relations depicted in Figure 10. We use the same notation as in Example 1, i.e., 8331 is the effect
of the cubic 73 on 73, and, again, assume that the errors (i, (2, (3 have zero means, variances E¢? =
11, BCE = 1pag, BCZ = 133, and are mutually independent to all other error terms and &;.
Let us (again) calculate H (with components Hj,j = 1,2,3) and Hy, Hy, Hs.
Identically to Example 1, we have Hi(z1) = fh(xl) =a1+71,1,121.
For 72, we have
E[n2]&1] = Elaz +71,2,1&1 + Br2am + Ba2ami + C2lé1]
= a2 + 71,2181 + Pr,2,1E[m &) + ﬂ2,2,1E[77%|§1] + E[¢2]&1]-
Now, we have E[m|&1] = a1 + y1,1,1&1, and E[(2|¢1] = E[¢] = 0. For the expectation of n?
conditioned on &1 we get
E [77%\51] =E (1 +m1.12& + ¢1)? |&1]
=E [lﬁ + 712,1,1& + Clz +20171,1,161 + 200G + 271,1,1€1C1|€1]
=i+ ’7%,1,1E [Eﬂ&] +E [Cf\&} + 20171,1,1E [€1]&1] + 201 E [C1]61] 4 271,11 E [€1¢1 €]
=of +97116 +E ] + 20071118 + 201 - 0 + 271,11 EE [G1]&1]
= Oé% + ’Yil,ﬁf + P11+ 2a1v1,1,1€1 +271,1,1€1 - 0
=ai 4 11 + 201711161 + 7?,1,155.
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Hence, for E[n2]£1] we have

E[n20é1] = a2 +71,2,161 + Bi,2,1 (@1 +7v1,1,161) + B2,2,1 (Otf + Y11 4+ 20171,1,1€1 + ’7%,1,155)
=az+ fi2,100 +71,2,161 + Bi2171,1,18 + ﬂ2,2,1a§ + B2,21%11 + P2,2,120171,1,161 + 52,2,1731,&?
=2 + Pr,2,101 + B2,2,1¢11 + 52,2,106% +71,2,1&1 + Bi,2,171,1,161 + 2B82,2,100171,1,180 + [32,2,1’712,1,15%
=as+ fi,2,101 + B2,2,1%11 + 52,2,16@ + (11,21 + Bi,2171,11 + 282,210171,1,1) €1 + /32,2,17%1,1 f%,
—

_— — % ——
=a} =71,2,1 =221

which is a quadratic form in &. We get Ha(r1) = a5 + ¥1,2,121 + 72*72’190%. In contrast, when

conditioning on & and 71, we get

E[na|€1,m] = a2 + v1,21& + Br2.1m + Bo2ami,

so that ﬁf2($€17y1) =2+ 71,2121 + Br1,2,191 + 52,2,11}%
Finally, for the reduced form relationship between £; and 73, we have

E[ns|é1] = as + B1s1E[m|&1] + Br32E[n2l€1] + BasaE [n7|€1] + BssiE [n3]61] + El¢slé],

for which we have already derived E[n:|&1], E[ni|€1], E[n2|€1], and have that E[¢3]&1] = E[¢3] = 0 due to
the independence of (5 to all other variables. Hence, we only have to calculate E[n5|&]:

En3l€] = E [(a1 + y1.1.1& + G)%lé]

= ]E[a:f + 30@71,1,151 +3a3C + 3041(71,1,151)2 + 6a1v1,1,16G + 3o i+
(1,1,161)% 4+ 3(71,1,161)%C + 371,116 6 + Cf|fl]

= af +30im,1,1E[611&] + 301E [Gi|&1] + 3anvT 11 E [£11€1] + 6aay11 1 E[EaGil&] + 3onE [¢Fl&] +
Y iaE [€]&1] + 393 1K [€1G 6] + 371,11E [6¢T 6] +E [¢ 6]

=al + 36!%’71,1,151 + 30 -0+ 30¢1’Yf,1,1§f + 6a171,1,16 E [G1]&1] + 3o E [Clz] +
M€l + 391 B [Glé] + 3110 6E [(Tl6] +E [¢7]

=af +3aiy1,1161 + 3a1’yi1,1§f + 6a1v1,1,161 - 0+ a1+
M€l + 3971060 0+ 371006 E [(7] +E[¢7]

=ai +3a1n +E[G] + Baiyiin +3vaavn) &+ vt & + a6
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Hence,

E[nslé1] = as + Br,31 (01 +v1,1161) + Brs2 (a5 + 772161 + 72*,2,155) +
B2,3,1 (af + 11 + 201711161 + 75,1,1&) +
B3,3,1 (Ot:f +3a1¢Y11 + E [Cﬂ + (301%71,1,1 + 3’Y1,1,1¢’11) &+ a1’yily1€f + ’Yf,lylf%)
=a3+B1,3101 + B13171,1,161 + Bi,3205 + 51,3,2’71*,2,151 + ﬂ1,3,272*,2,1§f+
B2,3,107 + B231011 4+ 2823 10171,1,161 + B3 17i1.1865 + B 3,108 4 383311811+
B3,31E [Cf] + B3,3,1 (3(1?71,1,1 + 371,1,11/111) &+ 53,3,10417%,1,15% + ,83,3,1713,1,15%
= a3+ P1,3101 + B1,3205 + 62,3,104? + B2,3,1%11 + 53,3,106‘;’ + 303,3,1111 + B3,31E [Cf] +

o *
=aj

(ﬂ1,3,1’71,1,1 + B1,3,271,2,1 + 2B2,3,10171,1,1 + Ba,3.1 (304%71,1,1 + 371,1,1¢11)) &+

—_ %
=71,3,1

2 2 2 3 3
(51,3,2’Y§,2,1 + B82,3171,1,1 + /33,371a1’71,1,1) &1+ B3,3,171,1,1 615
———

=73,31 =73,3,1
where we get a constant that depends on the skewness of (i, i.e., the third order moment of (;.
Therefore, the reduced form of 13 given £; is a third order polynomial in £; with the form

* * * 2 * 3
H3z(x1) = o3 + 713,121 + 73,3127 + 73,3127

This reduced form third order polynomial stands in direct conflict with the conditional expectation

given &1,m1, and 72, for which we immediately have that

E[ns|€1,m,m2] = as + Bizam + Bisenz + Bosani + Basans,

which does not depend on the values of &; directly, but only indirectly through the values of 71 and 7.
Consequently, Hs(z1,y1,y2) = as + B1,3.191 + B1,3,.292 + B2.3,19% + Bs,3,195.
To summarize, we have that
Hi(z1) = o1 + 71,1121,
Hy(z1) = a5 + 71 2171 + 75,2,1 71,

Hs(z1) = o3 + 71,3141 + 75,3,13% + 75,3,155?7
and, in contrast, for ﬁj (1 =1,2,3) we get

H, (z1) = a1 + 711,121,
Ha(z1,51) = a2 + 11,2121 + Br21y1 + Ba21y7,
Hs(z1,y1,y2) = o3 + Brsays + Brsayz + B2.3.1y1 + B3.3.195

In conclusion, we emphasize that, for instance, Hs representing the total effect of & onto 73 is a
third order polynomial in &, while Hj does not directly depend on &;. Further, the total effect of &;
onto 72 as represented by Ha is a quadratic form in &;, while the direct effect of {1 onto 7 is linear in
the full system, denoted by the function H,. The reduced form representation, therefore, does not give
any insights on the directness of the effects of any explanatory variables onto the endogenous variables,

further, the functional form may vary drastically. |
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B.1. Considerations under Structural Misspecifications. Standard covariance based goodness
of fit tests can consistently (i.e., having power approaching one asymptotically) detect model misspecifi-
cation if the misspecification is linear and the degrees of freedom is at least one. In the case of non-linear
misspecifications, this need not be the case (Mooijaart & Satorra, 2009) when using classical goodness
of fit tests (SEM lacking quadratic and interaction terms can be detected using the methods of e.g.,
Biichner & Klein, 2020; Nestler, 2015).  This was also illustrated in the simple simulation example
in Section A. An important application class for non-parametric trend estimates is therefore to detect
such non-linear structural misspecification when a linear model is considered. We here consider some

elementary illustrations of this issue.

Example 3. In Mooijaart and Satorra (2009), the three latent variables 71, &1, &> were considered.

The data-generating mechanism of the structural part in their notation was

m = Bo + 5151 + 5252 + 5125152 + ¢,

where it was assumed that ¢ was zero mean and independent to &1, &2, which means that E[(|¢1, &2] = 0.
Therefore, this is the same error term as the one generated from the conditional expectation argument,
as this is (a.s.) unique.

Since E[m|&1,&2] = Bo + B1&1 + Paka + Bi2é1&2. The non-parametric trend estimators would in this

case consistently estimate the function
H(z1,22) = Bo + frz1 + Box2 + Praz12o.

Therefore, the misspecification would be (asymptotically) detectable using the non-parametric ap-
proach. O

When applying non-parametric trend estimates component-wise to a full SEM, we run the risk of
being influenced by structural misspecification. In terms of the non-parametric methods, this would
mean that we approximate the conditional expectation of an endogenous variable, but that we condition
on the right variables compared to if we had knowledge of the correct structural model. Because these
conditional expectation functions always exists, it will be as far as we know impossible with presently
available tools to separate model misspecification or functional misspecification, and we believe such
separation techniques will require further assumptions than considered in the present paper. A full
discussion of the practical implications of this is outside the scope of the present paper. We only

consider the following example of this issue.

Example 4. The data generating mechanism of the example is

(7) m=a1+7,1,186 + G,

(8) N2 = az +y1,21&1 + Br,2,1m + P27 + o

where the error terms (1, (2 have zero mean, E¢? = 411, E¢CZ = 122, and are independent to each other
and to &;.
Suppose now that we use a model that is incorrect, and omits the connection from 71 to 72. In the

model, we would therefore suppose

m=o1+7,1,161 + G
N2 = a2 + Y1218 + Ca.
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In the misspecified model, 72 is linear in &1, and lacks not only a linear influence from 7; but also the

~

quadratic influence from 7;. The ~ indicates that these parameters will not, in general, be the true
parameters of the original system and 52 is not the correct residual.

When non-parametrically estimating the structural specification of this system using the component-
wise approach, we would first study the first equation, which here is correctly specified. Then the next
step would consider E[n2]&1]. If we had knowledge of the correct structural model, we would instead
have considered E[n2|€1,7m1]. But because of the misspecification, we do not condition on 7;. We would
instead approximate E[n2|€1]. We now calculate this conditional expectation.

This calculation is identical to earlier calculations in Example 2, and we get

E[n2lé1] = a2 + Br,2,100 + B2,2,1%11 + 52,2,10g + (y1,2,1 + B1,2,171,1,1 + 282,2,10071,1,1) §1+52,2,1’Yf,1,1 £,
—_————

=aj =21 =73,2.1
which is a quadratic in &; instead of the linear function which would be expected if the structural model
was correctly specified.
Based on non-parametric estimates of E[n2|¢1 = z], the psychometrician would therefore know that
there was a model misspecification, and that this model specification induced a square term in this
conditional expectation. With substantive knowledge, this might lead the psychometrician to identify

the correct model.

Example 5. Let us continue the previous example. Suppose now that the psychometrician does update
the model, but that based on plots of approximations of E[n2|€1 = z] the update does not reach the
correct model, but instead the model

m=o1+7,11§ + G

2 = as + 7;,2,151 + ’75,2,15% + 6.
This model is still misspecified, but the detection of this misspecification is a more subtle issue, as the
equation for 72 is now compatible with the trend observed in approximations to E[nz|&1 = z]

While equations of the updated model are similar to the trend in the data generating mechanism,
they are different, as the psychometrician has not included the direct effect from 71 to 72. Let us
consider this difference a bit closer: Recall that the equation system that generates the data is given
in eq. (7) and (8). In these equations, we insert the expression from 7; into 72, which gives

m=oa1+7,1,1& + (1,
N2 = a2+ PBr2,101 + 71,216 + Bi,2,171,1,16 + Bi21G+
Ba.2,1(0f + 771,188 + G 4 20171,1060 + 20081 + 271,116161) + G
We see that the updated model is in fact the reduced form equations. From this equation we also
deduce that
as = a2+ Bi2101 + 52,2,1057
Y1 =721+ Br2171.11 + B2,2,120071,1,1,
* 2
72,2,1 = 52,2,171,1,17

G =m2 — E[n2|&1] = B2,21 (¢ — ¥11) + (Br,2,1 + 2B2,2,100 + 2B2.2.171,1,161)C1 + Co.

We notice that (5 is not equal to (2 in general, and is substantially different from (2. For example,
¢3 includes the term 282.2,1v1,1,1€1¢1 which induces a heteroskedasticity into the error, and (3 also

includes a linear contribution from (;.
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We started out with independent error terms (1, (2, and in the reduced form expression we have

Cov (¢1,¢5) = EGi(3
=E [¢1 (Bo21(CF — ¥11) + (Br2a + 2B22,100 + 2B22171,1,161) G + C2) ]
=EB221(¢ — ¥11¢1) + (Br2,1 + 2B2,2,101 + 2B2,2,171,1,1BE)ECE + ECi o
=EB221C + (Br21 + 2822100 + 22.2171,1,1E& ),

which is non-zero under most parameter configurations.
If independence between the error terms in the structural part of the model is considered part of
the model, the correlation of the error terms (1,(3 can be seen as an identifiable indication that the

model is misspecified.

APPENDIX C. A LITERATURE REVIEW OF NLSEM

Early contributions to nonlinear factor analysis are Gibson (1959), R. McDonald (1967) and Etezadi-
Amoli and McDonald (1983), who focused on examining nonlinear relationships between measurements
and latent variables. This literature formed the theoretical background for NLSEM, which started
fully with Kenny and Judd (1984), who suggested a normal theory product indicator approach for
interaction models. This approach was extended and enhanced by relaxing certain constraints on the
latent structure in Kelava and Brandt (2009); Marsh et al. (2004); Wall and Amemiya (2001).

What may be termed distribution analytic approaches have been proposed, assuming multivariate
normality of both the latent exogenous variables and residuals (LMS, Klein and Moosbrugger, 2000,
QML, Klein and Muthén, 2007). To account for non-normal latent exogenous variables, the LMS
approach has been extended using latent classes (Kelava, Nagengast, & Brandt, 2014). In applied
research, simplified versions of LMS rely on a single indicator per latent variable was suggested (Cheung
& Lau, 2017).

Product indicator approaches traditionally rely on the first two moments of (mixed) polynomials of
the measurements. Mooijaart and Bentler (2010) extended this to third-order moments. Mooijaart and
Satorra (2012) further extended this approach to test the significance of certain moments in interaction
models.

Several Bayesian approaches have been proposed: Arminger and Muthén (1998), Lee et al. (2007),
and Kelava and Nagengast (2012) have all introduced Bayesian methods in this context. The approach
of Lee et al. (2007) can be viewed as a Bayesian counterpart to LMS, while the one of Kelava and
Nagengast (2012) can be seen as a Bayesian version of Kelava et al. (2014). Additionally, a Bayesian
lasso approach for NLSEM, designed to handle multicollinear latent exogenous variables, has been put
forth by Brandt et al. (2018).

Semi-parametric Bayesian models have been suggested: A semi-parametric Bayesian framework with
non-parametric estimates of measurement error distributions was suggested in Song et al. (2010). A
Bayesian lasso-type framework for basis function expansions of the influence from £ to n was suggested
in Guo, Zhu, Chow, and Ibrahim (2012), which was expanded by employing a grouped lasso approach
that enables model selection (Feng, Wang, Wang, & Song, 2015). Additionally, Song, Lu, Cai, and
Ip (2013) proposed a penalized spline approach that extends a previously suggested spline method
(Song & Lu, 2010) by incorporating penalties and by modeling continuous, dichotomous, and count
data. It should be noted that these Bayesian methods, while very flexible in some parts of the model,

often impose strong distributional assumptions. In most models, the latent exogenous variables &,
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latent residuals ¢, and measurement errors € are assumed to be normal, while the residuals are further
assumed to be independent.

Moreover, further semi-parametric methods incorporate latent classes (Bauer, 2005; Kelava et al.,
2014). These semiparametric methods support non-linear effects and non-normal distributional rela-
tions among the latent variables, but as far as we can tell, the space of possible non-linear trends and
distributions spanned by these techniques are unknown. For example, in Bauer (2005), there is a fixed
number of latent classes within which (7, £) follow a standard linear and usually normal SEM. In Kelava
et al. (2014), this is extended so that within each latent class (1, £) follow a parametric non-linear and
usually normal SEM. The space of possible models for each of these suggestions are likely quite large,
and the space spanned by Kelava et al. (2014) likely larger than that of Bauer (2005), but as far as
we know, there are no theoretical descriptions of these spaces, and they are not non-parametric in the
sense that they are able to estimate any structural relationship without distributional restrictions, at
least when using a finite number of latent classes.

Therefore, to the best of our knowledge, the approaches by Kohler et al. (2015) and Kelava et al.
(2017) are the only available non-parametric methods which do not impose parametric distributional
assumptions.

Two-stage estimation techniques constitute another category of NLSEM methods. These approaches
estimate a given functional form, and typically involve using instruments or estimates for the latent
variables in a first step, followed by estimating the structural part of the model in a second step. Bollen
(1995, Bollen & Paxton, 1998) proposed a two-step instrumental variable approach. Ng and Chan (2020)
introduced a simplified version of the (Skrondal & Laake, 2001) method by employing factor scores in
the initial step, which are subsequently analyzed using a simple regression model. This simplification is
derived from the more complex two-stage method of moments (2SMM) approach by Wall and Amemiya
(2000, 2003) where the uncertainty in factor score estimation during parameter estimation and inference
in the second step is accounted for. Holst and Budtz-Jgrgensen (2020) proposed a semi-parametric
approach where H is non-parametrically estimated, but which assumes that the predictors follow a
normal distribution. This normality assumption is in contrast to the previously two-step approaches
which have minimal or no distributional assumptions.

Finally, extensions to non-continuous data have been proposed in parametric estimation of NLSEM
using maximum likelihood (Song & Lee, 2005), marginal maximum likelihood (Jin, Vegelius, & Yang-
Wallentin, 2020) or Bayesian techniques (Lee, Song, & Cai, 2010; Song et al., 2013) by the use of link
functions. We consider non-continuous data outside the scope of this article.

APPENDIX D. ADDITIONAL INFORMATION ON THE SIMULATION

D.1. Data Generating Mechanisms. Here, we describe the data generating processes used in the
simulation study Sections 4.2, 4.3, and 4.4, in more detail. For some derivations of the population
values of the trends and model coefficients, we used numeric integration or symbol derivations in Maple
(Maplesoft, a division of Waterloo Maple Inc.., 2019). The Maple version was 2019.2. The Matlab (The
MathWorks Inc., 2023) version was R2023a.

D.1.1. Population Models for d¢ = 1. The model parametrization of the true trends is given in Table
2. We chose ¢ to be either standard normally distributed (¢ ~ A(0,1)) or standardized uniform
distribution (£ ~ unif (—\/g, \/3)) The residual ¢ of the structural part of the model was chosen to
have the same distribution as £ with its variance being chosen in a way so that n has a variance of
1, since n = E[n|¢] + ¢. For the quadratic trend we choose the shape of E[n|¢] to be identical, which
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resulted in differing residual variances, while for all other trends we kept the residual variance Var [(] to
be (almost) identical across the different distributions of £. Still, we note that the different multivariate
distributions of f = (£,n)" are not directly comparable across different distributions of £. The trends
themselves only differed by a scaling factor (see Table 2). A visualization of the trends for normal & is
also given in Figure 11 (as depicted by the dashed black line).

The measurement part of the model was chosen to represent data with rather low reliability for
the model to yield considerable residual variance. See Table 2 for scale reliabilities and variances of
r for the different simulation conditions. The item-wise reliabilities (e.g., for measurement ¢ of ¢ it is
computed by (Az)7 Var [€]/ [(As)7 Var [€] + (¥2)si]) were chosen to be equidistant between .64 and
.25 depending on the number of items used. The first factor loadings per latent variable were fixed to

1. Hence, the factor loadings matrix A and the residual covariance matrix ¥ were chosen as

o Y, 0a,,d4, A~ Az 04,4,
Ody,dm \Ify Ody,d§ Ay

for d; = 3,6,9 and d, = 3. For d, = 3, A; and ¥, where chosen as:
Az = (1,.65,.5)", ¥, = diag(.5625,.5775,.75).
For d, = 6, A, and ¥, where chosen as:

Ar = (1,.74, 68, .62, .56,.5)", W, = diag(.5625,.4524, .5376, .6156, .6864, .75).

TABLE 2. Overview of the Parametrization used in the Simulation Study for d¢ =1

Trend 3 E[nl¢] ¢ Var[(] E[g] Var[n]
quadratic norm —.5+ 4¢ 4 582 norm .34 0 1
quadratic unif —.54 .4& + .5¢2 unif .64 0 1

cubic norm —.128 4+ 3.2(.4¢ — .4)(.2£ + .3)¢ norm  .427 0 1

cubic unif —.4410(.4& — 4)(.26 + .3)¢ unif 419 0 1

logit norm 1.776 exp(2 + 5¢)/ [1 + exp(2 + 5€)] — .647 norm .5 0 1
logit unif  1.671exp(2 + 5§)/ [1 + exp(2 + 5£)] — .615  unif 5 0 1
piecewise linear norm 2.784[PL(&) — .035] norm 3 0 1
piecewise linear  unif 2.745 [PL(§) — .026] unif 3 0 1

Note. ¢ = distribution of &, E[n|{] = parametrization of the conditional expectation of 7 given
¢ for d,, = de = 1, ¢ = distribution of the residual ¢ for n = E[n|£] + ¢, Var [¢] = variance of ¢
chosen so that Var [n] = 1, with PL(§) being the piecewise linear function of £ given by:
.5+ B¢, for —1<€£<0,
b5 =&, for 0 < ¢ < 1,
PL(E) =
—.6+4.1¢, forl<E,

0, else.

All displayed coefficients are rounded to three decimals if more than three decimals are needed;

all decimals are given in the code accompanying the simulation study.
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TABLE 3. Measurement Information for d¢ =1

d. Var[re] Varlr,] RZ R} we W

3 0.352 0.352  0.740 0.740 0.710 0.710
6 0.190 0.352  0.840 0.740 0.823 0.710
9 0.129 0.352  0.886 0.740 0.873 0.710

Note. d, = number of measurements for &, Var(re]
= model implied variance of r¢, Var[r,] = model
implied variance of r,, R? = amount of explained
variance of £ by &, R% = amount of explained vari-
ance of 7j by n, wg = McDonald’s coefficient of relia-
bility for measuring &, w, = McDonald’s coefficient

of reliability for measuring 7.

For d, =9, A, and ¥, where chosen as:

A, = (1,.7625,.725, .6875, .65, .6125, .575, .5375, .5)’,
U, = diag(.5625,.4185937, .474375, .5273438, .5775, .6248437, .669375, .7110938, .75).

d, was held constant, hence, A, and ¥, where chosen as for all conditions as:
A, = (1,.65,.5), ¥, = diag(.5625,.5775,.75).

The measurement errors with covariance matrix W were either independently normal, uniform, or
scaled gamma distributed. We did not differentiate between the exogenous and the endogenous parts
of the model.

D.1.2. Population Models for de = 2. The model parametrization of the true trends is given in Table 4.
We extended the univariate simulation conditions by a second exogenous variable so that & = (£1,£2)".
We chose a normal copula with normal or uniform marginals. As the uniform marginal case with
normal copula is not a straight forward object, we used numerical approximations for the variance
estimation of £. Hence, the variance of 1 in that condition is not exactly 1, but close to 1. The chosen
trends are rather complex compared to simple linear trends, however, much more complex trends are
possible. Hence, this simulation study is limited.

Similarly to the d¢ = 1 case, the measurement part of the model was chosen to represent data
with rather low reliability for the model to yield considerable residual variance. See Table 5 for scale
reliabilities, McDonald’s w (R. P. McDonald, 1999), or Bollen’s w (Bollen, 1980), and variances of r
for the different simulation conditions. The aim was to extend the univariate case by a second latent
exogenous variable with and without cross relations among the latent exogenous variables. The factor

loadings matrix A and the residual covariance matrix ¥ were chosen as

o Y, 04,4, A= Ay 04,4,
Ody,dm \I/y Ody,dg Ay



NON-PARAMETRIC REGRESSION AMONG FACTOR SCORES A17

for dz = ds, + duy, With dz; = duy = 3,6,9 and d, = 3. For models without cross loadings and without

residual covariances A, simplifies to
N < A, Odw), v < v, odml,dw)
04,1 Az, 0d,,,ds;,  Yao
Hence, we state Ay, Aszy, Usy, and ¥y, in the following. For di, = dz, = 3, we have
Az, = Ay, = (1,.65,.5), U, =¥,, = diag(.5625,.5775,.75).
For d;, = d., = 6, we have
Az, = Asy = (1,.74, .68,.62,.56,.5)", W, =V, = diag(.5625,.4524,.5376,.6156,.6864, .75).
For dy;, = dy, =9, we have
Az, = Ay = (1,.7625,.725, .6875, .65, .6125, .575,.5375, .5)",
V., = ¥,, = diag(.5625,.4185937,.474375, .5273438, .5775, .6248437, .669375, .7110938, .75).
dy, again, was held constant, hence, Ay and ¥, where chosen as for all conditions as:
A, = (1,.65,.5), W, = diag(.5625,.5775,.75).

For models with cross loadings and cross correlations, we need to adapt the given matrices. Hence,
we state the elements of A and W that needed to change for the corresponding d.;, j = 1,2.
For dz, = dz, = 3, we changed the following elements in A to

As.1 = .195,

and in ¥, to
(\I/z)s,s = (\PI)B,G =.3.

For d,, = dy, = 6, we changed the following elements in A to

Asi=.222, Ayq =.168,

TABLE 4. Overview of the Parametrization used in the Simulation Study for d; = 2

Trend 3 Elnlé:, €] ¢ Var[(] E[g] Var[n]
quadratic norm .15+ .45&; + .3262 + 36162 — 262 — 12 norm 499 0 1
quadratic  unif .15+ 4561 + 3265 + 3616 — 267 — 1€2 unif 499 0 1

cubic norm c(&1,&2) norm  .507 0 1

cubic unif c(&1,&2) unif  .605 0 .987

Note. ¢ = standardized marginal distributions of £&; and & with normal copula with
covariance Cov [£1,&] = .5, E[n|&1, 2] = parametrization of the conditional expecta-
tion of n given £ = (&1,&) for d, = 1, d¢ = 2, ( = distribution of the residual ¢
for n = E[n|¢] + ¢, Var[(] = variance of ¢ chosen so that Var[n] = 1. ¢(&,62) =
A5 4.3 + .26 + 3616y — 262 — 1€2 4 .0265 4 .0265 4 .06£,£2. The variance of 1) is only
an approximation for the uniform marginal £ case. All displayed coefficients are rounded
to three decimals if more than three decimals are needed; all decimals are given in the

code accompanying the simulation study.
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TABLE 5. Measurement Information for d¢ = 2

dy; cross Var[rg] Var[rg,] Coviz Coriz  Var[ry] R, RZ, R? we, Wes W)
3 no 0.352 0.352 0.000  0.000 0.352 0.740 0.740 0.740 0.710 0.710 0.710
6 no 0.190 0.190 0.000  0.000 0.352 0.840 0.840 0.740 0.823 0.823 0.710
9 no 0.129 0.129 0.000  0.000 0.352 0.886 0.886 0.740 0.873 0.873 0.710
3 yes 0.334 0.313 -0.016 -0.048 0.388 0.749 0.761 0.720 0.710 0.728 0.657
6 yes 0.174 0.150 -0.007 -0.046 0.388 0.852 0.869 0.720 0.823 0.837 0.657
9 yes 0.117 0.099 -0.005 -0.042 0.388 0.895 0.910 0.720 0.873 0.884 0.657
Note. d; = number of measurements for ;, cross = indicator whether cross-loadings or cross-
correlations are present, Var|re,] = model implied variance of r¢;, Coviz = model implied covari-
ance of r¢, Coria = model implied correlation of r¢, Var[r,] = model implied variance of r,, jo

= amount of explained variance of fj by &;, R127 = amount of explained variance of 7) by 1, we, =
McDonald’s coefficient or Bollen’s coefficient of reliability for measuring ¢;, w,, = McDonald’s coef-

ficient or Bollen’s coefficient of reliability for measuring n; for j = 1, 2.

and in ¥, to
(\I’w)g,:s = (‘1’1)3,9 = 21504, (‘1/95)12,6 = (\Dz)ﬁ,12 =.3.

For d, = dz, =9, we changed the following elements in A to
Ai1n = .22875, Aws1 =195, Air1 = .16125,
and in ¥, to
(Va)yy 1y = 3662672,  (Vs),,,, = .539475, (¥a),;,, = 3662672,
(V)15 = (Va)z 10 = 18975, (Va)5 6= (Va)g 15 =-2499375, (Va)59 = (Va)g 15 = 3.
We further introduced a cross correlation in ¥, so that the we changed
(Uy)y 3= (¥y)s, = .2632489.

The given cross-loadings in A, equal the standardized cross-loadings in value, hence, standardized
cross-loadings vary between .229 and .161. The residual covariances in W are chosen in a way so that
they result in residual correlations of .4. These are significant but not substantial.

From Table 4 it is evident that by introducing cross relations (i.e., cross-loadings and cross-correlations)
the resulting correlation among r¢ is not large, although the cross relations are not negligible. Further,
for increasing d;; the correlation in r¢ decreases slightly. It is evident that including cross relation does
have an influence on the scale reliability, computed via the extension of McDonald’s w (R. P. McDonald,
1999) that includes cross-correlations, also called Bollen’s w (see Bollen, 1980).

The measurement errors with covariance matrix W were either multivariate normal, or they were
affine linear transformations of independent uniform or independent scaled gamma variables. We
used the singular value decomposition of ¥ in order to correlate the measurement errors with cross-
correlations: For d, i.i.d. standardized measurement errors € (e.g., standardized uniform or standard-
ized gamma(1,1)), we computed U3 via the singular value decomposition Ui o= VD\I%,UA7 where
U = VDgU™! is the singular value decomposition of ¥, Dy is the diagonal matrix containing the

singular values (eigenvalues) of ¥ and V is the orthonormal eigenvector matrix that corresponds to the
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1
eigenvalues. Further U™ = V' for positive definite matrices and D¢ is the matrix that contains the

element wise square roots of the eigenvalues in Dy. Then for
1
e:=V2¢

we have
Cov[e] = 0.

The marginal distributions may differ between € and € apart from scaling. For instance, for standard-
ized uniform &, ¢ is no longer marginally uniformly distributed, but for correlated components shows
distributions that tends towards the normal due to central limit theorem effects. The same holds true

for gamma marginals in € compared to &.

D.2. Information on R-packages used in the simulation. All empirical analyses were done in R
(R Core Team, 2023). Data were generated using R-base and stats functions for univariate distribu-
tions and mvtnorm (Genz & Bretz, 2009) and covsim (Grgnneberg, Foldnes, & Marcoulides, 2022) for
specific multivariate distributions for which we wanted to control the marginal distributions and the
copula (Nelsen, 2007). The Bartlett factor score and the corresponding CFAs were estimated using
lavaan (Rosseel, 2012). The nonlinear factor scores proposed by Kelava et al. (2017) were estimated
with a modified version of their MATLAB (The MathWorks Inc., 2023) scripts called from R including their
used BSpline method. The HZ-method for local linear estimators for solving errors-in-variables prob-
lems including its simulation based cross-validation techniques for bandwidth selection is implemented
in the 1pme package (Huang & Zhou, 2017). We used a slightly modified version of the cross-validation
technique by comparing its performance to a rule-of-thumb estimate for the bandwidth that was sug-
gested by Wang and Wang (2011); for further descriptions see Appendix D.3. For the LOESS and the
smoothed cubic spline function we used their widely used implementations loess and smooth.spline
within the stats package (R Core Team, 2023).

For the examination of performance, we used integration techniques to compute mean integrated
squared errors for the nonparametric trends which are further described in Section 4.3. For univariate
integrals we used the integrate function of the stats package (R Core Team, 2023) and for multi-
variate integrals we used the cubature package (Narasimhan, Johnson, Hahn, Bouvier, & Kiéu, 2023).
Additional packages for visualization and data handling are described in Appendix D.4. An overview
of all package versions is given in Table 6 in the Appendix D.4. All code can be found the online

supplementary material.

D.3. Additional Information on the Estimation of Non-Parametric Trends Used in the
Simulation Study. We here briefly describe the HZ-method of Huang and Zhou (2017) in more detail.
Translating their notation to ours, the proposed estimator is defined for the conditional expectation
E[ij|¢ = 2] = H(z), where £ is measured with error £ = £ + r¢, where £ has density f¢(x) and re is
independent to (£,7))" with known density f,.(x). &, 7¢, and 7j are assumed to be continuous. Then
H*(w) fe(w) = (Hfe) * fre(w), where (Hfe) * fr.(w) = [ H(x)fe(x)fr,(w — x)dz is the convolution
(see Delaigle, 2014). Huang and Zhou (2017) then proposed to use the Fourier inverses on both sides,
which results in (;SH*fé(t) = ¢y (t)pre (1), where <Z>H*f§,,(t) is the Fourier transform of H™(w)fz(w),
by, is the Fourier transform of Hfe = H(x)fe(x). Their local polynomial estimator of order p for
H(z) is then given by
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R ()
(9) Hugz(x) = ! /e_Zm e

B — ———dt,
) o)

where fe(z) is the deconvolution kernel density estimator of fe(z) in Stefanski and Carroll (1990),
¢ﬂ*fg (t) is the Fourier transform of H* (w)fé(w) in which H*(w) is the pth order local polynomial

estimator of H*(w), and fg(w) is the regular kernel density estimator of fz(w) (see, e.g., Fan & Gijbels,
1996, Section 2.7.1). In order to estimate kernel densities a selection of a bandwidth is needed, which
can be done using simulation based cross validation techniques for bandwidth selection as proposed
by Delaigle and Hall (2008). Although the rationale of Huang and Zhou (2017) can be generalized to
multivariate £, an implementation for the multivariate predictor case with measurement error is still
lacking.

During preliminary analyses we noticed that the LOESS and the smoothed spline method pro-
duce numerically stable results, while the simulation based cross-validation technique necessary for
bandwidth-selection of the HZ-estimator as described in Delaigle and Hall (2008) was rather unstable:
here a k-fold cross validation sample is drawn, while the sample is refilled in each step to have a total
sample size of n (the original sample size) via simulation assuming the distribution of the residual to
be valid, as n interacts with the performance of a bandwidth. This process is done several times per
cross-validation sample, over which it is then averaged. We choose a 5-fold cross-validation approach
with 10 simulations, each. For more detail see the package documentation of the 1pme package and
Delaigle and Hall (2008). The cross-validation technique in the lpme package implemented approach
(Huang & Zhou, 2017) sometimes produced bandwidth that were too small, which then resulted in
strongly oscillating estimated trends. In applied research such a scenario would be noticed by the
researchers simply by comparing the trend and the data. However, in a simulation study we needed
data driven tools that examine whether a suggested bandwidth is useful without jeopardizing the in-
terpretability of the simulation results. This is why we did not use the MISE as described in Section
4.3 to select a useful bandwidth as it cannot be computed in applied research due to the true trend
being unknown. We, therefore, used an estimate for the residual variance in the prediction of the BFS
for n (namely 7j) using the HZ-estimator. As a comparison we used the rule-of-thumb bandwidth for
nonparametric regression with measurement error as suggested in Wang and Wang (2011, see eq. (13)),

that, translated to our notation and assuming normality for r¢ for d¢ = 1, is given by

2 Var [re]
log(n)

bwthumb =

Although the HZ-estimator using the rule-of-thumb bandwidth is very quick compared to the cross-
validation technique (see Table 7), we did not include a rule-of-thumb estimate of the HZ-estimator into
our main simulation study as the estimate for bwihumb has been criticized to not include the variance
of the latent variable (the variance of § in our notation, the true variance of the BFS) and, therefore,
would give a biased estimate for the bandwidth (see for the Laplace case Delaigle, 2014). Probably
due to the fact that we chose all latent variables to be standardized, this rule-of-thumb estimate for
the bandwidth worked rather well. This is why we used the residual variance in prediction using
the rule-of-thumb bandwidth as a comparison for the bandwidth suggested by the cross-validation. If
the residual variance in prediction was more than 1.5 times higher for the cross-validation bandwidth

compared to the rule-of-thumb bandwidth, we redid the cross-validation step. Hence, we only used the
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cross-validation bandwidth bwe, if
& o 3 o 3
Var [77 - ¢bwcv (5)] S 5 Var [77 - ¢bwchumb (5)] )

where 7} and é are the empirically estimated BFS for n and &, respectively, and where ¢pw,., (f) and
Dbwipumn (é ) are the nonparametric estimates for the conditional expectation based on bwe, and bwihumb,
respectively. The difference to the MISE used in simulation studies is that the difference is taken
towards an empirical estimate of 7 and not the true conditional expectation H(z) = E[n|¢ = z]. The
re-initialization of the cross-validation step significantly increases the runtime for some replications
within our simulation study, which further explains the large variation of runtimes in Table 7 for the

HZCV method.

D.4. Additional Graphics and Tables with Additional Comments on Simulation Results.
Here we display and comment additional plots and tables. Graphs were done using either ggplot2
(Wickham, 2016) in combination with scales (Wickham & Seidel, 2022), or rgl (Murdoch & Adler,
2023) for 3D plots. We further utilized the packages forcats (Wickham, 2023) and papaja (Aust &
Barth, 2022) for data handling and table generation and the parallel package (R Core Team, 2023)
and the the pbapply package (Solymos & Zawadzki, 2023) for parallel computing. Table 6 lists all
packages used (also implicitly loaded packages) and their version number. The R version was 4.2.2.

TABLE 6. R package

versions used

Package  Version

base 4.2.2
covsim 1.0.0
cubature  2.0.4.6
datasets 4.2.2
forcats 0.5.2
ggplot2 3.4.1
graphics 4.2.2
grDevices  4.2.2

lavaan 0.6.15

Ipme 1.1.3
methods 4.2.2
mvtnorm 1.1.3

parallel 4.2.2
pbapply 1.7.0

scales 1.2.1
stats 4.2.2
utils 4.2.2

Note. Implicitly

loaded packages are

also displayed.
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D.4.1. Additionals for d¢ = 1. Figure 11 extends Figure 2 with point-wise 95% coverage intervals
displaying the uncertainty of the average trends for the distributional condition with normal £ and
gamma €. It is evident that the linear SEM has the lowest uncertainty, but also approximates the true
trend the worst as the true trend is nonlinear. The other methods show similar uncertainty, however,
at the edges of the support the HZ methods using cross validation appears to have larger uncertainty
compared to the other methods. Still, this difference is not large.

Table 7 shows the average runtime of each factor score based methods used within Figure 2 for a
cubic trend. This bench marking was done on a 2019 16-inch MacBook Pro with an 2.6 GHz 6-Core

TABLE 7. Runtime for normal ¢ and gamma e with a cubic true trend for

de =1
BFS HZ-estimator NLFS

d; LOESS Spline HZTH HZCV  BSpline LOESS Spline
mean 3 0.12 0.10 1.90 1,754.43 2,115.55 2,115.57 2,115.56
mean 9 0.11 0.08 1.73 1,493.18 2,826.04 2,826.06 2,826.04

sd 3 0.04 0.02 0.19 732.04 259.04 259.05 259.04

sd 9 0.01 0.01 0.15 623.55 210.07 210.08 210.08
median 3 0.11 0.10 1.82 1,444.00 2,192.29 2,192.30 2,192.29
median 9 0.11 0.08 1.75  1,379.59 2,868.18 2,868.19 2,868.19
LB 3 0.09 0.07 1.61 1,148.59 1,324.85 1,324.86 1,324.85
LB 9 0.09 0.07 1.42 1,121.86 2,521.00 2,521.01 2,521.00
UB 3 0.19 0.13 2.21  3,772.66 2,308.38 2,308.40 2,308.39
UB 9 0.12 0.10 1.96 2,976.04 2,972.71 2,972.73 2,972.71

Note. Time in seconds aggregated across 32 replications, BF'S = Bartlett factor
scores, NLFS = nonlinear factor scores, HZTH = HZ-estimator using rule-of-
thumb band-width bwinumb, HZCV = HZ-estimator using cross-validation for
bandwidth selection bw.,, BSpline = BSpline method for NLFS, LB = lower
bound of 95% coverage interval, UB = upper bound of 95% coverage interval.

Intel Core i7 processor and 16 GB RAM. From Table 7 it is evident that the LOESS and spline method
based on BFS are extremely quick compared to all other methods. Only the HZ-estimator using the
rule-of-thumb bandwidth on average ran for less than 2 seconds. The HZ-estimator using simulation
based cross-validated bandwidth took more than 24 minutes and the methods based on NLFS took
more than 35 minutes on average. The runtime did not increase but rather decreased with increasing
d. for methods based on BFS or the HZ-estimator but runtime did increase with d, for methods based
on NLFS. Here, runtime was more than 33% longer for d, = 9 compared to d, = 3, on average. Due
to the reinitialization of the adapted version of the cross-validation technique for the HZ-estimator as
described in Appendix D.3, the HZCV showed the largest variation in runtime with a rather skewed
distribution of runtime as suggested by the coverage intervals in Table 7.

Figure 12 emphasizes the relative improvement of MISE in comparison to the linear SEM approx-
imation given that the true trend is nonlinear (see also Table 10 and 11). It is evident that methods

based on NLFS showed an increase in MISE compared to the linear SEM in some conditions with only
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FIGURE 11. A comparison of nonparametric estimation for E[n|¢] averaged
across 200 replications with n = 1000 for LOESS and smoothed spline based on
BFS and the NLFS, the HZ-estimator, the BSpline estimator based on NLFS
compared to the true trend and a linear SEM estimation with different true
trends (quadratic, cubic, logit and piecewise linear) and dimensions d, with
normal & and gamma distributed errors €. Shaded areas correspond to the 95%

coverage interval computed point-wise across the 200 replications.
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TABLE 8. Average MISE

Population LOESS Spline Other

Trend dx I3 € f BFS NLFS f BFS NLFS HZCV BSNLFS SEM
quadratic unif gamma 0.007 0.127 0.193 0.010 0.125 0.203 0.195 0.208 0.449
quadratic unif unif  0.007 0.154 0.239 0.010 0.165 0.257 0.193 0.245 0.446
quadratic unif norm  0.007 0.140 0.215 0.010 0.145 0.230 0.170 0.222 0.446
quadratic norm gamma 0.004 0.139 0.225 0.006 0.139 0.228 0.113 0.234 0.558
quadratic norm unif  0.004 0.190 0.308 0.006 0.195 0.312 0.119 0.330 0.560
quadratic norm norm 0.004 0.168 0.275 0.006 0.170 0.275 0.118 0.288 0.560
quadratic unif gamma 0.008 0.073 0.099 0.010 0.067 0.097 0.118 0.101 0.447
quadratic unif unif 0.007 0.077 0.107 0.009 0.078 0.111 0.117 0.115 0.448
quadratic unif norm  0.007 0.076 0.105 0.009 0.076 0.108 0.110 0.113 0.444
quadratic norm gamma 0.004 0.076 0.115 0.006 0.080 0.118 0.066 0.127 0.560
quadratic norm unif  0.004 0.081 0.125 0.005 0.086 0.127 0.059 0.137 0.556
quadratic norm norm 0.004 0.081 0.123 0.006 0.084 0.130 0.064 0.149 0.559
quadratic unif gamma 0.008 0.054 0.070 0.011 0.050 0.068 0.083 0.075 0.446
quadratic unif unif  0.008 0.054 0.072 0.010 0.052 0.073 0.082 0.071 0.449
quadratic unif norm  0.007 0.052 0.069 0.009 0.050 0.070 0.084 0.076 0.448
quadratic norm gamma 0.004 0.054 0.079 0.006 0.057 0.083 0.053 0.096 0.557
quadratic norm unif 0.004 0.051 0.071 0.006 0.054 0.074 0.045 0.083 0.556

unif gamma 0.032 0.480 0.638 0.011 0.455 0.642 0.681 0.667 1.130
unif unif  0.031 0.548 0.703 0.011 0.550 0.719 0.688 0.707 1.133
unif  norm  0.032 0.510 0.651 0.011 0.504 0.674 0.656 0.649 1.137
norm gamma 0.022 0.046 0.068 0.011 0.066 0.087 0.123 0.090 0.541
norm unif  0.019 0.056 0.085 0.011 0.083 0.109 0.097 0.110 0.522
norm norm 0.019 0.051 0.077 0.011 0.078 0.101 0.100 0.095 0.515
unif gamma 0.031 0.311 0.394 0.011 0.256 0.356  0.438 0.366 1.131
unif unif  0.032 0.327 0417 0.011 0.293 0.398  0.457 0.385 1.138
unif norm  0.031 0.320 0.408 0.010 0.278 0.384 0.446 0.372 1.124
norm gamma 0.020 0.029 0.040 0.011 0.050 0.060 0.078 0.058 0.509
norm unif  0.021 0.032 0.042 0.011 0.053 0.068 0.083 0.065 0.531
norm norm 0.020 0.030 0.042 0.011 0.050 0.069 0.076 0.065 0.508
unif gamma 0.031 0.234 0.296 0.010 0.173 0.242 0.362 0.255 1.125
unif unif  0.032 0.229 0.289 0.010 0.185 0.252  0.362 0.241 1.134
unif  norm  0.030 0.225 0.286 0.011 0.178 0.243  0.347 0.232 1.127
norm gamma 0.021 0.026 0.031 0.011 0.042 0.050 0.072 0.051 0.542
norm unif  0.020 0.025 0.032 0.011 0.039 0.052 0.069 0.053 0.511
norm norm 0.019 0.025 0.028 0.010 0.040 0.047 0.066 0.052 0.513

3

3

3

3

3

3

6

6

6

6

6

6

9

9

9

9

9
quadratic 9 norm norm  0.004 0.050 0.074 0.006 0.0563 0.075 0.047 0.089 0.557

cubic 3

cubic 3

cubic 3

cubic 3

cubic 3

cubic 3

cubic 6

cubic 6

cubic 6

cubic 6

cubic 6

cubic 6

cubic 9

cubic 9

cubic 9

cubic 9

cubic 9

9

cubic

Note. MISE to true trend averaged across 200 replications for n = 1000. £ = distribution of £, ¢ =
distribution of e, f = true latent variables, BFS = Bartlett factor scores, NLFS = nonlinear factor
scores, HZCV = HZ-estimator, BSNLFS = BSpline method for NLFS, SEM = linear SEM.
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TABLE 9. Average MISE

Population LOESS Spline Other
Trend dg I3 € f BFS NLFS f BFS NLFS HZCV BSNLFS SEM
logit unif gamma 0.022 0.126 0.194 0.012 0.127 0.204 0.154 0.192 0.227
logit unif unif  0.022 0.149 0.249 0.011 0.160 0.270 0.181 0.261 0.231
logit unif  norm  0.022 0.137 0.215 0.013 0.146 0.233 0.161 0.227 0.230
logit norm gamma 0.023 0.201 0.337 0.012 0.192 0.326 0.151 0.331 0.307
logit norm unif  0.024 0.244 0.402 0.013 0.253 0.422 0.177 0.402 0.306
logit norm norm 0.022 0.239 0.373 0.013 0.250 0.398 0.174 0.388 0.309
logit unif gamma 0.022 0.075 0.101 0.011 0.073 0.104 0.115 0.109 0.227
logit unif unif  0.021 0.079 0.107 0.012 0.081 0.114 0.119 0.118 0.227
logit unif  norm  0.022 0.074 0.100 0.012 0.074 0.107 0.110 0.116 0.229
logit norm gamma 0.024 0.119 0.171 0.014 0.112 0.167 0.100 0.177 0.308
logit norm unif  0.024 0.124 0.177 0.013 0.124 0.186 0.105 0.188 0.305
logit norm norm  0.023 0.120 0.168 0.014 0.123 0.178 0.107 0.187 0.308
logit unif gamma 0.022 0.056 0.070 0.012 0.052 0.070 0.089 0.082 0.225
logit unif unif  0.021 0.057 0.074 0.011 0.055 0.076 0.095 0.087 0.226
logit unif  norm  0.023 0.057 0.072 0.012 0.054 0.074 0.093 0.088 0.225
logit norm gamma 0.024 0.086 0.112 0.013 0.078 0.110 0.081 0.121 0.308
logit norm unif  0.023 0.088 0.113 0.013 0.086 0.116 0.087 0.125 0.308

unif gamma 0.125 0.581 0.829 0.012 0.510 0.797 0.748 0.807 1.467
unif unif  0.125 0.706 0.986 0.012 0.670 1.005 0.816 0.988 1.467
unif norm  0.126 0.663 0.912 0.013 0.616 0.918 0.797 0.904 1.469
norm gamma 0.123 0.659 0.925 0.134 0.633 0.915 0.740 0.893 1.599
norm unif  0.125 0.812 1.119 0.138 0.783 1.109 0.787 1.103 1.603
norm norm 0.125 0.734 1.014 0.138 0.706 1.019 0.720 1.002 1.599
unif gamma 0.125 0.377 0.479 0.013 0.281 0.400 0.520 0.402 1.465
unif unif  0.126 0.426 0.552 0.012 0.336 0.489  0.566 0.483 1.466
unif  norm  0.123 0.406 0.524 0.012 0.310 0.455 0.541 0.462 1.465
norm gamma 0.124 0418 0.548 0.139 0.386 0.523  0.550 0.526 1.597
norm unif  0.127 0.446 0.580 0.142 0.408 0.551 0.558 0.555 1.600
norm norm 0.126 0.440 0.569 0.142 0.399 0.536  0.537 0.543 1.602
unif gamma 0.127 0.301 0.360 0.012 0.189 0.262 0.458 0.266 1.466
unif unif  0.125 0.316 0.385 0.012 0.210 0.294 0.486 0.294 1.467
unif  norm  0.122 0.300 0.365 0.012 0.193 0.274 0.431 0.277 1.466
norm gamma 0.125 0.316 0.390 0.138 0.283 0.357 0.470 0.358 1.599
norm unif  0.126 0.327 0.398 0.141 0.291 0.366 0.499 0.381 1.598
norm norm 0.123 0.320 0.395 0.136 0.279 0.357 0.474 0.376 1.597

piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear

3
3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
logit 9 mnorm norm 0.023 0.080 0.106 0.014 0.080 0.111 0.081 0.126 0.304
3
3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9

piecewise linear

Note. MISE to true trend averaged across 200 replications for n = 1000. £ = distribution of £, € = distribu-
tion of €, f = true latent variables, BFS = Bartlett factor scores, NLFS = nonlinear factor scores, HZCV
= HZ-estimator, BSNLFS = BSpline method for NLFS, SEM = linear SEM.



A26 STEFFEN GRONNEBERG" AND JULIEN PATRICK IRMER"

3 measurements. Further, the largest improvement in MISE occurred for a cubic trend with normal &,
however, when ¢ was uniform the improvement in MISE for conditions with cubic trends was compara-
ble to the quadratic trend or the piecewise linear trend. This indicates that the cubic trend is not the
furthest from linearity in all conditions. The logit trend is evident to be closest to linearity in terms of
showing the smallest improvement compared to the linear SEM approximation.

The boxplots in Figure 13 emphasizes the average MISE per trend and d, for each method aggregated
across all distributional conditions. It, therefore, supplements Figure 3, by including information on
the differences across distributional conditions and distinguishes the MISE across different trends.
From Figure 13 it is evident that the methods show comparable variation in MISE, hence, comparable
heterogeneity across different distributional conditions. This variation decreases with increasing d
and is comparable among the methods based on factor scores (i.e., LOESS or smoothed splines using
BF'S or NLFS, as well as the BSpline method using NLFS and the HZ-estimator based on BFS). The
methods based on the true latent variables f on average show the smallest variation, i.e., have the
highest precision with regard to MISE. In almost all conditions either the spline or LOESS using BFS
as inputs performed best aggregated across all distributional conditions. This difference is strongest
for the logit or the piecewise linear trend. For the cubic trend differences were not as large. For the
quadratic trend the HZCV method showed good performance, also. With regard to variation: the
cubic trend showed the largest variation among the MISE across the distributional conditions, but the

piecewise linear trend resulted in the largest average MISE.

D.4.2. Additionals for de = 2. Figure 14 aggregates Figure 5 of the main text for the cross-relations.
Hence, the difference between performance of the LOESS based on BFS and methods based on NLFS
are averaged across the two cross-relation conditions. This averaged result shows the benefit of the
LOESS based on BFS, as within the computation of the BFS the specific structure of the model may
be tested and the BFS may be computed to include all cross-relations among the measurements.

Figure 15 shows all relative average MISE across the 200 replications for all used conditions (see
also Table 14 and 15 for numerical values) in comparison to the linear SEM. Hence this figure and
these tables show the relative improvement compared to a linear trend given that the actual trend
is nonlinear. It is evident that the trends based on NLFS result in larger MISE compared to the
linear SEM for many conditions which included cross-relations. Although being slightly less affected,
the BFS,. also showed similar problems. This emphasizes the importance of a correctly specified
measurement model.

Figure 16 emphasizes that the LOESS based on BFS is much more homogeneous in the MISE
and, hence, in the performance in approximating the true trend. Further, homogeneity increases with
increasing numbers of measurements (d.;). The LOESS based on BF Sy was less heterogeneous across
all conditions compared to the methods based on NLFS as highlighted by the whiskers of the Box-
Whisker plots.

Figures 17 and 18 depict the three-dimensional true trend. It is evident that the third order effects
are not large as the two trends do not differ strongly. = However, especially at the borders of the
support the third degree effects are visible. The blue and black lines highlight the marginal relation
between either &; for given values of &2 or vice versa. These marginal relationships are depicted in the
following Figures to make a comparison between the non-parametric methods based on BFS or NLFS
more evident.

Figures 19, 20, 21, and 22 show the marginal relation between either £; and H for &2 = 0,—1.6 or
for & and H for & = 0,—1.6. For the border condition, i.e., & or & being -1.6, all methods show
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FIGURE 12. A comparison of the relative averaged MISE in comparison to the
linear SEM approximation across 200 replications with n = 1000 for different
procedures [(B)Splines vs. LOESS vs. HZ/others] based on different inputs
(BFS, NLFS, linear SEM, and true latent variables f for comparison) for four
models with different true trends (quadratic, cubic, logit and piecewise linear)
and dimensions d,. See Table 10 and 11 for numerical values.
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TABLE 10. Relative average MISE in comparison to linear SEM

Population LOESS Spline Other

Trend dz 13 € f BFS NLFS f BFS NLFS HZCV BSNLFS SEM

unif gamma 0.016 0.282 0.430 0.023 0.279 0.452 0.435 0.464 1.000
unif unif  0.016 0.345 0.535 0.022 0.370 0.575 0.433 0.550 1.000
unif  norm  0.015 0.314 0.483 0.023 0.325 0.515 0.381 0.498 1.000
norm gamma 0.007 0.250 0.404 0.010 0.250 0.409 0.202 0.419 1.000
norm unif  0.008 0.338 0.549 0.011 0.349 0.557 0.213 0.588 1.000
norm norm  0.008 0.301 0.491 0.012 0.304 0.491 0.211 0.515 1.000
unif gamma 0.017 0.163 0.221 0.023 0.150 0.217 0.263 0.226 1.000
unif unif  0.016 0.172 0.238 0.020 0.175 0.248 0.261 0.256 1.000
unif norm  0.016 0.172 0.236 0.021 0.171 0.243 0.248 0.255 1.000
norm gamma 0.007 0.136 0.206 0.011 0.143 0.211 0.118 0.227 1.000
norm unif  0.006 0.146 0.224 0.009 0.154 0.229 0.106 0.246 1.000
norm norm  0.007 0.145 0.219 0.010 0.151 0.232 0.114 0.266 1.000
unif gamma 0.017 0.120 0.157 0.024 0.112 0.152 0.185 0.169 1.000
unif unif  0.017 0.121 0.161 0.022 0.116 0.162 0.183 0.159 1.000
unif  norm  0.016 0.115 0.155 0.021 0.112 0.156 0.188 0.169 1.000
norm gamma 0.007 0.096 0.141 0.010 0.102 0.149 0.095 0.172 1.000
quadratic norm unif 0.007 0.091 0.127 0.010 0.098 0.133 0.080 0.149 1.000

quadratic 3
3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9

quadratic 9 mnorm norm  0.007 0.090 0.133 0.010 0.095 0.134 0.085 0.160 1.000
3
3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9

quadratic
quadratic
quadratic
quadratic
quadratic
quadratic
quadratic
quadratic
quadratic
quadratic
quadratic
quadratic
quadratic
quadratic

quadratic

unif gamma 0.028 0.425 0.564 0.010 0.402 0.568 0.602 0.590 1.000
unif unif  0.027 0483 0.621 0.009 0.485 0.635 0.607 0.624 1.000
unif  norm  0.028 0.448 0.573 0.010 0.443 0.593 0.577 0.571 1.000
norm gamma 0.040 0.085 0.125 0.020 0.122 0.161 0.227 0.166 1.000
norm unif  0.036 0.108 0.162 0.020 0.160 0.210 0.186 0.210 1.000
norm norm  0.038 0.099 0.150 0.021 0.152 0.196 0.194 0.185 1.000
unif gamma 0.027 0.275 0.348 0.009 0.226 0.315 0.388 0.324 1.000
unif unif  0.028 0.287 0.367 0.010 0.258 0.350 0.402 0.338 1.000
unif  norm  0.027 0.285 0.363 0.009 0.247 0.342 0.396 0.331 1.000
norm gamma 0.039 0.057 0.078 0.021 0.098 0.117 0.153 0.115 1.000
norm unif  0.039 0.060 0.080 0.021 0.100 0.129 0.156 0.123 1.000
norm norm  0.040 0.060 0.082 0.022 0.099 0.136 0.151 0.127 1.000
unif gamma 0.028 0.208 0.263 0.009 0.154 0.215 0.322 0.227 1.000
unif unif  0.028 0.202 0.255 0.009 0.163 0.223 0.319 0.212 1.000
unif norm  0.027 0.200 0.253 0.009 0.158 0.215 0.308 0.206 1.000
norm gamma 0.039 0.048 0.057 0.020 0.077 0.092 0.133 0.093 1.000
norm unif  0.040 0.049 0.062 0.021 0.076 0.102 0.134 0.103 1.000
norm norm  0.037 0.049 0.055 0.020 0.077 0.091 0.130 0.101 1.000

cubic
cubic
cubic
cubic
cubic
cubic
cubic
cubic
cubic
cubic
cubic
cubic
cubic
cubic
cubic
cubic
cubic

cubic

Note. Relative MISE to true trend in comparison to linear SEM averaged across 200 replications for
n = 1000. £ = distribution of £, ¢ = distribution of €, f = true latent variables, BFS = Bartlett fac-
tor scores, NLFS = nonlinear factor scores, HZCV = HZ-estimator, BSNLFS = BSpline method for
NLFS, SEM = linear SEM.
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TABLE 11. Relative average MISE in comparison to linear SEM

Population LOESS Spline Other
Trend dg I3 € f BFS NLFS f BFS NLFS HZCV BSNLFS SEM
logit unif gamma 0.098 0.553 0.854 0.052 0.557 0.898 0.678 0.844 1.000
logit unif unif  0.095 0.647 1.078 0.050 0.695 1.171  0.786 1.131 1.000
logit unif  norm  0.098 0.595 0.935 0.056 0.637 1.017 0.699 0.988 1.000
logit norm gamma 0.074 0.656 1.097 0.040 0.623 1.060 0.491 1.077 1.000
logit norm unif  0.077 0.798 1.312 0.042 0.825 1.376 0.577 1.313 1.000
logit norm norm  0.072 0.774 1.210 0.044 0.811 1.289 0.562 1.258 1.000
logit unif gamma 0.098 0.333 0.444 0.051 0.322 0.458 0.508 0.483 1.000
logit unif unif  0.095 0.349 0.473 0.051 0.359 0.503 0.527 0.519 1.000
logit unif  norm  0.094 0.325 0.439 0.054 0.324 0.468 0.483 0.509 1.000
logit norm gamma 0.079 0.386 0.554 0.046 0.365 0.541 0.325 0.574 1.000
logit norm unif  0.077 0.407 0.581 0.044 0.408 0.611 0.343 0.617 1.000
logit norm norm  0.075 0.391 0.546 0.044 0.400 0.579 0.348 0.607 1.000
logit unif gamma 0.096 0.250 0.309 0.051 0.230 0.312 0.395 0.364 1.000
logit unif unif  0.092 0.252 0.326 0.050 0.243 0.337 0.420 0.384 1.000
logit unif  norm  0.100 0.253 0.318 0.053 0.239 0.328 0.413 0.392 1.000

3

3

3

3

3

3

6

6

6

6

6

6

9

9

9

logit 9 norm gamma 0.077 0.278 0.365 0.041 0.255 0.356  0.263 0.392 1.000

logit 9 norm unif  0.075 0.286 0.366 0.042 0.280 0.377 0.283 0.405 1.000

logit 9 mnorm norm 0.077 0.262 0.349 0.045 0.262 0.364 0.265 0.413 1.000
3  unif gamma 0.085 0.396 0.565 0.008 0.348 0.543 0.510 0.550 1.000
3 unif unif  0.085 0.481 0.672 0.008 0.456 0.685 0.556 0.674 1.000
3  unif norm 0.086 0.451 0.621 0.009 0.420 0.625 0.542 0.615 1.000
3 norm gamma 0.077 0.412 0.578 0.084 0.396 0.572 0.462 0.558 1.000
3 norm unif  0.078 0.507 0.698 0.086 0.489 0.692 0.491 0.688 1.000
3 mnorm norm 0.078 0.459 0.635 0.087 0.441 0.637 0.450 0.627 1.000
6  unif gamma 0.085 0.257 0.327 0.009 0.192 0.273 0.355 0.274 1.000
6  unif unif ~ 0.086 0.291 0.377 0.009 0.229 0.333 0.386 0.330 1.000
6 unif norm 0.084 0.277 0.358 0.008 0.211 0.310 0.369 0.315 1.000
6 norm gamma 0.078 0.262 0.343 0.087 0.242 0.327 0.344 0.329 1.000
6 norm unif  0.079 0.279 0.363 0.089 0.255 0.345 0.349 0.347 1.000
6 mnorm norm 0.078 0.275 0.355 0.089 0.249 0.334 0.335 0.339 1.000
9  unif gamma 0.086 0.205 0.246 0.008 0.129 0.179 0.313 0.181 1.000
9  unif unif  0.085 0.215 0.262 0.008 0.143 0.201 0.331 0.201 1.000
9 unif norm 0.083 0.204 0.249 0.008 0.132 0.187 0.294 0.189 1.000
9 norm gamma 0.078 0.198 0.244 0.086 0.177 0.224 0.294 0.224 1.000
9 norm unif  0.079 0.205 0.249 0.088 0.182 0.229 0.312 0.238 1.000
9 mnorm norm 0.077 0.200 0.247 0.085 0.175 0.223  0.297 0.235 1.000

piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear
piecewise linear

piecewise linear

Note. Relative MISE to true trend in comparison to linear SEM averaged across 200 replications for n =
1000. ¢ = distribution of £, ¢ = distribution of £, f = true latent variables, BFS = Bartlett factor scores,
NLFS = nonlinear factor scores, HZCV = HZ-estimator, BSNLFS = BSpline method for NLFS, SEM =
linear SEM.
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FIGURE 13. A comparison of the averaged MISE across 200 replications with
n = 1000 for different procedures [(B)Splines vs. LOESS vs. HZ/others] based
on different inputs (BFS, NLFS, linear SEM, and true latent variables f for
comparison) for different dimensions d,, aggregated across all distributions used

in the simulation study described in Section 4.5.
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TABLE 12. Average MISE with d¢ = 2 without cross-relations
Population LOESS Other

Cross Trend da; 13 € f BFS BFS,. NLFS BSNLFS SEM
uncrossed quadratic 3 unif gamma 0.137 0.418 0.418 0.574 0.619 0.726
uncrossed quadratic 3 unif unif 0.134 0.471 0471 0.612 0.665 0.722
uncrossed quadratic 3 unif norm  0.140 0.484 0.484 0.622 0.659 0.730
uncrossed quadratic 3 norm gamma 0.153 0435 0.435 0.608 0.670 0.628
uncrossed quadratic 3  norm unif 0.154 0.502 0.502 0.706 0.778 0.621
uncrossed quadratic 3 norm norm  0.157 0.517 0.517 0.711 0.752 0.625
uncrossed quadratic 6 unif gamma 0.132 0.316 0.316 0.383 0.434 0.719
uncrossed quadratic 6 unif unif 0.131 0.353 0.353 0.420 0.476 0.720
uncrossed quadratic 6 unif norm 0.136 0.358 0.358  0.435 0.485 0.714
uncrossed quadratic 6 norm gamma 0.160 0.325 0.325 0.390 0.441 0.613
uncrossed quadratic 6  norm unif 0.152 0.345 0.345 0434 0.495 0.620
uncrossed quadratic 6 norm norm  0.163 0.362 0.362 0.443 0.523 0.618
uncrossed quadratic 9 unif gamma 0.137 0.277 0.277  0.329 0.382 0.716
uncrossed quadratic 9 unif unif 0.142 0.296 0.296 0.341 0.392 0.712
uncrossed quadratic 9 unif norm 0.132 0.292 0.292 0.344 0.399 0.711
uncrossed quadratic 9 norm gamma 0.155 0.279 0.279 0.331 0.390 0.618
uncrossed quadratic 9  norm unif 0.1564 0.296 0.296 0.343 0.418 0.617
uncrossed quadratic 9 norm norm  0.158 0.289 0.289  0.340 0.406 0.613
uncrossed cubic 3 unif gamma 0.141 0.412 0412 0.535 0.588 0.752
uncrossed cubic 3 unif unif 0.146 0.459 0.459 0.592 0.649 0.747
uncrossed cubic 3 unif  norm  0.144 0.478 0.478  0.596 0.641 0.752
uncrossed cubic 3 norm gamma 0.172 0.402 0.402 0.547 0.603 0.713
uncrossed cubic 3 norm unif 0.167 0.456 0.456  0.601 0.665 0.726
uncrossed cubic 3 mnorm norm 0.168 0.461 0.461 0.611 0.656 0.718
uncrossed cubic 6 unif gamma 0.144 0.328 0.328 0.390 0.440 0.744
uncrossed cubic 6 unif unif 0.147 0.357 0.357 0.426 0.487 0.740
uncrossed cubic 6 unif norm  0.145 0.350 0.350 0.421 0.474 0.737
uncrossed cubic 6 norm gamma 0.166 0.297 0.297  0.358 0.436 0.707
uncrossed cubic 6  norm unif 0.170 0.339 0.339 0.402 0.464 0.716
uncrossed cubic 6 mnorm norm 0.169 0.324 0.324 0.403 0.462 0.709
uncrossed cubic 9 unif gamma 0.145 0.279 0.279 0.336 0.405 0.735
uncrossed cubic 9 unif unif 0.144 0.290 0.290 0.344 0.401 0.732
uncrossed cubic 9 unif norm 0.140 0.292 0.292 0.342 0.406 0.733
uncrossed cubic 9 norm gamma 0.171 0.269 0.269 0.321 0.380 0.696
uncrossed cubic 9 norm unif 0.168 0.279 0.279 0.327 0.386 0.709
uncrossed cubic 9 mnorm norm 0.165 0.268 0.268 0.318 0.361 0.713

Note. MISE to true trend averaged across 200 replications for n = 1000. Cross = if crossed,

then cross relations were present, £ = distribution of £, € = distribution of ¢, f = true la-

tent variables, BFS = Bartlett factor scores, BFS,. = Bartlett factor scores without cross-

relations in corresponding CFA, NLFS = nonlinear factor scores, BSNLFS = BSpline method
for NLFS, SEM = linear SEM.



A32 STEFFEN GRONNEBERG" AND JULIEN PATRICK IRMER"

TABLE 13. Average MISE with d¢ = 2 with cross-relations

Population LOESS Other

Cross Trend da; I3 € f BFS BFS,. NLFS BSNLFS SEM

crossed quadratic 3 unif gamma 0.133 0.408 0.687 0.892 0.926 0.724
crossed quadratic unif unif 0.134 0.467 0.780 1.001 1.048 0.722
unif  norm  0.127 0.468 0.792 1.008 1.045 0.722
norm gamma 0.151 0.441 0.810 1.111 1.153 0.624
norm unif  0.156 0.500 0.944 1.275 1.324 0.625
norm norm  0.159 0.512 0.936 1.292 1.315 0.623
unif gamma 0.136 0.310 0.582 0.708 0.729 0.719
unif unif  0.138 0.334 0.622 0.758 0.786 0.716
unif norm  0.140 0.355 0.630 0.755 0.793 0.716
norm gamma 0.157 0.316 0.656  0.842 0.895 0.612
norm unif  0.155 0.335 0.705 0.886 0.929 0.618
norm norm 0.155 0.337 0.701 0.886 0.919 0.619
unif gamma 0.135 0.271 0.532 0.642 0.665 0.716
unif unif  0.134 0.278 0.538  0.654 0.694 0.713
unif  norm  0.134 0.290 0.536  0.658 0.691 0.713
norm gamma 0.158 0.275 0.598 0.736 0.776 0.617
norm unif  0.165 0.289 0.620 0.766 0.809 0.619
crossed quadratic norm norm  0.155 0.278 0.603 0.756 0.805 0.617

3
crossed quadratic 3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9
crossed cubic 3 unif gamma 0.138 0.414 0.641 0.724 0.764 0.745

3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9

crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic

crossed quadratic

crossed cubic unif unif 0.146 0.456 0.685 0.813 0.844 0.748
crossed cubic unif norm  0.143 0.475 0.709 0.814 0.849 0.747
crossed cubic norm gamma 0.171 0.390 0.635 0.817 0.859 0.724
crossed cubic norm unif 0.169 0.458 0.730 0.948 1.005 0.714
crossed cubic norm norm 0.171 0.435 0.690 0.923 0.959 0.726
crossed cubic unif gamma 0.143 0.321 0.534 0.577 0.608 0.745
crossed cubic unif unif 0.145 0.341 0.564 0.609 0.640 0.743
crossed cubic unif norm  0.141 0.336 0.563  0.615 0.635 0.739
crossed cubic norm gamma 0.171 0.300 0.536 0.643 0.684 0.704
crossed cubic norm unif 0.161 0.314 0.551 0.665 0.718 0.705
crossed cubic norm norm 0.164 0.314 0.551 0.663 0.700 0.710
crossed cubic unif gamma 0.140 0.281 0.486 0.525 0.561 0.741
crossed cubic unif unif 0.145 0.287 0.502  0.537 0.587 0.734
crossed cubic unif norm  0.145 0.286 0.503 0.536 0.569 0.738
crossed cubic norm gamma 0.168 0.260 0.470 0.547 0.587 0.702
crossed cubic norm unif 0.168 0.269 0.485 0.566 0.618 0.701

crossed cubic norm norm  0.165 0.274 0.499 0.573 0.607 0.702

Note. MISE to true trend averaged across 200 replications for n = 1000. Cross = if
crossed, then cross relations were present, £ = distribution of £, ¢ = distribution of ¢,
f = true latent variables, BFS = Bartlett factor scores, BFS,. = Bartlett factor scores
without cross-relations in corresponding CFA, NLFS = nonlinear factor scores, BSNLFS
= BSpline method for NLFS, SEM = linear SEM.
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TABLE 14. Relative average MISE with d¢; = 2 without cross-relations in comparison to
linear SEM
Population LOESS Other

Cross Trend [y 13 € f BFS BFS,. NLFS BSNLFS SEM
uncrossed quadratic 3 unif gamma 0.189 0.575 0.575 0.790 0.852 1.000
uncrossed quadratic 3 unif unif 0.186 0.653 0.653 0.848 0.922 1.000
uncrossed quadratic 3 unif norm  0.192 0.662 0.662 0.851 0.903 1.000
uncrossed quadratic 3 norm gamma 0.244 0.692 0.692 0.968 1.066 1.000
uncrossed quadratic 3  norm unif  0.248 0.808 0.808 1.136 1.252 1.000
uncrossed quadratic 3 norm norm  0.251 0.828 0.828 1.139 1.204 1.000
uncrossed quadratic 6 unif gamma 0.184 0.440 0.440 0.533 0.603 1.000
uncrossed quadratic 6 unif unif 0.181 0.490 0.490 0.584 0.660 1.000
uncrossed quadratic 6 unif norm 0.191 0.502 0.502 0.610 0.679 1.000
uncrossed quadratic 6 norm gamma 0.260 0.529 0.529 0.636 0.718 1.000
uncrossed quadratic 6  norm unif 0.245 0.557 0.557  0.699 0.797 1.000
uncrossed quadratic 6 norm norm  0.264 0.585 0.585  0.717 0.846 1.000
uncrossed quadratic 9 unif gamma 0.191 0.387 0.387 0.460 0.534 1.000
uncrossed quadratic 9 unif unif  0.200 0.416 0.416 0.479 0.550 1.000
uncrossed quadratic 9 unif norm 0.186 0.411 0.411 0.484 0.562 1.000
uncrossed quadratic 9 norm gamma 0.251 0.451 0.451 0.535 0.631 1.000
uncrossed quadratic 9  norm unif 0.250 0.480 0.480 0.556 0.678 1.000
uncrossed quadratic 9 norm norm  0.257 0.471 0.471 0.555 0.661 1.000
uncrossed cubic 3 unif gamma 0.187 0.548 0.548 0.711 0.782 1.000
uncrossed cubic 3 unif unif 0.195 0.614 0.614 0.793 0.868 1.000
uncrossed cubic 3 unif norm  0.191 0.635 0.635 0.793 0.852 1.000
uncrossed cubic 3 norm gamma 0.241 0.563 0.563 0.768 0.847 1.000
uncrossed cubic 3 norm unif 0.230 0.629 0.629 0.828 0.916 1.000
uncrossed cubic 3 mnorm norm 0.234 0.643 0.643 0.851 0.914 1.000
uncrossed cubic 6 unif gamma 0.194 0.441 0.441 0.524 0.591 1.000
uncrossed cubic 6 unif unif 0.199 0.483 0.483 0.575 0.658 1.000
uncrossed cubic 6 unif norm 0.197 0475 0.475 0.571 0.643 1.000
uncrossed cubic 6 norm gamma 0.235 0.421 0.421 0.506 0.617 1.000
uncrossed cubic 6  norm unif 0.237 0.474 0474 0.561 0.648 1.000
uncrossed cubic 6 norm norm 0.238 0.457 0.457  0.568 0.651 1.000
uncrossed cubic 9 unif gamma 0.197 0.379 0.379  0.457 0.551 1.000
uncrossed cubic 9 unif unif 0.196 0.396 0.396 0.470 0.548 1.000
uncrossed cubic 9 unif norm 0.191 0.398 0.398  0.467 0.554 1.000
uncrossed cubic 9 norm gamma 0.245 0.387 0.387 0.461 0.546 1.000
uncrossed cubic 9  norm unif 0.237 0.393 0.393 0.462 0.544 1.000
uncrossed cubic 9 mnorm norm 0.231 0.376 0.376  0.447 0.507 1.000

Note. Relative MISE to true trend in comparison to linear SEM averaged across 200 repli-

cations for n = 1000. Cross = if crossed, then cross relations were present, £ = distribution
of £, ¢ = distribution of €, f = true latent variables, BFS = Bartlett factor scores, BFS,.

= Bartlett factor scores without cross-relations in corresponding CFA, NLFS = nonlinear

factor scores, BSNLFS = BSpline method for NLFS, SEM = linear SEM.
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TABLE 15. Relative average MISE with d¢ = 2 with cross-relations in comparison to
linear SEM

Population LOESS Other

Cross Trend dxj I3 € f BFS BFS.. NLFS BSNLFS SEM

crossed quadratic 3 unif gamma 0.184 0.564 0.949 1.233 1.280 1.000
crossed quadratic unif unif 0.185 0.647 1.082  1.387 1.452 1.000
unif norm 0.176 0.648 1.096 1.396 1.447 1.000
norm gamma 0.243 0.707 1.298 1.780 1.847 1.000
norm unif  0.250 0.800 1.511 2.041 2.119 1.000
norm norm  0.255 0.821 1.501 2.073 2.109 1.000
unif gamma 0.189 0.431 0.810 0.985 1.015 1.000
unif unif  0.193 0.467 0.869 1.059 1.098 1.000
unif  norm  0.195 0.496 0.880 1.054 1.108 1.000
norm gamma 0.256 0.516 1.071 1.374 1.461 1.000
norm unif  0.251 0.542 1.141 1.432 1.502 1.000
norm norm  0.251 0.544 1.133 1.432 1.486 1.000
unif gamma 0.188 0.379 0.742 0.896 0.928 1.000
unif unif  0.188 0.390 0.756 0.918 0.974 1.000
unif  norm  0.188 0.407 0.752 0.923 0.969 1.000
norm gamma 0.256 0.446 0.969 1.193 1.258 1.000
norm unif 0.266 0.466 1.002 1.236 1.306 1.000
crossed quadratic norm norm  0.252 0.450 0.976 1.225 1.304 1.000

3
crossed quadratic 3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9
crossed cubic 3 unif gamma 0.186 0.555 0.861 0.972 1.025 1.000

3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9

crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic
crossed quadratic

crossed quadratic

crossed cubic unif unif 0.195 0.609 0.916 1.087 1.129 1.000
crossed cubic unif norm  0.191 0.635 0.949 1.089 1.137 1.000
crossed cubic norm gamma 0.237 0.538 0.877 1.128 1.186 1.000
crossed cubic norm unif 0.237 0.641 1.023 1.328 1.407 1.000
crossed cubic norm norm  0.235 0.599 0.951 1.272 1.322 1.000
crossed cubic unif gamma 0.193 0431 0.717 0.775 0.816 1.000
crossed cubic unif unif 0.195 0.459 0.759  0.819 0.860 1.000
crossed cubic unif norm  0.191 0.455 0.762 0.833 0.860 1.000
crossed cubic norm gamma 0.243 0.426 0.761 0.913 0.970 1.000
crossed cubic norm unif 0.228 0.445 0.782 0.945 1.019 1.000
crossed cubic norm norm  0.231 0.442 0.776 0.934 0.987 1.000
crossed cubic unif gamma 0.189 0.379 0.656 0.709 0.757 1.000
crossed cubic unif unif 0.198 0.391 0.684 0.731 0.800 1.000

unif norm  0.196 0.387 0.682 0.727 0.771 1.000
norm gamma 0.239 0.371 0.669 0.779 0.836 1.000
norm unif 0.239 0.383 0.691 0.807 0.881 1.000
norm norm  0.235 0.389 0.711 0.816 0.864 1.000

crossed cubic
crossed cubic
crossed cubic

crossed cubic

Note. Relative MISE to true trend in comparison to linear SEM averaged across 200 repli-
cations for n = 1000. Cross = if crossed, then cross relations were present, £ = distribution
of ¢, ¢ = distribution of ¢, f = true latent variables, BFS = Bartlett factor scores, BFS,.
= Bartlett factor scores without cross-relations in corresponding CFA, NLFS = nonlinear
factor scores, BSNLFS = BSpline method for NLFS, SEM = linear SEM.
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BSpline(NLFS) —= LOESS(BFS) - LOESS(f)
Method o [icar SEM™ ~ - LOESS(BFSuc) + LOESS(NLFS)

FIGURE 14. A comparison of the averaged MISE across 200 replications with
n = 1000 for different procedures [(B)Splines vs. LOESS vs. HZ/others] based
on different inputs (BFS, NLFS, linear SEM, and true latent variables f for
comparison) for different dimensions d; aggregated across all distributions,
trends and inclusion of cross-relations (cross-loadings and cross-correlations
in Ay, Uy, and ¥, ) used in the simulation study.

poor performance in approximating the true trend. However, for £; or 2 being 0, i.e., the center of
the distribution, the LOESS based on BFS outperforms the other methods. This difference is larger in
the conditions where cross-relations are present (see Figures 21, and 22), where also LOESS based on
BFS,. differs from LOESS based on BFS using the true model. However, LOESS based on BFS,,. still
outperforms the methods based on NLFS on average. This suggests that for the presented scenarios
even a misspecified Bartlett score results in a better non-parametric estimation of the trend compared
to the methods based on NLFS. Further, the methods based on BFS show slightly less variation as
highlighted by the confidence bands in Figures 19 and 20.

To summarize, similarly to the univariate case, the non-parametric methods approach the true trend
for increasing numbers of measurements with LOESS based on BFS showing better approximations to
the true trend as already suggested by Figure 5 of the main text. However, the difference to the true
trend appears slightly larger than in the univariate case.
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FI1GURE 15. A comparison of the relative averaged MISE compared to the lin-
ear SEM approxzimation across 200 replications with n = 1000 for different
procedures [(B)Splines vs. LOESS vs. HZ/others] based on different inputs
(BFS, NLFS, linear SEM, and true latent variables f for comparison) for two
models with different true trends (quadratic and cubic), dimensions d,,, and in-
clusion of cross-relations (cross-loadings and cross-correlations in A, V., and
U, ) and distributions (row and column names refer to marginal distributions)
used in the simulation study for de = 2. See Table 14 and 15 for numerical

values.
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FIGURE 16. A comparison of the averaged MISE across 200 replications with
n = 1000 for different procedures [(B)Splines vs. LOESS vs. HZ/others] based
on different inputs (BFS, NLFS, linear SEM, and true latent variables f for
comparison) for two models with different true trends (quadratic and cubic)
and dimensions d,; for d¢ = 2 aggregated across all distributions and and
inclusion of cross-relations (cross-loadings and cross-correlations in Ay, Uy,

and U, ) used in the simulation study described in Section /.4.
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FIGURE 17. True quadratic trend of used in the simulation study. black lines
and blue lines indicate the specific marginal relationships between H and &
further depicted in Figures 19, and 20.
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F1GURE 18. True cubic trend of used in the simulation study. black lines and
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depicted in Figures 19, and 20.
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FIGURE 19. A comparison of nonparametric estimation for E[n|¢] averaged
across 200 replications with n = 1000 for LOESS based on BFS and the NLFS,
the BSpline estimator based on NLFS compared to the true trend and a linear
SEM estimation with different true trends (quadratic, cubic) and dimensions
dy,; with multivariate normal £ and gamma distributed errors € and measure-
ments without cross-relations for specific values of £&o. Shaded areas correspond

to the 95% coverage interval computed point-wise across the 200 replications.
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FIGURE 20. A comparison of nonparametric estimation for E[n|¢] averaged
across 200 replications with n = 1000 for LOESS based on BFS and the NLFS,
the BSpline estimator based on NLFS compared to the true trend and a linear
SEM estimation with different true trends (quadratic, cubic) and dimensions
dy,; with multivariate normal £ and gamma distributed errors € and measure-
ments without cross-relations for specific values of £&1. Shaded areas correspond

to the 95% coverage interval computed point-wise across the 200 replications.
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FIGURE 21. A comparison of nonparametric estimation for E[n|¢] averaged
across 200 replications with n = 1000 for LOESS based on BFS and the NLFS,
the BSpline estimator based on NLFS compared to the true trend and a linear
SEM estimation with different true trends (quadratic, cubic) and dimensions
dy,; with multivariate normal £ and gamma distributed errors € and measure-
ments with cross-relations for specific values of £o. Shaded areas correspond to

the 95% coverage interval computed point-wise across the 200 replications.
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FIGURE 22. A comparison of nonparametric estimation for E[n|¢] averaged
across 200 replications with n = 1000 for LOESS based on BFS and the NLFS,
the BSpline estimator based on NLFS compared to the true trend and a linear
SEM estimation with different true trends (quadratic, cubic) and dimensions
dy,; with multivariate normal £ and gamma distributed errors € and measure-
ments with cross-relations for specific values of 1. Shaded areas correspond to

the 95% coverage interval computed point-wise across the 200 replications.
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APPENDIX E. TECHNICAL AND MATHEMATICAL APPENDIX

E.1. On Assumption 1. The assumption of at least two finite moments firstly implies that E[n|¢]
exists, and secondly that the mentioned covariances are finite (by the Cauchy-Schwartz inequality).
Assumption 1 (1) is a minimum requirement for Z to be said to follow a factor model, as otherwise
the covariance structure is misspecified. Let G(A) be the set of matrices which fulfill AA = I4,, i.e., the
left inverses of A. Since a matrix has left inverses if and only if it has full column rank (Harville, 1997,
Lemma 8.1.1), G(A) is non-empty if and only if A has full column rank. Therefore, Assumption 1 (2) is
foundational. Assumption 1 (3) means that no linear combinations of f has zero variance, which would
mean that the dimensionality of f is misspecified. Assumption 1 (4) is also foundational. Suppose (4)
does not hold. Since ¥ is a covariance matrix, this means that some of its non-negative eigenvalues are
zero. U is diagonalizable with ¥ = PDP’ for a diagonal matrix D with real and ordered eigenvalues,
and P a d, x d, orthonormal matrix. Therefore, let £ = P’c, whose last coordinates are zero, so that
Cov(§) = P'UP = D, and P’z = PAf + € follows a factor model whose last coordinates have no
measurement error. Assumption 1 (4) disallows this, which under parameter identification would mean

there is no need for factor scores.

E.2. A Discussion on Assumption 7 (3) (a). Recall that Assumption 7 (3) (a) is that

Sup,cso |Ew(z,re)| — 0 as dx — 00, where w(z, h) = H(x —h) — H(x). We here verify this assumption
in the simple class of functions H that are univariate polynomials, assuming the strong assumptions as
in Section 2.2. Extensions of this argument can be developed, but we consider this verification mainly
an illustration.

Let us start getting familiar with this assumption in some special cases for real valued coefficients a;,
for ¢ > 0. Suppose H(x) = ap+aix is linear. Then H(z—r¢)—H(xz) = —ai1r¢ and so EH (z—r¢)—H(x) =
—a1Ere = 0. Suppose then that H(z) = ao + a1z + asx?
H(z—r¢)—H(z) = —arre +az[(x—re)* —2°] = —arre +az(—2are+1f), so that E[H(z — r¢) — H(z)] =

az (—22Ere + Er) = a» Var re, which goes to zero e.g. under the conditions of Proposition 3.

is a second degree polynomial. Then

For both of these cases, the convergence holds irrespective of the size of S”, which will not be the

case in general. Indeed, let us consider a third order polynomial. Let
P

(10) Hy(z) = Z a;z?, with ap # 0.
i=0

Then Hi(xz — 1¢) — Ha(x) = Hao(x — re) — Ho(x) + as(x — re)® — asx® = Ho(x — re) — Ha(z) +
a3 (—3z°re + 3ari — r}) with expectation (a2 + as3z) Var r¢ + asEr. Due to the inclusion of z, we
cannot have that sup,cg, [Ew(z,r¢)| — 0 if S has infinite extension. For general functions, we will
therefore assume that S” has a finite extension, and we see from the third order case that this cannot
be weakened.

Since 7, ¢ has all practically relevant realizations within a region of finite extension, assuming that
S” has finite extension will not matter in practical applications, especially with finite sample settings.
A different proof technique could give a requirement where this is not needed, and this is considered
outside the scope of the present paper.

To finish the argument in the the third order polynomial case, if s = |sup{z € S”}|, then using
the triangle inequality, we have sup,cs, |[Ew(z,7¢)| = sup,csp [(a2 + as3z) Var r¢ + asErg| < (Jaz| +
las|3s) Var re + |as||Er| — 0 where Erf — 0 follows by the upcoming Lemma 5.

We now consider the general polynomial case.
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Assumption 10. Suppose
(1) dy=de =1.
(2) for a p > 1 we have
les [P
supE—— < .
izl /i
(3) Suppose S” from Assumption 7 (3) has finite extension, that is there is a number Ms» > 0
such that 8 C [-Mse, Ms»r].
(4) Suppose H is a polynomial of degree p, where p is the constant from (2) above.

Proposition 6. Suppose given Assumption 1, 8, 9 (2) and (3), and 10.
Then sup, g, [Ew(z,7¢)| = 0 as de — oco.

Proof. We have H = H), as in eq. (10). Suppose p > 2, as p = 1 follows as above. We have
p A p _
EH,(z —r¢) — Hp(z) = EZai(w —re) — Zaiwz
i=0 i=0
p . .
= EZai[(az —re) — ']
=0

@ Z aiE[(x —re) — 2]

=2

(a) For i = 0 we have (z — r¢)® —2' = 0, so the i = 0 term vanishes. Also, for i = 1, we get
E(z —r¢)" — 2 = 2 — Erg — 2 = 0. Therefore, only terms with i > 2 are relevant. (b) For j = 0 we
have (;‘.)xifj(fl)j]Erg = 2%, which cancels by the term —z*. (¢) If j = 1 then ]Erg = 0, and hence this
term vanishes.

Therefore, by Assumption 10 (3) and the triangle inequality, we have

sup [EH,(z —r¢) — Hy(x)| < sup  |[EHp(z —r¢) — Hp(z)|

weSP o] <My
P i i
_ i3 ||
= sup gaig | 2" [Erg]
|W‘SMA1‘:2 j=2 J

P i .
<>a) (J) MiE|re|’
i=2 =2

Since E|r5|i — 0 for 2 < i < p by the forthcoming Lemma 5, we get the desired convergence, as the

number of terms in the sum is fixed as d, increase. O
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Lemma 5. Suppose given Assumption 1, 8, 9 (2) and (3), and 10. Then E|r¢|? — 0 for any integer
2<q<p.

Proof. Notice that from Assumption 8 (1), e, has independent components. This independence will
be crucial for the result.

By the Lyapunov inequality, we have E|r¢|? < (E|r¢|?)??. Therefore, E|r¢|? — 0 for 2 < g < p as
long as E|r¢|? — 0, which is what we show.

We use one of the several inequalities that carry the name “the Marczinkiewicz-Zygmund inequality”,
see (Révész, 1967, Theorem 2.1.3) and the more recent refinement in Ren and Liang (2001) which gives
the soon to be stated bound for the soon mentioned constant C. It says that for independent X7y, ...
with zero mean and sup,, E[X;|” < oo for p > 2 we have that that for a constant C < (3v/2)PpP’? we

have

p n
< Cn(P/2)*1 ZE|XZ‘Z)

=1

(11) E

>
i=1

As in the proof of Proposition 5, see eq. (17) (p. A57), we get from Assumption 8 that

1 &
re=—— aju
Ndy 35

2

c. A2 d .
where v, = 2= a; = -2~ and ng, = * a. Notice a; > 0.
1= s YT B " j=1 % j =
This gives
dy P
p_ ,—p )
Elre| *ndwE § VU
i=1

dy
< Cn;zpd;p/m_l Z E|\/aju;|P

i=1

da P
< cn;pdépﬂ)*l E : a;? <supIE l&;] >
N i1

i=1 ]

JJj

d
les[” ) —p (p/D)-1 N P
= supE\/j Cny dy Z\/aj.

Jj>1 33 i=1

2
We now use Assumption 9 (2), i.e., that (AJ—1> C [mayy, M) for numbers 0 < my/y <
1<j<dgy

73

M,y < oo. This gives
dz dz
Nd, = Zaj > Zm,\w =dzmx/y
Jj=1 Jj=1

and

do do
DoV <Y My = de/ My
i=1 i=1

Inserting this in the series of inequalities from above gives

.|P
Elre|? < <s_up1E & )cm;fwd;”d;p/”—H/MA/Jd,;
J

>1 /55

les|” —p P b/
= [supE Cmy /My dy
<j>1 V¥ij MY
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le; P

Since p > 0 we have —p/2 < 0 and so the convergence is shown as dz""* = 0 for dy — oo, SUpP,>1 E\/r
= is

was assumed to be finite, and the remaining are finite constants. O

E.3. More Details on the Consequences of Asymptotic Normality of r. Following Propo-
sition 5. Using our notation as well as the the conclusion from Lemma 2 that E[fj|§ = z] = H(z),
Huang and Zhou (2017) is based on the equality
H() = o / oita Pantn )
27 fe(x) bre (£)

where Hg, (z) = E[ij|é = z], where ¢ 4, f; 18 the characteristic function of the convolution between
Hg, and fj, and where ¢, is the characteristic function of r¢. Except ¢, all quantities in the above
display are identified. Proposition 5 motivates approximating ¢, by the characteristic function of a
re-scaled normal random vector, which has a known formula. To simplify notation, consider the special
case d,, = d¢ = 1. Then the suggested approximation is

o _ 1 _ite ¢Hdz fi (t)

which is the population version of the Huang and Zhou (2017) estimator when using it with the nor-
mality approximation from Proposition 5. However, replacing r¢ with zero is shown to yield uniformly
consistent approximations of H as d, increase in Proposition 4, and so merely getting this from the
normal approximation does seem needed, as the asymptotic normality also implies that r¢ converges to
zero in probability, thereby fulfilling Assumption 7 (4), which means that such a result would not give
new insight. Therefore, the possible benefits of the normality approximation would be not in terms of
asymptotic identification, but if H was better than Hg, of Proposition 4 as an approximation to H.
This seems complex to investigate mathematically, especially since Z/cq, goes to zero for d, increasing,

and is considered outside the scope of the present paper.
E.4. Mathematical Results and Proofs.
E.4.1. Proof of Lemma 1.

Proof of Lemma 1. Statement 1: We have Cov (f,r4) = Cov (f,AZ — f) = Cov (f, AZ) — Cov (f) =
Cov (f, ANf+Ae)—Cov (f) = AACov (f)—Cov (f)+ACov (f,e) = (AA—1I4,) Cov (f) = (AA—14,)P.

Suppose A € G(A). Then AA — I4, = 0, so that Cov (f,ra) = 0® = 0. Suppose Cov (f,74) = 0.
Then 0 = (AA — I4;) Cov (f) so that right multiplying both sides of the equality by O~ ! gives 0 =
AN —1Iq;, and so A € G(A).

Statement 2: This follows from E[AZ|f] = E[A(Af + ¢)|f] = AAE[f|f] + AE[e|f] = AAf, which
equals f if and only if A is a left inverse of A, i.e., A € G(A).

Statement 3: We first show that 7' exists. This is implied from that ¥ = Cov z = A®A’ + U is
invertible under Assumption 1 (3) and (4), as we now show. We will do this by showing that ¥ is
positive definite. Let « be a non-zero d, dimensional vector. Since V¥ is positive definite by Assumption
1 (4), 2’¥z > 0. We have 2’3z = 2’ APA z + 2’ Vx = /Py + 2’ VUx where y = Az. If y = 0, then
'Sz = 2’z > 0. If y # 0, then also y'®y > 0 since P is positive definite by Assumption 1 (3).
Therefore, ¥ is positive definite and, hence, invertible.

Let T = Cov (f)A’ Cov (2)™! = ®A(APA’ + ¥)~'. Now we show that T ¢ G(A) by contradic-
tion: Assume that 7' € G(A). That is, TA = I4,. By Lemma 13 (p. A77), we can also write T =
(@' —|—A/\Il_1A)71 A'¥~'. Now, we have by assumption that TA = (&~ +A'\Il_1A)71A’\II_1A =
I4; . Right multiplying on both sides with @~ + A’U ™' A gives A'U'A = @' + A’U ™A which holds
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if and only if ®~! = 0, which is not the case, because ® ! is positive definite since ® is positive definite
by Assumption 1 (3). This is a contradiction, so it follows that 7" ¢ G(A).

Statement 4: We first show that A exists, which holds if A’¥ ™A is invertible. We show that
A'UA has the same rank as ™!, This implies that A’U LA is invertible, because it has the same
dimensionality as !, which is an invertible matrix by Assumption 1 (4).

Recall (Harville, 1997, Lemma 8.3.2) that for two matrices A, B of compatible dimensions, we have
that rank(AB) = rank(B) if A has full column rank, and that rank(AB) = rank(A) if B has full row
rank.

Since ¥ has full rank, since it is positive definite, ¥~ has full row and full column rank and
this gives rank(¥~'A) = rank(A). Since A has full column rank, A’ has full row rank. Therefore,
rank(A’UTTA) = rank(¥"'A) = rank(A). The rank of A is d; as it has full column rank and since
df < d.. Since NUT'A is a dy x dy matrix, it has full rank and, therefore, is invertible. Hence, the
Bartlett matrix A exists.

We have that A is in G(A) because AA = (A'U~'A)"'A'U~'A = I,,. The optimality property
follows from standard theory on GLS, see e.g. (Hansen, 2022, Chapter 4.6).

O

E.4.2. Proof of Lemma 2.

Proof of Lemma 2. By eq. (5), by the displayed above and the linearity of conditional expectations,
we have E[7j|¢] = E[n|¢] + E[r,|£]. Let 0,4 be the p X ¢ matrix of zeros and I, be the p X p identity
matrix, we have r,, = (04,,d¢, 14, ) Ae. Therefore, we have E[ry|¢] = (0a,, 4, L4, ) AE[e[¢]. By Assumption
Assumption 1 (1) and Assumption 2, ¢ has zero mean and is independent to f = (¢/,%)’. It is therefore
also independent to £. Therefore, E[e|¢] = Ee = 0 and E[7j|€] = E[n|¢]. O

E.4.3. Proof of Proposition 1.

Proof of Proposition 1. For concreteness, let us choose to work with A = A, the Bartlett factor matrix
which under Assumption 1 exists using Lemma 1 (4), and form f = (¢/,4)". Consider the characteristic
function of (¢',7f')’, which we recall uniquely characterizes its joint distribution. For a vector t = (t¢,t})’

of dimension dy and component dimensions dg¢, d,,;, we have

Eeit’(g"’,ﬁ’)’ _ Eeitééﬂt’nﬁ _ Eez‘t’s(§+r5)+n;]ﬁ _ Eeit’{rg 6“’&54—1‘%,‘7‘.

From Assumption 2, ¢ is independent to f. Therefore, r = Ac is also independent to f. Since r¢ is just
the first d¢ coordinates of r, it too is independent to f, and hence to £ and 7. By Assumption 4 (2), r¢
is also independent to r,. Therefore, r¢ is independent to both £ and 7 = n + 7, (since 7j is a function
of n and 7,). Therefore, the expectation of the product in the above display factorizes to the product
of expectations of the terms, and we get
Reiteétityii _ Eeit(é/’ﬁ/)l
Ee'*eme

Since the distribution of r¢ is known by Assumption 4 (1), and f = Az has a distribution given by
A and the distribution of Z, which is identified by Assumption 3, this shows that the distribution of
(&,7)) is identified. From this distribution, we may compute E[fj|§¢ = z] which from Lemma 2 equals
E[n|¢ = z] = H(x), which is therefore identified. O
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E.4.4. Proof of Lemma 3.
Proof of Lemma 3. As in eq. (6), we have
Az A€+ Agey Az
A3 = f + & _ f + e _ f + Tr¢
AyAyn + Ayey n Ayey Tn
by the assumed A, € G(A;) and Ay € G(Ay) for re = Aze, and 7, = Aye,. Since we assume that e,

and €, are independent, we have that also r¢ and r, are independent, as they are functions of only €,

and ey, respectively. O
E.4.5. Proof of Proposition 2.

Proof of Proposition 2. Using partition matrix rules, we have

g o (Y Oaa)
Ody,dm W;l

Since
04, .4 yt
AL O ) el =0 , and (0 A') * =04, .d,,
( ¥ de,dy < \I/y—l ) dg,dy dy,dg y Ody’dm dy,dy
we get
Aol A, Odga, ol Ogpa, | _ (AL Oda, ‘
Odnv’ix AiJ Odyvdz \11171 Odnsdm A;J\Illjl
Since
_ 04,4, _ Ag
(A’Z\III 1 Odg,dy) ( A 7) = Odivdn’ and (Odn,dz A;\Ify 1) (0 = Odn,d57
Yy dyvds
we get

A/\I/_IA: [A/\IJ_I] A= <A;\Ilzl Odg,dy> ( Az 0dz,d77> — (A;\I’zlAz Odg,d,, > )

0d,,d., A;\I/y_l Ody,dg Ay Od,,,d§ A;\IJJIAy

Since A, has full column rank from the last statement in Assumption 5, and ¥, is positive definite
being a principle sub-matrices of a positive definite matrix ¥ (Horn & Johnson, 2013, Observation
7.1.2), the matrix ALW LA, is invertible by the same argument as in the proof of Statement 4 in
Lemma 1 (replacing A, ¥ with A, ¥, respectively). The same holds for A;\IlglAy. Hence, both A,
and A, exist.

Also, since each non-zero partition is invertible, the partitioned diagonal matrix A'U~1A can be
inverted using the partition rules, giving
(12) (NoA) T = <(A;%1AZ)1 , Ode 1> ,

Od,,,d§ (Ay\IJy Ay)

Therefore,

’ / A,\I/71AI -1 0 AI \1171 0
A= wtayagt = () Oacay ) (AT Oca,
OdT/’dé (Ay\IJy Ay) Od’nadz Ay\IIy

(ALW AL) ALt 0, .a,
0d, . d, (A0, ' Ay) Ay

y
Ay 04,4,
Od'quz Ay
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As for Cov r, we calculate in general that

Cov r = Cov [Ae] = A Cov [¢] A
= [((We )TN (AT A

—(ANTTA) TN T [(qf—l)’ (A [(A/\I!_lA)_IH
= (MO TINT A (VA ]

-y

which together with eq. (12) gives the stated formula. This formula also shows that Cov r is positive
definite, because it is invertible as shown in the proof of Statement 4 in Lemma 1. The last statement,
that (1\;\11;1AI)71 and (A;\IIJIAy)i1 are positive definite, follows since they the inverse of positive
definite matrices, as shown when we above showed that A,, A, exists. O

E.4.6. Proof of Proposition 3.

Proof of Proposition 3. Statement (1): We will use the following property twice: For a symmetric
positive definite m x m matrix M, we have that maxi<; j<m |Mi ;| < Amax(M). Since we have not
found a reference for this likely well-known result with a complete proof, we provide a proof in Lemma
12 (p. A77).

From Proposition 2 we have that Cov re = (ALUZ'A,)™!, and that it is a positive definite matrix.
We therefore have that
(13 2285, 0o el S s (W20 ™) = 5 s
where the last step follows from the spectral decomposition theorem, see e.g. Corollary A.6.4.1 in
Mardia et al. (1979).

We now show that

2 2
_ . m My 1
)\mm(A;\Ilac 1AI) Z 12n1<r}i N'L MAZ - S 7 : : C’L,j I
=t Yoo T g
which from eq. (13) implies the conclusion of the first statement.

Now ALU;'A, has a constant dimension of d¢ x d¢, and has entries of the form
(AL, A )iy = (Aa) 05 (M)

where (Az).,; is the ’th column of A;.

We make use of the Greshgorin circle theorem (Horn & Johnson, 2013, Theorem 6.1.1), which
states that each eigenvalue Ay of a dp, X dp, square matrix M = (m; ;)i ; is contained in the complex
plane D(m;q, Ri) of radius Ri = >, 1< <4, |Mij|- Now in our scenario the matrix M is positive
definite and we know all of the d,, eigenvalues are real. Hence, all d,, eigenvalues are contained in
the intervals of the form D; = [m;; — R;, ms; + R;], so that all eigenvalues are in D = U1<i<dm D;.
Since the radius R; > 0 for all 1 <14 < d,,, we need to consider the smallest point G WithiiniD, ie.,
G = mingep = mini<;<gq,, (Mi,i — Ri). If now G — oo, then the eigenvalues of M diverge without

bound and consequently, the eigenvalues of M ™' converge to zero. Therefore, by translation to our
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notation, the smallest eigenvalue of AL W, 1A, is greater than

G= min [(A) T (An)i— > (A5 (M)

1sisde 1<j<de, j#i
Since Amin (¥, ) = 1/Amax(¥z), Assumption 6 (1) implies that 1/Amax(¥z) > 1/Myg, > 0. Since
(Ax) (Ag)oi = 0= (A )i > 0, we have
(B, W2 (Aw)i = (M) i(Ba)t) - [(Aa) W5 (Ao (Aa) (M)

-1
>My!

> My, (As)i(As). z—M\pr

By Assumption 6 (2) and (3), there are N; non-zero elements in this sum, and these are larger than
mf\z > 0. Therefore,
dy
Z(Az)iz > Nim?u:
k=1
which further implies
(M) U2 (Au)os > My Nl

We now bound the negative term in G from below, which means providing an upper bound for

Zlgjgd&j# [(Az) ;07" (As).,;]- From the triangle inequality, we have that

dy  da dy dy
|(Ae) i W2 (M) 5] = |ZZ(AQS)]€Z(A(L‘ U el < ZZ Vi (M )15 (U5 -
k=11=1 k=11=1
Recalling that C; ; is the number of non-zero elements in the sum, we get that

ZZ\ i (P Deal < Ciy max  [(Ae)k,i(Ae)is (97 k-

1<4,5<d
k=1 1=1 SHiste

By Assumption 6 (2), we have that |(Ag)k,i(Ac)i;| < MR, which is fixed for all d,. Again, we
use that for a symmetric positive definite m X m matrix M, we have that maxi<ij<m |Mi ;| <
max|z|—1 'Mz = Amax(M). Since ¥, is a positive definite matrix, we therefore get from Lemma
12 that maxi<;j<a, |(¥3)ii] < dmax(Uz) = 1/Amin(¥). Since Amin(¥) > my, > 0 we get
1/Amin(¥) < 1/my,. Therefore, we get that maxi<i j<d, |(Az)k,i(Aa)ij (V5 k| < MR, /mw,, which

gives

de dg
ZZ )05 (P5 il < Ciy ME, /me, .

k=1
We therefore get that
. -1 2 _1
G> min | My Nimi, — > Cij max |(Aa)ei(Aa); (V5 el
= 1<) <de i Shisds
> min | My Nemi, — > Ci;ME, /ma,
1=isde 1<j<de j#i
2 2
. m My 1
> min N; L Z Ci,;

1<i<d M m i
=t=de Yo Yo << i

This shows the first statement by inversion of both sides.
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Statement (2):

Let € > 0 be given. Suppose ¢ is so small that M\;jmiz/(M,Q\z /mw,) —&/(MZ_/mw,) > 0. This is
possible because My 'm3_ /(M3 /mw,) >0 and (M3, /mw,) > 0.

Recall that N; > 0 and C;; > 0 and since limg, ;o0 N%-Zgjgdf,j;éi Cij =0forall 1 <i¢ <
d¢ by Assumption 6 (4), we have that there exists a D > 0 so that for all d, > D we have 0 <
N%_ Zlgjgd&j# Ciy < Mg'mi, /(MR /mw,) —&/(MZ, /muy,) for all 1 <i < dg. Therefore, recalling
that MXI /mw, > 0 for all such d; and any 1 < i < d¢ we have

2 2 2 2
ma MA 1 ma MA ~1 2 2 -~ 2
e he L Cpy > e MAa M —&/(M
B o el S Gz e - T (Mgt (O8] m,) - /R, Jma, )
1<j<dg¢,j#i

x

—1 2 ~
— M‘pmmAI +e

I
™

Therefore, for all sufficiently large d., we have
G2 min No(Mglmd, - M3, fmo, Mglmd_ (M3, fma) — €/, fma)
Ji<dg : :
= min N;é

1<i<dg
which by Assumption 6 (3) goes to infinity. Therefore, the smallest eigenvalue of AL U 'A, goes to
infinity and, consequently, the largest eigenvalue of Cov r¢ = (A;\I/; 1A1-) -t goes to zero, which further
implies

lim max Cov re =0.
dy—00 1<i4,5<d¢

E.4.7. Proof of Proposition 4.

Proof of Proposition 4. All limits are with respect to d, — oo.

Let Hy, (z) = E[n|é = z]. We start by showing that Hg, (z) = Hga, (x). We have that E[j|¢] =
E[n + rul€] = ElI] + Elry[¢].

We have that £ = £ + r¢ is independent to r,, because £ and r¢ is, which is seen as follows: By
Assumption 4 (2), we have r¢ is independent to 7,. We now show that also & is independent to 7,:
Since 7y, is a function of €, and £ is a function of f, £ is independent to r, by Assumption 2 (1) which
says that ¢ is independent to f.

Therefore, E[r,|¢] = E[r,] = EA,e, = A,Ee,, which is zero by Assumption 1 (1).

The desired conclusion therefore follows if we show that sup, 4 |Ha, (z) — H(x)| — 0.

From Assumption 7 (1), f = (¢,n")’ and r¢ have densities. From Assumption 4 (1), r¢ is independent
to f. Therefore, (n,€') = (v, & + r¢) has a density given by the convolution formula

(14) fen(@y) = fetren(,y) = Efen(@ —1e,y).

Recall that we without loss of generality assume d,, = 1. By Assumption 7 (1), 1, have densities, and
therefore the conditional expectation Hy, is given by the classical formula

~ _ o fé,n(xvy)
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We notice that
- * fen(@,y)
Hg, (z) = / y=——dy
—oo j%(x)

_ Je(m) [ fém(m’y)
-~ fi(@) /_ooy fe(@) dy

Recalling eq. (14), we have

< fe(®,y) * E T —Te,
/ y & dy:/ y ffv"]( [3 y) dy

fe(x) —oo fe(@)
_g [T fen(z—rey)
- [ vt
=EH(z —r¢),
and so for w(z,h) = EH(x — h) — H(z)
- @) e
=[EH(z —r¢)] — (1 - §i§3> [EH (z — r¢)]
—BH o)) - 0D g

fe(@) = fe(z) + fe(2)
=Rg, (z)

= H(z) + [E(H(z —r¢)) — H(z)] = Ra, (z) [E (H(z —r¢)) — H(x)] = Ra, (x)H (x)

@ H(z) + [E(H(z —r¢) — H(x))] ~ Ra, (z) [E(H(z — re) — H(z))] - Ra, () H(z)
(15) = H(z) + [Ew(z, r¢)] — R, (z) [Ew(z,7¢)] — Ra, (2)H ()

(a) H(z) is non-random, therefore E (H(z —1¢)) — H(z) =E (H(z — r¢) — H(x)).
In a separate step below, we show that sup,cg, |Ra, ()] — 0. We now show that this leads to the
required conclusion.

From eq. (15), the triangle inequality and that sup, |a(z)b(z)| < (sup, |a(z)|)(sup, [b(z)|), we get

sup |Ha, (x) — H(z)|

rESP

= sup |[Ew(z,7¢)] — Ra, () [Ew(z,r¢)] = Ra, (x)H (x)

reSP
< sup [Ew(z,r¢)|[ + sup [Ra, (z)| sup [Ew(z,r¢)| 4 sup |[Ra, (z)| sup |H(z)|.
reSP TESP reSP reSP reSP

The conclusion now follows: Firstly we have sup, s, [Ew(z,¢)| — 0 by Assumption 7 (3) (a). Secondly,
by the separate step proved below, we have sup,cgss |Ra, ()| — 0. Thirdly, from Assumption 7 (3) (b)
we have sup, g, |H(z)| < 00, so that also the last term above goes to zero.

Bounding of Rq,, step 1: We first show that sup,c s, [fe(z) — fz(z)| — 0, and then use this to show
that sup,cgp |Ra, (z)] — 0.

Let x € §”. The density f& = fe4r, is given by the convolution expression

fetre (2) = Efe(x — 1¢).
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Therefore, for the indicator function I{||r¢||2 < p}, which is one iff ||r¢]l2 < p and zero else, we have

sup |fe(z) — fe()| = sup [Efe(z —re) — fe(w)|
sup |EI{||rell2 < p}[fe(x —re¢) — fe(x)] + BI{||rell2 > p} [fe(z —re) — fe(x)]|
sup |EI{|Irell2 < p}[fe(z —re) — fe(@)]|+

sup [EI{|Irell2 > p}[fe(z —re) — fe(x)]],

IN

by the triangle inequality.

We bound the two terms separately. Recall that ||a||2 is the Euclidean norm of a vector a.

First, suppose |[r¢ll2 < p. We can then bound |fe(z) — fe(xz — r¢)| via the mean value theorem
(e.g. Edwards, 1973, p 90, Theorem 3.4): Since f¢ is continuously differentiable in §” by Assumption
7 (3) (d), we have for the (random, d,-dependent) line segment L(z,r¢) = {x + a(z —r¢) 1 a € [0,1]}.
Then fe(z) — fe(x —1¢) = f'(c)re where ¢ € L(z,7¢) and f'(c) is the derivative row vector f'(c) =
(D1f(c),...,Da, f(c)) where D; is partial derivation with respect to the j’th coordinate. This gives

|fe(2) = fe(x —re)l = | f'(e)re]
@
< N Oll2llrell2

®)
< sup )||fé(z)||2||7“§|2

2€L(x,r¢

(a) Cauchy-Schwartz. (b) Since ¢ € L(x,r¢).
Since ||r¢ll2 < p, we have L(z,7¢) C S” by the definition of S”, and so SUD. L (2, ) [fé(z)] <

sup,cso || fé(2)]l2 < co by Assumption 7 (3) (d), and consequently
(16) |[fe(x) = fe(z —re)| < sup [1fe(2)ll2]lre l2-
This shows that
Hllrellz < p}fe(z —re) = fe(@)| < Hllrell2 < pHllrell2 sup Ife(2)],

because either [|r¢]|2 < p, and then eq. (16) holds, or ||r¢||2 > p, and then the indicator functions both
sizes of the inequality are zero, and equality is preserved.
This shows that

sup [E1{llr¢ll2 < p}fe(z —1¢) — fe(2)]] < sup EI{l[rel2 < p}lfe(z —re) — fe(@)]

IN

sup EI{||re(l2 < p}rell2 sup [ fé(2)]l2

zeSP ZESP

= (sup ||f§(y)|\2) E{[lrell2 < p}lirell2-
yeSP

Recall that r¢ converges in probability by Assumption 7 (4). Since the function g(z) = I{]|z]2 <
p}|z||2 is continuous, g(re) converges in probability to g(0) = 0 by the continuous mapping theorem.
Since I{||rell2 < p}|rell2 is bounded by p and converges in probability to 0 as d, — oo, the variable
therefore also converges in expectation (e.g. Theorem 6.4 in Bierens, 2004). Therefore the above display
goes to zero since sup, s, || f¢(y)|l2 < oo by Assumption 7 (3) (d).
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We now consider sup,cgp [EI{||r¢ll2 > p}[fe(x — r¢) — fe(x)]|, which by the triangle inequality is
bounded by

sup. [EI{l[rell2 > p}lfe(x — re)| + | fe(2)]]
< sup EI{|jr¢]l2 > p}2 sup |fe(y)|
reSP yeSP
=EI{[lrell2 > p}2 sup |fe(y)|
yeSP
=2 sup |fe(y)|EI{||¢[l2 > p}
yeSP
= P(||r¢ll2 > p)2 sup |fe(y)l,
yeSP

which goes to zero as d; — oo by the definition of convergence in probability since r¢ = op(1) by
Assumption 7 (4).
Bounding of Ry, , step 2: We now return to Rg, (z) directly, using the bound from step 1. Now

recall 0 < infyese fe(y) < fe(z). By Step 1, we have that for any € > 0, we have that for all sufficiently
large d,, we have —& < fz(z) — fe(z) < € for all x € S”. Let 0 < & < infyese fe(y), so that
—eé +infyese fe(y) > 0. Then

fe(@) = fe(@) + fe(x) > —€+ fe(z) > —€+ yiensfp fe(y) >0
Therefore, | fz(z) — fe(x) + fe(z)| = fz(x) — fe(x) + fe(x), and

fe(@) = fe(@) _ |fe(@) = fe(a)]
fe(@) = fe(@) + fe(x) | [fe(a) = fe(x) + fe()]

< ¢ .
T —é+infyese fe(y)
Since infyese fe(y) > 0 by Assumption 7 (3) (c),
lim ¢ = 0 =0
a0t —€+infyese fe(y) =0+ infyese fe(y)

and the convergence occurs at a rate that is independent of z. Therefore,

| s - )
swp R @)= stp | 20— @) + £ @)

— 0.

d

E.4.8. Proof of Lemma 4. The following proof is done for the d, measurements of £, as it is needed
specifically for the rationale. It can easily be extended for all d, measurements by simply replacing
de by d- = da + dy, de¢ by df = d¢ + dn, €2 by € = (e},e,)" and by enlarging A, and ¥, by the

corresponding elements of regarding the measurements of 7.

Proof of Lemma /. From Assumption 8 we have that Cov e, = ¥, is an invertible diagonal d, X d
matrix, which further implies U, ' is a diagonal matrix. We call 9;; the residual variance of variable 1,
fori=1,...,ds:

1/)11
1 1
U, := dia e Yayd,) = - ,and , Ut i=diag [ —,.. ., ,
g1 Y, d, ) 0 . g (1/111 Wmdm)
0 ...0 %Ya,a,

where diag stacks the given vector into a diagonal matrix. Further, we call A\;; the (4, j)-entry of A,.
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From Assumption 8 (2) we have that A, only has one non-zero element per row, which implies that

ALUZ' is a de¢ x d, matrix that has the identical non-zero elements as AL, the elements are

rao—1 A
Mt (w,,) |
1/ jii=1,.de,i=1,.dg

.....

Hence, the element (j,4) of AL¥, wZ’ where );; is either zero or non-zero. Post-multiplying

with A results in a diagonal d¢ x d¢ matrix:

ALV A, = dia
(53
The off-diagonal elements are zero, since the columns of A, are orthogonal, i.e., (A. j;)'A. j, = 0, for
j1 # j2, where A. j; and A. j, correspond to the ji-th and j2-th column of A;, respectively. The j-th
diagonal element of AL W, A, is the sum Zf;l
Now, since AL WU, 1A, is a diagonal matrix, we have for its inverse a de X d¢ matrix:

A2 I .
wa , which is nonzero since A, has full column rank.
7

_ _ 1
(AL 'A,) ! =diag | | ————
dg A%j
Zi:l Yii [ j=1,...,d¢

The derived entities are used in the following proofs for the specific subsections of Lemma 4.

Statement (1): Since (AL,W;'A,)~" is diagonal and A, ¥, has the identical non-zero elements as
AL, we have that (ALUZ'A,) AL T ! also has the identical non-zero elements as A,,. The elements

result as

Yis Zk 1 duck

The elements of A, are nonzero if A;; is nonzero.

Ap = (AU AL) AL, =

Jriyi=1,..,dg,j=1,...,d¢

Statement (2): Now, since A, has the same non-zero elements as A}, this implies that re = Aye,
consists of elements that are independent sums. This is so since their elements are mutually independent
and A, has only one non-zero element per row (and A, only has one non-zero element per column).
For 7¢ := (r1,...,7a.)" we have for j = 1,...,dg:

da
5= Z 7)% €is
i=1 i Zk 1 wkk

where €; is the i-th element of ¢, for ¢ = 1,...,ds, and \;; is non-zero for the set of variables
measuring the j-th latent variable denoted as Z; (the item set of the j-th latent variable) with Ujillj =
{1,...,d.} and with Z;, NZ;, = 0 for j; # jo. Hence, we can write r; as

Ao
rji= Z 45@
i€L; ’l/)“ Zk 1 wkk

Now since the Z; are disjoint, it follows from Assumption 8 that the components of r¢ are indepen-
dent.
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Statement (3): We have that
Cov re = (ALW,;'AL)~

from Proposition 2. We have already derived the specific shape of this object under Assumption 5.

Hence,

1

Cov 1¢ := (ALU,'A,) " = diag _—
Pyt Wk

The diagonal elements of Cov r¢ are, therefore, d; := % for j=1,...,de.

T T
This completes the proof of Lemma 4.

E.4.9. Proof of Proposition 5

Proof of Proposition 5. Since re¢ consists of independent elements from Lemma 4 (2), we may without
loss of generality consider just one of the elements, say the first, as joint convergence in distribution
of independent random variables is implied by their marginal convergence in distribution, e.g., by
the convergence of their characteristic function which is the product of their marginal characteristic
functions. To simplify notation, this argument is equivalent to d¢ = 1, which we assume without loss
of generality.

By Lemma 4, we have

T1,d, = J
Zk 1’¢’kk ;wﬂ Zk 1w VZ\/wJ] \/7/’31

Define the standardized errors

Wi = €j
o \/17“
Also define
oy = )\7]21
Vi

and notice that (o ); is a sequence of positive numbers. Let us also write

dg
Nd, = E Q.
Jj=1

en «; is constant an u g, Ng, = dgzop, and so ng. is similar sample size in non-
Wh ; is constant and equal to oo, ng, = dzao, and so ng, is similar to the sample s o
weighted sums.

With this notation, we have

da?
1
(17) T1,d. = Td Z\/Oéjuj‘,
T oi=1

We apply the Lyapunov central limit theorem (Billingsley, 1995, Section 27), which says that for an

independent sequence of variables Xi,..., we have
| &=
(18) — > X —> N(0,1)

S — 00
dz i1 da
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where siz
(19)

is fulfilled, for a § > 0.
Let Xz =
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= Z‘Zil Var X, as long as the Lyapunov condition

d

. 1 5

lim fBn s =0, where fns= 55 ZE\X¢|2+
noee e i=1

a;u;. Since for u; = €;/v/¥is, (u;); is a sequence of independent standardized random

variables from Assumption 9, eq. (18) will follow as long as the Lyapunov condition is fulfilled for a

0> 0.
We will now show that

the Lyapunov condition is fulfilled with the ¢ from Assumption 9 (2). This

will give the stated conclusion, because

since Var uj = gi- Var g;
JJ

d d
1 & 1
— > X =
Sdy =1 A/ T —

(21)

dy dy
:E VarXi:E o = Nd,,
=1 =1

=1, and eq. (18) works with

iU = W/ndz E Q;U; = ndz T1,dg-

EIX;*" = E(yajlu;))* ™ = af 7 PEluy P
1+6/2
== ()

By Assumption 9 (3), we have

Therefore,

ﬁn,é =

(a) Use eq. (20) and (2

sums are positive, and «

1.

s = supElu;|**° < 0o
J

d d
1 = 245 (a) 1 = 1468/2 245
2¥5 Z]E|Xi‘ - d 1+5/2 ZO‘J Eu,|
dy  i=1 (Ziilaj) i=1

®  SiEe"
=6 N 116/2
(St o)
da 1
. 146/2
e (Zaj ) S —
=1 (erla])
© 1+8/2 1
SCéd M)\/zp d 1+5/2 14+6/2
X/
146/2 —1-8/2\ ; —6/2
= (esMy ), "my " ") da

@O as dy — 00.

(b) Since («j); is a sequence of positive numbers, all terms in the two

1+5/2IE| G2 < ozjl-H/Qc(;. Then factorize out ¢s. (¢) From Assumption

9 (2), we know that each «; is contained within a finite interval, [my, y, Mx/y] with my,y > 0.

Therefore 3% H"S/Q <

WaRL:

de 1+5/2
Dot M, =d; N

and Zzlil Qi Z Zjil mx/yp = dxm)\/,l,, so that
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1 < 1
(o) ™ S T T
finite. O

(d) Since § > 0 we have d, %% = 0. The constants are non-zero and

APPENDIX F. ON NON-LINEAR AND MISSPECIFIED MEASUREMENT MODELS

F.1. Polynomial measurement models. We here consider polynomial measurement models in the
context of the present paper. Such measurement models have long history, see R. McDonald (1967) for
an early monograph on the subject. For simplicity, we consider only a very restricted class of models,
though our arguments can be extended in various directions. Keeping the linear measurement model

of eq. (2), suppose without loss of generality that the two first coordinates of £ and n are of the form
(01,3870??;)/7 (01,y79717?;/)/ M, My > 1

respectively. That is, there may be deterministic though non-linear relations between the coordinates of
& and 7. This is a special case of a polynomial measurement model understood as a linear measurement
model with non-linear deterministic connections between the latent variables (This is an old observation,
see Chapter 3 in R. McDonald, 1967).

While treating such a polynomial measurement model as if it was linear may have certain drawbacks
as the deterministic relationships between the latent variables are not taken into account e.g. when
forming factor scores, such non-linear measurement models may be be compatible with the assumptions
of the present paper. A core assumption in the paper is Assumption 3, where parameter identification
is assumed. The error in variables parametrization of Yalcin and Amemiya (2001) can be used to secure
this. Yalcin and Amemiya (2001) also provides an estimation method. Both identification (to fulfill
Assumption 3) and an available estimation method (to apply the method in a practical setting), are
taken as given in the following, as well as the remaining relevant assumptions.

Suppose given Assumption 1 and 3. By Lemma 1, A exists and is a left inverse of A. Therefore, the
key correspondence

A g) = () + (re,ry)
still holds. In the presence of deterministic relationships between the coordinates of £ and 7, it is
usually not of interest to compute the full E[n|¢ = x]. We now review why. For simplicity, we assume
that & and n are bivariate, have quadratic measurement models, and therefore only contain (61, 9%1)'
and (61,4, 0%,,) respectively.

Since 0%,1 is a function of 6 , we have that 0(91,179%@) = 0(61,2) by Lemma 11 (p. A76) since
¢(z) = z? is a Borel function. Therefore, E[n|01,,67 .| = E[7|01,.]. Therefore, the non-uniqueness
(up to probability one) of conditional expectations now enter in a detrimental manner: Recall that
E[]61,s,0% ] is a function H of 61 , and 67 . However, since o(61 5,07 ,) = 0(01,2), and H (61 4,07 ,.) =
E[n|01,z] = ¢(01,4), for some function ¢, we have that the functional mapping H is highly non-unique.
Indeed, any function H such that H(z1,z2) = ¢(x1) fulfills the requirement. While all such variables
agree with probability one when evaluated at 6, 4, Hiz, the functional relationship within the mappings
can vary: For example, H(z1,72) = ¢(x1) and H(zx1,z2) = ¢(/|z2]sign(z1)) are two members of this
class. It is therefore of interest to approximate ¢ and not H.

The degeneracy induced by the deterministic relationship between 6, , and Oim is also incompatible
with Assumption 7 used in Proposition 4 unless the set S” is chosen in a manner which takes the
deterministic relationship into account. For example, in Assumption 7 we assume that f¢ is continuously

differentiable in S”. For simplicity, assume that 61, > 0. The joint cumulative distribution of 6; , and
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9%71 is by definition
P(01,0 < 1,03, <ts) 2 P01, < t1,000 < Vi) L P (01,0 <min(ts, Vi) L Fy, , (min(ts, Vi)

@ | Fo,,(t1) ifti <Vt

Foy. (V) if s > VB
(a) Recall that we assume that 6, > 0. (b) Recall that the comma in the probability stands for
intersection. Therefore, the event can only happen if 6; , is less than or equal the smallest of the two
upper limits. (¢) Fy, , is the cumulative distribution function of 61,., defined as Fp, ,(2) = P(01,. < 2).
(d) We consider the two cases where we know the value of the minimum.

We therefore take the two partial derivatives of the above joint cumulative distribution function of

01,2, Hix, and find that its density is given by

f91,z(t1) if t1 S \/E
for . (Vt2) if t1 > /T2

whose partial derivatives are

(8/0t1) fe(tr, t2) = fo, , (t1)I{t1 < Vi2}, (0/0t2) fe(t1,t2) = %fél,z(\/g)tz_wl{h > Via}

fe(ti,t2) = { = fo, . (t1)I{tx < Vt2} + fo, , (Vt2)I{t1 > Vta},

Since these partial derivatives have jumps except in sets (t1,t2) where 1 and /t2 have a fixed order,
fe is not continuously differentiable even when fp, ,, is.

Another issue is that Giy is considered as part of 1 only since we are considering a non-linear
measurement model from a linear perspective. We are interested in how 6:,, varies with 6 ., where

01,y is measured via a quadratic measurement equation. We therefore want to approximate

E .=
61 = ] and not ( 01,4101, xl]) .

E[0
01y E[6 1010 = 1]

Both issues can be dealt with by a minor modification of the framework of the paper. This can also
be done in practice because the non-linear measurement model is provided by the user. Consider a

linear transformation P such that
(£,7") == PA@E,§) = PE ) + P(re,ry) = (E,m) + (rie, mim)

removes the redundant variables, i.e., 67 ,,07,. The statistical behavior of €, can be treated as
population Bartlett scores and inputted into non-parametric regression methods as described above.

This will approximate H and not H.

F.2. On measurement model misspecification. We here investigate what happens when the mea-
surement model is misspecified, focusing on a general non-linear measurement framework. We show
that such misspecifications will be mixed in with the non-parametric trend estimate for H, and with-
out assumptions leading to non-linear and possibly non-parametric identification of the measurement
model and the structural relations, it is impossible to disentangle where contributions to the estimate
of H comes from. Such identification results appear not to be available in the literature, and seems
difficult to reach.
Suppose the data-generating mechanism is such that

l':GI(é-,AI)+Ezy y:Gy(ﬁv)\y)+5y~

where G (-, A%) = (G (-, AP))%,), and Gy (-, AY) = ((Gy(-, AY))?,)" are functions of the latent vari-

ables with parameter vectors A”, \Y. The other parts of the data generating model is kept as is.
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While the model as stated will not be identified without more assumptions, we may still suppose the
data-generating mechanism is contained within this class. Notice that this general case also includes
the linear case with a misspecified dimensionality, and even the case when the measurement model
considered in the paper is correct.

Suppose we apply the non-parametric regression methods based on Bartlett scores as described
earlier. This procedure will then estimate H(z) = E[A,§|A.& = z] where A,, A, are the Bartlett
transformations for the endogenous and exogenous measurement models respectively, defined via the
population limits of a given possibly inconsistent estimator.

Since €, is mean zero and independent to x, we still have a conclusion similar to Lemma 2. Let
G.(6,X%) = G, (£, X%) —Ex and Gy (1, \Y) = G, (1, \Y) — Ey. Then

E [A,518:3] = E[A,Gy (12|20 (G (6,X7) + 4]
(22) = E [A,Gy(H(©) + ¢ A)| A G, X°) + 2] -
This cannot in general be simplified further, but we see that the non-parametric trends are mixed
together, and cannot easily be separated without strong assumptions. Especially, we see that the
relationship G, (H(€) 4+ ¢, \Y) implies that non-linearities in G, and H cannot be separated without
further assumptions, as any function pair with the same function composition leads to the same values
of E[A,y|A,x].

With more assumptions, E[A,y|A,z] can be further simplified. As an illustration, we consider the

case of normality.

Example 6. Suppose £, (, e, are zero mean and jointly normal, and Gy, is linear, say G, (£, \%) = A £.
Then, in eq. (22), we condition on A, [A.€ 4 &,], which is normal. Then Z := (A, [AL€ + €], € + )
is jointly normal. This joint normality implies that when conditioning &£ 4+ ¢ on AI[ZXI{ + &) is again
normal. We now use Lemma 8 (p. A75) to find this distribution.

Since Cov (Ap A+ Ares) = Mg A ®ALAL + A, U, AL = Ay (A, ®AL+0,)AL, and Cov (£4¢) = B+
., where ¥¢ = Cov (¢). Hence, we have that By, x = Cov (£ + ¢, Az A€ + Ases) = Cov (€, A, AL8) +
Cov (£, Ayes) + Cov (¢, AzALE) + Cov (¢, Aze,) = PALAL, and analogously, Yxy = (®ALAL) =

Az Az ®. Therefore, Z is zero mean with covariance matrix

. AL (AL @A, + U, )AL, A A
N DA AL, O+ )

From Lemma 8, we have that & + C\]\zf + £, is normal with mean

(AL [Ael + e2]) = PALAL[AL (A @A, + o) AL Ay [l + e4)

and covariance
Y =&+ U — PALAL[AL (AL PN, + U,)AL T AN, P
Let Z ~ Nqg.(0,1) and independent to £. Then for SVsV =5
$127 4 u(Au[Aut + <))

is a stochastic representation of £ + C|Az [/N\z§ + &z]. Therefore,

E [Ayy\Azx] —E [Ayéy (H (531/22 + (A ALt + g,])) ,Ay)]

where Ez is expectation with respect only to Z.
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Example 7. We continue Example 6, and verify its correctness in the case when the linear measurement

model is in fact correct, and that
H(z) = Bzx.
We compute directly that
E[AyAyn|Asi] = Elnlé + re] = E[BE + C[€ + re] = BEE[E + Aves].

We have Cov (€ + Aze,) = ® + A, U, AL, We also have Cov (€) = ®. Further, Cov (£, 4+ Aye,) =
Cov (£,€) + Cov (&, Azaz) = @, and Cov (£ + Azsz,f) = &' = ®. Therefore, (£ + Azsz,f) is normal

with zero mean and covariance matrix
O+ AU, AL D
P, o/

We therefore have that £|€ + Azsz is normal, with mean

Pl (€ + Apey) = B(® + AU, AL) THE+ Aver).

E[AyAyn|Aca) = BE[E|¢ + Asey)
= B®(® + A, U, AL) €+ Aves).

We now verify that the expression from Example 6 is the same as found directly above. We have
that A,G, and A, G, becomes the identity by Lemma 1. Then, using that H(z) = Bz, we get that

E[Ayy|Aca] = Bz [Ay Gy (H(EV2Z + p(Ba[Act + 5]), \Y))]
=Ez[B(EY?Z + (A (At +&2))]
= Bu(As[As + &2))
= BON,AL[AL (A, @AL 4+ U, )AL AL [ALE + e4]
= BO[® + A, U, AL € + Aves],

The last equality follows as A, is a left inverse of A, which also implies that ALA, = (A,A,) = 1.
We see that the expressions match with the earlier calculation.
Let us seize the occasion to verify the conclusion of Proposition 4 in this direct and simple case.
Since Amm = é, we have

Hy, (x) = B[ij|¢ = 2] = E[n|¢ = 2] = B[® + A, U, AL 'a.
Since En|¢] = E[B¢ + (|¢] = BE[¢[¢] + E[¢|¢] = BE we have
H(z) = E[n|¢ = 2] = Ba.
Therefore, for any set S”, we have

sup |Hg, (z) — H(z)| = sup |B®[® + A, ¥, AL] 'z — Bz|
zeSP reSP

sup
rESP

B (q>[¢> +AULALT 1) x] .

By Proposition 2, we have A,W,A! = Cov re = (A;\DglA;)il, which goes to zero as d, increases
under e.g. the assumptions of Proposition 3. Since matrix inversion is continuous, we see that ®[® +
AU, AL — ®[®]7 =T and so

B (d)[fI) + A TLAL T - 1) — B(I-1)=0.
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Therefore, as long as S has finite extension, sup,cgs, |Ha, (z) — H(z)| goes to zero. If S” has infinite
extension, the supremum is infinite for each d,. This is interesting with respect to the conditions identi-
fied in Appendix E.2 (p.A44) where the required convergence concerning w is shown under Assumption
10, which include an assumption of finite extension. We therefore see that even in this simplest of

cases, finite extension is actually needed. O
When specifying G, concrete expressions for Hg, can be reached, as we now illustrate.
Example 8. Suppose that

CCiZ)\zlf—‘rSi,z, ’L'=172,...,dr7
Yy = )\;47177+)\§-”2172 +&jz, i=1,2,...,dy,

where the structural trend is linear and given by

n=~&+¢

All error terms have zero mean, and are independent of each other as well as to £&. Suppose £ and ( are
standardized. For computational tractability, we assume that all latent random variables are jointly
normal.

Suppose we estimate a single-factor linear factor model. We will show that IE[n|§ = z] is a second
degree polynomial in x. The missing non-linearity in the measurement model therefore shows up in
the non-parametric trend estimates of the structural variables.

As earlier, the misspecified single-factor linear factor model without correlated errors is assumed
estimated using a specific estimator, such as the normal theory ML or the GLS estimator. The asymp-
totic limit that this estimator converges to as the sample size increases will be denoted by (:\f), (S\f),
and similarly for error variances estimated by the misspecified model, denoted by ("zii,z);jip (J)ii,y)?il

for respectively error variances of the measurement error of £ and 7.

Let Ly, Ly be the linear operators defined by their application to sequences ¢, = (c1,¢2,...,¢Cd,)
and ¢, = (c1,c¢2,...,caq,) through the operation
- -1
SICUATIE S P
Locy = Z = Z A (Wis2)” ¢
=1 Yrk.a i=1
dy (5\1/)2 -t dy 5 5
Lycy = Z — ZAg(¢ii,y)_1Ci~
k=1 Yrk.y i=1

Then, from Lemma 4, the Bartlett factor scores for £ and 7 respectively, are
L.z, Ti = x; — Ex;
Lyy, Z; = yi — By;.
Now Ez; = 0 and Ey; = EXY ,n* = XY, Var n = XY, Var (£ + () = XY, [Var (€) + Var (¢)] = 2AY,.

The linearity of L, implies that

L,z = [on‘?,l)?il] 5 + mei,x
N— S~~~

:55\S,z €S,z

= S\S,mé + ES,x-
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Similarly,
Lyy= Lz(_zxz‘!g + )‘?,177 + )‘?ij,2772 + Ei,w)liiil
= Lw(_2>‘g,2)?i1 + Lo ()‘g,l)?il n+ La (Agg)?il 772 + Lx(Ei,x)?i1
—_———

5 5 =:e
::)‘S,O,y ::)‘Sylyy :=>\S.2,y S,y

= 5\S,O,y + 5\S,l,y"] + S\S,Q,yn2 + €Sy

From our assumptions, €g,y,€s,2 have zero mean and are independent to each other and to . The
LOESS estimator based on the Bartlett scores from the misspecified model will therefore asymptotically

reach
E[Ly§|LoE] = As,0,y + As,10E[As,26 + 5,0] + As,2,0 B0 || As,o€ + €5,0] + Eles,y| s, + 5,4]
= Xs,0y + As, 1Ly E€ + ([ As.0€ + £5.0] + X524 B[E2 + 2£¢ + (|| Xs,2€ + €5,4]
= Xs.0.y + A5 1y E[EAs o€ + €5.2] + As,2,yE[€% | As o€ + e5.0] + 2E[EC| A5 o€ + 5.0
+ E[¢*|As,2€ + €5,0]-

Since ¢? is independent to S\S,xﬁ + 3,0, we use eq. (27) (p. A75) to get that E[C2|5\S,w§ +esa] =
E¢C? = 1.

Since As.& + €5, is a function of € and g, we have that o(As.€ + €s,2) C 0(&,€5,2). Therefore,
we apply Theorem 4 (p. A74) and get that E[§§|5\5,z§ +e52] = E[E[fﬂ{,es,z”;\s,z{ + £3,z). Since £ is
0 (&, €5,z )-measurable, E[£C|E, e5,2] = EE[C|, £5,2] (use Theorem 3 on p. A74). Since ( is independent to
both £, 5., we use eq. (27) (p. A75) to get that E[C|¢,es.2] = E[¢] = 0. Therefore, E[6¢|As 2& +e5,2] =
0.

Since (As,+& 4 €5,2,€) is jointly normal, we use Lemma 8 to see that
E[&lxs,zé- +esz = Z} = Cov (6, XS,zf + SS,CD) Var (Xs,zf + 85‘71)71287

which is linear in .

Finally, since
Var [¢13s.0€ +€5.0| = BIE* Asiof + s,0] — (ElE|Asio + E5,0])
we get that

E[*As.o€ + £s.0 = 2] = Var [€]Rs,a€ +e5.0 = 2] + (B[t As.a€ + 50 = 2))7.

Again, since (As € +€s.2,€) is jointly normal, and therefore Var [£|:\s,x£ + ES,w] is non-stochastic from
Lemma 8, it will not vary with z. Since we have already shown E[f\jxs,zf + £s,2 = 2] to be linear in z,
we conclude that E[€2|As € + €52 = 2] is a second degree polynomial in z. In conclusion, this shows
that also E[Lyy|L+& = 2] is a second degree polynomial in z, with coefficients deducible from the above

argument. (]

F.3. Simulation illustrations with measurement model misspecifications. In this section we
provide numerical illustrations of the effect of having a nonlinear factor model, when assuming a
linear measurement model in the estimation of H. We consider only two empirical estimators: the
LOESS(BFS) method and the BSpline(NLFS) method.

For both estimators, the examples show that for low degrees of nonlinearity in the measurement
model, the structural part of the model is adequately estimated, while for stronger degree of nonlin-
earity, larger influences on the structural part are vivid. The supplemental material includes complete

computer code and all parameter values.
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Example 9 shows the effect of a nonlinear effect in the measurement as well as the structural part
of the model which result in an estimated linear trend. Example 10 and 11 show that a nonlinear
misspecification in the measurement model can result in estimates of the structural trend that is
erroneously nonlinear (the true trend is linear). This happens both for the LOESS(BFS) and the the
nonlinear factor scores of Kelava et al. (2017) in the BSpline(NLFS), which both assume a correctly

specified and linear measurement model.
Example 9. Consider the measurement models
(23) @i = pagi + Awi1 €+ 028" FEaiy 1 =1,2,3, Y5 = iy + Aygan+eyg2, §=1,2,3,

which is a nonlinear factor model for z;, where a > 0 controls the degree of nonlinearity. For o = 0

this is a linear factor model. We assume a quadratic structural model

n=ay+E+E 4,
and simulate all variables to be normal with £ ~ N(0,.5), ¢ ~ N(0,.3), a, = —.5 so that En =
0,Var n = 1.3 and set the factor loadings as Az;1,1 = Ay,1,1 = 1, Az2,10 = Ay2,1 = .8, and Az 31 =
Ay,31 = .7. For the nonlinear part in & we set Az 12 = 1.3, Ay22 = 1, and Ay 32 = .4. Further,

we set Var £, ; and Var €, ; so that the reliabilities are constant across all values of o with Rel[z1] =
Relly,] = .81, Rel[z2] = Rel[yz] = .64, Rel[zs] = Rellys] = .49. The reliability are computed as

A2, Var € +2a%X2 ;5 (Var £)? X2, 1 Var p
Rel[w:] = o o d Relly;] = it .
elfwi] AZ 1 Var € +2a2)2  ,(Var £)2 + Var g, and Relly;] A2 ;1 Var 4 Var gy ;

Further, pz i = —.5Az,; so that Ez; =0, 1 =1,2,3.
We used two methods of the original simulation study. We estimated the (partly wrongly specified)
linear factor model

Ti = fai + Nai€ +Eaiy 1= 1,2,3, Y5 = pyj + Mygil +Eygy 5 =1,2,3,

and used this linear measurement model to estimate H non-parametrically using LOESS(BFS) based
on the Bartlett (1937) factor scores. Further, we estimated BSpline(NLFS) using the nonlinear factor
scores of Kelava et al. (2017). Figure 23 shows that for small « (i.e., small nonlinearity in the measure-
ment part of the model), the estimates for H clearly suggest a nonlinear (quadratic trend) for both
methods. In contrast, for large «, i.e., & = 1, a trend close to linear is suggested. This happens for
LOESS(BFS) as well as BSpline(NLFS).

O

Example 10. The second example is almost identical to Example 9, except, we assume a linear
structural model

n=V2+¢,
where, again, all parameters were chosen so that all reliabilities are identical across different values of

a and En = 0, Var n = 1.3. We (again) estimated the (partly wrongly specified) linear factor model
@i = i+ Aei€ oy 1= 12,3,y =y + Ay +Ey g, §=1,2,3,

and used this linear measurement model to estimate H non-parametrically using LOESS(BFS) based
on the Bartlett (1937) factor scores. Further, we estimated BSpline(NLFS) using the nonlinear factor
scores of Kelava et al. (2017). Figure 24 suggest a linear trend for small values of «, i.e., small nonlinear
effects in the measurement part of the model. For a = 1 a clear nonlinear trend is evident, which has
slower than linear growth.

a
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BSpline(NLFS) LOESS(BFS)
8
6
<z 4
2
0
-3 0 3 6 -3 0 3 6
A
g
a — 0 — 005 — 01 — 015 — 1
FIGURE 23. Predicted trends for quadratic structural model using
LOESS(BFS) and BSpline(NLFS) for different values of « representing
different degree of nonlinearity (quadratic) in the factor model for & for
n = 1000.
BSpline(NLFS) LOESS(BFS)
4
2
<T

a — 0 — 005 — 01 — 015 — 1

FIGURE 24. Predicted trends for linear structural model using LOESS(BFS)
and BSpline(NLFS) for different values of a representing different degree of

nonlinearity (quadratic) in the factor model for &.
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Example 11. In this example we consider a linear measurement model for the exogenous part of the

model, but a nonlinear one for the endogenous part of the model. Consider the measurement models
(24) Ti = Po,i + Aayin €+ oy 1= 1,2,3, 45 = py,j + Aygan +adygn’ + ey, 5= 1,2,3,

which is a nonlinear factor model for y;, where o > 0 controls the degree of nonlinearity. For a = 0

this is a linear factor model. We assume a linear structural model

n=£§+¢,

and simulate all variables to be normal with £ ~ N(0,.5), ¢ ~ N(0,.5), so that En =0, Var n = 1 and
set the factor loadings of the linear effects as in Example 9 and 10. For the nonlinear part in 1 we set
Ay,1,3 = .2, Ay,2,3 = .15, and Ay 3,3 = .1. Further, we set Var €;,; and Var ¢ ; so that the reliabilities
are constant across all values of a with Rel[zi] = Relly1] = .81, Rel[z2] = Rellyz2] = .64, Rel[zs] =
Rellys] = .49. The reliability are computed as

X2 Vi
Rellzi] = — yia Var g
Ay,i1 vVar £+ Var ey
and
Relly:] = A2 i1 Var 4+ X2 sa” Var n° + 2aMy,i,1My,6,3 Cov [, %]
Wl = A2 Var n 4 A2 a2 Var 93 + 2ady,i,1My,i,3 Cov [, 73] 4 Var y,i

Further, pzs = py,; = 0 so that Ex; = Ey; =0, ¢ = 1,2,3. Note that for a standardized normal n we
have Var ® = En® = 15 and Cov [n, 73] = En* = 3.
We (again) estimated the (partly wrongly specified) linear factor model

Ti = Pa,i + S‘w,ié'f'éw,iy 1=1,2,3, Y =y + Ay +Ey;, 5=1,2,3,

and used this linear measurement model to estimate H non-parametrically using LOESS(BFS) based
on the Bartlett (1937) factor scores. Further, we estimated BSpline(NLFS) using the nonlinear factor
scores of Kelava et al. (2017). Figure 25 suggests a linear trend for small values of ¢, i.e., small nonlinear
effects in the measurement part of the model. For a = 1 a clear nonlinear trend is evident with growth
quicker than linear.
For a # 0, the estimates of H are affected by the misspecified non-linear measurement model. For
a = 1, the estimated non-linear trend appears to be a third order polynomial. We conjecture that this
is due to the same type of effect as shown analytically in Example 8 (p. A63).
d

APPENDIX G. INDEPENDENCE BETWEEN & AND € IS INCOMPATIBLE WITH ORDINAL DATA

Suppose a factor model X = A § + &,, where X has ordinal coordinates and £ continuous. Since
then A€ is continuous, we can apply the following Lemma (Lemma 6 below) coordinate by coordinate
to X and see that the coordinates of €, cannot be independent to > y Ak,;€5, which implies that e, is
not independent to &.

This conclusion seems intuitively clear: Since X can only take on a finite number of values, but &
can take on a continuum of possible values, e, = X — Az£ has to compensate for the continuity of &
whose influence on X is filtered in such a way that the result of A€ + e, only takes on a finite number

of values. This compensation leads to dependence between e, and &.
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BSpline(NLFS) LOESS(BFS)
! 7o -- e -
<E 0 / e /'
4 L .
-3 -2 -1 0 1 2 3 -3 =2 -1 0 1 2 3

o 0 — 005 — 01 — 0.15 1

FIGURE 25. Predicted trends for a linear structural model using LOESS(BFS)
and BSpline(NLFS) for different values of o representing different degree of

nonlinearity (cubic) in the factor model for €.

G.1. A simple illustration. Let us look at this lack of independence in more detail using a proto-

typical factor model for univariate z, ¢, and €., namely

Here, piz, Az are numbers, and £ is an arbitrary continuous random variable.
As an extreme though practically relevant case, we suppose z is a binary variable. For concreteness,

suppose z fulfills the equations of an ordinal factor model
r=IH{{+U>r1}

where &, U are independent. If the distributions of £, U are chosen, we may use them to choose constants
Az, pz s0 that the identifying restrictions Cov (§,e,) = 0 and Ee, = 0 are fulfilled. To see this, notice
that

0= Cov (£,e,) = Cov (&, — X&) = Cov (§,2) — A\ Var &

which gives

_ Cov (&, )
~ Varé¢

We then choose i, so that Eec, = 0, which is achieved by p, = Ex — \,EE.

Now consider the formula for €,, which is

Az

e=2— o — A& =I{E+U > T} — po — Ak

Simulated values when £ ~ N(0,1),U ~ N(0,1),7 = 0 are visualized in Figure 26, showing extreme
negative dependence with a perfect locally linear trend —u, — Azx randomly distorted by adding 1

when £ + U < 0. The Pearson correlation is zero by design.
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While a general discussion of this topic is outside the scope of the present paper, we warn against
using the above argument as a justification for treating ordinal data as continuous, among other reasons
because the error terms from different ordinal variables will be correlated unless more restrictions
are imposed. This implies that standard identification criteria for confirmatory factor models are
not fulfilled. Therefore, the binary variables do not in fact follow a confirmatory factor model in a
meaningful way, and the statistical properties of the binary variables will therefore not be derivable

from general results on confirmatory factor models.

FIGURE 26. Scatterplot between ¢ and ¢ in the illustrative binary case, with

trend lines in blue.

G.2. The general lemma.
Lemma 6. Suppose univariate x attains only a countable number of values, and
xr = 5 + Ex

where £ is a continuous random variable and e, is a random variable. Then £ and €, cannot be
independent.

Proof. Let the unique attainable values of x be a1, a2,.... Suppose, to reach a contradiction, that &

and €, are independent. Then, for k = a; for j > 1, we have by the assumed independence that

Pz =k) =P(¢ + e, = k) = EP(£ + e, = kl€)

—~

a

2 [Pt en = 0fe(2)ds

N

:/R]P’(sz =k —2)fe(2)dz.

(a) This is the step that follows by independence. It is justified e.g. by Lemma 4.11 in Kallenberg
(2021).
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Therefore,

1 :ZIP’(:Ezaj) :/RZ]P’(E:% —2)fe(z)dz

Jj=1 j=1

_ / P(Ujs1{e = a; — 2}) fe(2) dz.

Since 0 < P(U;j>1{e = a; — 2z}) < 1 and [} fe(z)dz = 1 we must have P(U;j>1{e = a; —2}) =1
for all z such that fe(z) > 0 except on a Lebesgue measure zero. To see this, notice that otherwise
1= [LP(Ujs1{e = aj — 2}) fe(2) dz < [, fe(z) dz = 1 which is impossible.

Now the support S = {z: fe(z) > 0} of fe(z) must have positive Lebesgue measure, since otherwise
it is impossible that [, fe(z)dz = 1. We therefore conclude that P(UfL {e = a; — z}) = 1 for all
z € S\ M where M has Lebesgue measure zero. Since the Lebesgue measure of S := S\ M equals
that of S which is positive, also S has positive Lebesgue measure. Choose two distinct values z1, 22
in S that are not equal to any a;,7 > 1. This is possible because any set with a positive Lebesgue
measure has an uncountable number of outcomes, and the list a;, j > 1 is countable and therefore does
not exhaust the values in S in case there is overlap. Then U;j>1{e = a; — 21} and Uj>1{e = aj — 22} are
disjoint events, and their probability equals their sum, which is 2, which is impossible, and, therefore,

we reach a contradiction which proves that the assumed statement of independence is impossible. [

APPENDIX H. How H IS INFLUENCED BY TRANSFORMATIONS OF THE UNITS OF
MEASUREMENTS OF f

By the well-known scaling problem in confirmatory factor analysis, the unit of measurement of f is
not identified from the measurement model in eq. (2), and an arbitrary scale is fixed in applications.
Let us therefore consider the effect of going from one scale to another.

We here show that conditional expectations are well-behaved under scale changes. This is surely
established in the literature earlier, and the lack of importance of scale transformations is also mentioned
in Kelava et al. (2017), but we have failed to find a reference for this, nor the exact formulas for how
the changes influence H, and we therefore include derivations on this issue here.

Since conditional expectations are defined coordinate wise, we may without loss of generality assume
that 7 is univariate.

A scale transformation of one coordinate f; of f is of the form af; + b where a > 0. How does
H(z) = E[n|§ = ]

change under such transformations? The coordinate f; is either contained in n or £. Scale changes in
n are dealt with from the linearity of conditional expectation, so that E[an + b|¢] = aE[n|€] + b. Let us
therefore consider a scale transformation in a &.

First, let us consider a univariate and continuous £. We have

ﬁ(z):E[mag—i_b:z]:/Ryfn|a§+b(y|z)dy: Ry% dy.

We have

facts(2) = 2o PaE+b < 2) = A P(E < (= b)/a) = a” fel(= — ) a)
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and similarly
82
friag+o(y, 2) = mp(ﬁ <y,al+b<2)

2

ayazp(” <y, <(2—0b)/a)

=a" foe(y, (z—b)/a).

Therefore

foely, (z = b)/a) |
fel((==)/a)
= Elplé = (=~ b)/a))

since the a™! cancels. Therefore, H(z) = H((z — b)/a).

Similar calculations show that scale transformations of £ in general makes the function H stay the

Elnlag +b == [ y

same, except a scale and shift transformation in each of its inputs.

APPENDIX I. THE PROBLEM OF EMPIRICALLY APPROXIMATING THE DISTRIBUTION OF ¢

The theoretical basis for choosing between our suggested approximations for H depend on the
distribution of r¢. One way to approximate the distribution of r¢ = A,e, based on data would be
to calculate a type of a residual, say £, and then inspect the empirical distribution of 7¢ = Ae,.
Unfortunately, this appears to be difficult.

Factor residuals have been studied in Bollen and Arminger (1991), who suggest defining residuals in
the way €, = (z — fiz) f/A\zfA where f is an affine factor score, such as the Bartlett factor score. If we use
the Bartlett factor score and set é = A, (z — fiz), then 7¢ = ALé. = A, (z— fiz) — ALALA, (z— fiz) =
A, (z—fiz) —A, (z—fiz) = 0 using that A, is a left inverse of A. Therefore, the resulting approximation
does not work.

In general, for an affine factor score of the form € = A, (z — fiz) we get 7e = Ay (I — AAL) (2 — i)
Numerical experiments with using the Thurstone matrix A, = T; (see Lemma 1 (3)) indicates that the
shape of the distribution of r¢ is lost in this transformation likely due to a central limit effect induced by
the summation involved in the matrix multiplication of A, (I - [XAw): The empirical distribution of 7¢
is much too normal compared to the distribution of r¢, and, therefore, cannot be used for diagnostics.
Numerical experiments show that this also happens when using the non-parametric factor scores of

Kelava et al. (2017). Hence, the empirical approximation of the distribution of r¢ is an open problem.

APPENDIX J. NON-ADDITIVE NOISE

Since the methodology considered in this paper is centered around conditional expectation, which
is related to averaging and therefore addition, it is most suitable when the relation between 7 and £ is
that of a trend with additive noise. We here provide a very simple illustration of modeling trends with
non-additive noise from a conditional expectation framework. While this is a practically important
topic, the same issue is met in standard regression modeling with observed variables, and this topic is
discussed in text-books on non-linear regression modeling. We consider a full discussion of this issue
outside the scope of the present paper.

Consider a non-linear SEM with a structural model where the error term enters in a multiplicative

(and therefore non-additive) way through

(25) m = exp(Bo + fr&y +u) = 0T et



AT2 STEFFEN GRONNEBERG" AND JULIEN PATRICK IRMER"

where &1, u1 are zero mean and independent of each other.

In the non-parametric framework,
m=HE&)+q,  Hz)=Em|&H =2]

which is additive, and the foundational property E[¢|£] = 0 is gained by the tautological definition of
G :=m — H(&) =m — E[ni|€] and basic properties of the conditional expectation.

In the example, we use the independence between w1, &1 to calculate
E[ml|&] = eﬁo+ﬁ1§1]E[eu1 €] = 650+61§1E[em}'

Therefore, H(z) = e®0TP1*E[e"1] is still an exponential trend, though with a different level than the
description in eq. (25). If e.g. ui ~ N(0,1), we have Ee"! = /2. Then H(z) = efotFizel/2 —
e0-5+bo+Prz

Of course, ¢; will not be u1. The error term of eq. (25) w1 is independent to 1. And the independence
between & and (7 is not expected, and not assumed in the paper. This might be problematic for
parametric estimation methods which assumes such an independence.

We here have

G =m —E[mlé) = P (" — Efe™])
While known from general theory, we confirm that
E[Gi|] = ™ OE[e™ — Ele"]|6)] = ElG1[€)] = TN OE[" ~E[e"]] =0

where the next to last equality follows from the independence between e"' — E[e"!] and &1, as implied
by the independence between &; and u;.

From general results we also get that (i is uncorrelated with £ and has zero mean. But (i is not
independent to &, and in fact ¢; may be highly dependent to &, as is the case in the present example.
Since E[(1|¢] = 0, we have that

Var [(1]¢] = E[¢F|¢] = 0 P?R8E [(e — Ele*])?|¢]

_ 8260+251§1E [(eul _ E[eul])Q] = 32BD+25151 Var e“!.

As far as we can see, this is problematic for the presently available NLSEM estimators. The prac-
titioner could therefore use factor score plots and trend estimates to detect signs of such dependence,
such as conditional heteroskedasticity as seen in the above example, if a parametric model is to be
fitted to a model using traditional methods. In the simple case of eq. (25), taking a log transform of
11 would be a possibility, though we do not study the statistical implications of this. In econometrics,
a large literature presents solutions to this problem (see e.g. Hayashi, 2011). It seems plausible that
using these solutions using factor scores, can aid the problem, possibly with some modification. We
consider a full analysis of this outside the scope of the present paper.

In the present example, a preferred method would be to identify that a non-additive noise model
would be more appropriate. The estimation of H as a trend estimate may be inappropriate to summarize
the trend in the factor sore in such cases, but the factor scores themselves might still be of use in a
more traditional manner to motivate non-linear models with additive noise. Also this is considered

outside the scope of the present paper.
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APPENDIX K. A REVIEW OF CONDITIONAL EXPECTATIONS, AND THEIR RULES

In this section, we provide a short review of conditional expectation and their most important
properties, properties used especially in Appendix B, F, G, and H.

Suppose given a probability space (Q, F, P). We consider mappings from Q to R?, and equip R?
with the Borel o-field B. Recall that mappings Z : Q — R? are called random vectors (or random
variables if d = 1) if Z7'(U) := {w € Q: Z(w) € U} € F for any U € B. Also, a random variable Z is
said to be measurable with respect to a o-field H C F if Z~*(U) € H for any U € B. Here, measurable
can be understood in terms of having information about the events in w € 2 that result in specific
outcomes of Z(w). Therefore, if these events are known, the values of Z are known, which is why all
statements are made about subsets of 2.

Modern development of conditional expectations are based on conditioning with respect to a o-
field H. Let X be a random variable. Suppose X is integrable, which means that E|X| < oco. The
conditional expectation E[X|H] of X given H is a random variable that fulfills the following two
properties (Billingsley, 1995, Section 34).

(1) E[X|H] is H-measurable and integrable.
(2) For all G € H, we have [, E[X|H]dP = [, X dP.

That such a variables always exists is proved in Billingsley (1995, Section 34). While the two require-
ments placed on E[X|H] do not uniquely construct it, all random variables that fulfill these properties
are with probability one equal (Billingsley, 1995). We will follow standard convention and talk about
E[X|H] in the singular, despite this lack of uniqueness.

The o-field generated by Z is o(Z), the smallest o-field for which Z is measurable. It is given
concretely by o(Z) = {Z7(B) : B€ B} = {{w € Q: Z(w) € B} : B € B} (Billingsley, 1995, Section
33, p. 433).

A Borel function ¢ is a function such that if B € B, we have that ¢~ '(B) = {2 : ¢(2) € B} € B.
Notice that if Y = ¢(Z) is a Borel function of Z, then for any U € o(Z) we have that

Y U) = {weQ:Yw) eU)={weQ: p(Z(w) eU} ={weQ: Z(w) € ¢ " (U)}

Since ¢ is a Borel function, ¢~ (U) € B. Since ¢(Z) consists of all sets of the form {w € Q : Z(w) € B}
for B € B, we get that Y *(U) € ¢(Z), and therefore Y is 0(Z) measurable.

Also the converse holds:

Theorem 1 (Remark 5, p. 175 in Shiryaev (2016)). Let Z be a random vector. If a random
variable X is o(Z)-measurable, there exists a Borel function ¢ such that X = o(Z).

By the definition of E[X|c(Z)], it is 0(Z) measurable. By Theorem 1, that means that E[X|o(Z)] is
a function of Z. We usually write E[X|Z] instead of E[X|o(Z)]. That is, there is a function ¢ so that

¢(Z) = E[X]Z).

Now for Z = (Y{,Y3)" where Y1, Y are random vectors, we sometimes write E[X |Y1, Y2], which means
E[X|Z]. As in the case of expectations of random vectors, if X is a random vector X = (X1,..., X»)
then we define

E[X|Z] = (E[X1]Z], ..., E[Xa|Z]).

Since E[X|Z] is a function of Z, there is a function ¢ such that E[X|Z] = ¢(Z). This function is
sometimes denoted by ¢(z) = E[X|Z = z], although it is not the case that the conditional expectation
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is the expectation with respect to the probability measure conditioned on the event Z = z (though in
the discrete case the function does correspond to this when P(Z = z) > 0).

While the above description is very abstract, the function ¢ fulfills a property which connects
conditional expectations with non-parametric regression: For random a random vector X and a random

variable Y, let ¢(z) = E[Y|X = z]|. Then ¢ minimizes the squared distance to Y for given x:

E[(Y - ¢(2)?],

i.e., @(x) is the least squares estimate for Y at X = z (see e.g. Hayashi, 2011, Proposition 2.7).
Using a linear function for ¢ results in the definition of the linear regression least squares estimator,
while modeling ¢ non-parametrically highlights the connection of the conditional expectation to non-
parametric regression analysis: The non-parametric regression estimate approximates the conditional
expectation.

We now review the most important properties of conditional expectations that are used in this
paper.

Theorem 2 (Theorem 34.2 in Billingsley (1995)). Suppose X,Y are integrable (i.e., E|X| <
00, E|Y| < 00).

(1) If X = a with probability 1, then E[X|Z] = a.

(2) For constants a,b, we have E[aX + bY|Z] = aE[X|Z] + bE[Y|Z].
(3) If X <Y with probability 1, then E[X|Z] < E[Y|Z].

(4) |[E[X|Z]| < E[|X]|Z].

Theorem 3 (Theorem 34.3 in Billingsley (1995)). If X is measurable with regard to a o-field H,
and if Y and XY are integrable, then

E[XY|H] = XE[Y|H], with probability 1.

From this combined with Theorem 1, it follows that E[Z|Z] = Z and E[p(Z)|Z] = ¢(Z), for an

integrable function .

Theorem 4 (Law of Iterated Expectations, Theorem 34.4 in Billingsley (1995)). If X is integrable
and the o-field G1 and G2 satisfy G1 C G2 then

E [E[X|G2]|G1] = E[X|G:].

This can be used e.g. when G1 = 0(Z1) C 0(Z1, Z2) = G2 (see the upcoming Section K.1), in which
case we have E[E[X|Z1, Z2]|Z1] = E[X|Z1].

Theorem 5 (Tower Property, see the discussion following Theorem 34.4 in Billingsley (1995)). If
X is integrable then

E[E[X]Z]] = E [X].

From e.g. Problem 34.2 in (Billingsley, 1995, p. 455), we have that when X,Y are continuous
random variables with a joint density f and Y is integrable, then

I yf(z,y) dy

(26) E[Y|X = 2] = R T
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From e.g. Problem 34.3 in (Billingsley, 1995, p. 455) we have that if X, Y are independent
(27) E[Y|X] =E[Y].

Lemma 7. For a random variables X and a random vector Y we have that

E[X|X,Y] = X.

Proof of Lemma 7. Since X = ¢(X,Y) where ¢(x,y) = =z is a Borel function, we have that X is
0(X,Y) measurable (see the comment just before Theorem 1). Therefore, from Theorem 3, we have
E[X|X,Y] = XE[1|X,Y] = X. 0

Lemma 7 implies e.g. that E[X|X,U,V] =X for Y = (U, V).
Lemma 8. (1) For two bivariately normal variables A, B, we have that
E[A|B] = pa + Cov (A, B) Var (B)" (B — us)
and
(28) Var [A|B] = Var (A) — Cov (4, B)? Var (B) !

(2) For a jointly normal random vector (Y, X) with mean vector and covariance matrix
wx Kx x Kxy
= R -
Hy Kyx Kyy

YIX ~ N(py|x, Ky|x)

we have that

where
pyix = py + Ky x Kxx (X — pix)
and
Ky|x = Kyy — KY,XK;(}XKX,Y-
Proof. See (Mardia et al., 1979, Theorem 3.2.4). O

We conclude this section by showing the property of £ and ¢ mentioned in the introduction.
Lemma 9. IfE[(|£] =0 then E¢ = 0 and Cov (¢(£),¢) = 0 for any ¢ such that o(€) is integrable.

Proof. We have E¢ = EE[¢|¢] = E0 = 0.
Therefore, Cov (¢(¢), ¢) = E[p(§)¢] — [Ep(§)][EC] = E[E[(£)¢[¢]] = E[¢(§)E[CIE]] = 0. -

K.1. Some stability results of o-fields generated by random vectors. We here gather two
results we use in the paper, for which we did not find a reference. Especially the first property is
well-known.

Let B(R?) be the Borel o-field for the d-dimensional Euclidean space. Recall that Chapter 2.2.3 (p.
176) in Shiryaev (2016) that for two o-fields Fi, Fa2, the product o-field F = Fi ® F» is the smallest
o-field containing all sets of the form Bi x Bz where By € F1, B2 € Fo.

It is the case that

B(R™) ® B(R™2) = B(R*192),
as shown in e.g. Chapter 2.2.3 (p. 176) in Shiryaev (2016).
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Lemma 10. For two di,d2 dimensional random vectors Z1, Z2, we have o(Z1) C 0(Z1, Z2).

Proof. As mentioned just before Theorem 1, we have
o(2) = {27 (B1) : By € BR™)}
= {{weQ: Zi(w) € Bi}: Bi € B(RM)}.
We also have

0(Z1,22) = {(Z1,22)""(B) : B € B(R" ")}
={{weQ: (Zi(w), Z2(w)) € B} : B€ B(Rd1+d2)}

Since B(R*1742) = B(R¥) ® B(R), we have that for all By € B(R%), B> € B(R%) it is the case
that By x B € B(R4T42),

Using this and that B(R%) is a o-field so that R? € B(R%), shows that for any B; € B(R™) we
have that B x R% ¢ B(R%1T92),

Therefore,

0(Z) ={{w e Q: Zi(w) € B1} : B: € B(R")}
={{weQ: Zi(w) € Bi, Zs(w) € R2} : By € B(R™)}
={{weQ: Zi(w) € By, Zo(w) € R®} : By x R™ € B(RTT%2)}
C{{we Q: (Z1(w), Z2(w)) € B} : B € BR" )}
=0(Z1,Zs).

d

For the next lemma, we recall Jacod and Protter (2004, Theorem 8.1), stated below. Before we
state it we recall the following more general general concept from measure theory.

Let (E,€) and (F, F) be two measurable spaces. A function X : E +— F is measurable relative to £
and F if X~!(Z) € £ for all Z € F.

Theorem 6 (Theorem 8.1 in Jacod and Protter (2004)). Let C be a class of subsets of ) such
that o(C) = F. Then X : E + F is measurable (relative to € and F) if and only if X~(C) € £ for all
CecC.

Lemma 11. Let X be a di dimensional random variable and ¢ : R% s R% 4 Borel function.
Then o(X) = (X, ¢(X)).

Proof of Lemma 11. Since ¢ is a Borel function, ¢(X) is a random variable. We first show o(X) C
(X, p(X)) and then that o(X, (X)) C o(X), which implies that o(X) = o(X, ¢(X)).

First, Lemma 10 implies that o(X) C o(X, p(X)).

Second, we show that o(X, (X)) C o(X). We do this by showing that (X, p(X)) is o(X) mea-
surable. Since o (X, ¢(X)) is the smallest o-field such that (X, (X)) is measurable with respect to it,
and o(X) is a o-field.

To do this, we use Theorem 6. We have that (X, (X)) : Q@ — R¥+92 where R¥1+92 is equipped
with the Borel o-field B(R“T42) = B(R%) ® B(R??) which as mentioned at the start of this sub-section
is generated by the product sets of the form B; X Bz where B; € B(Rdl),Bz S B(Rd2). Let C =
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{B1 x B : By € B(R™), B> € B(R*)}. By Theorem 6, we need to show that (X, (X)) (C) € o(X)
for all C € C. Let C € C so that C = B; x B>. We have

(X, (X)) 7HC) = {w € Q: (X(w),p(X(w))) € B1 x B2}
={weN: X(w) € B, p(X(w)) € Bz}
={weQ: X(w)eBi}N{weQ:p(X(w)) € B2}
—{weQ: X(W eB}IN{weN: X(w) €y '(Ba)}

For the last step, recall that ¢~ '(B2) = {z : ¢(2) € B2}. Therefore, p(X(w)) € Bz is equivalent to
X(w) € o1 (B2).

Since ¢ is a Borel function, ¢~ *(B2) € B(R%). Therefore, the sets that are intersected are both of
the form {w € Q: X(w) € B} = X !(B) for a set B € B(R™), all of which are in

o(X)={X"'(B): B eBR™)}.

Since o-fields are stable under finite intersections, (X, ¢(X))™H(C) € o(X). O

APPENDIX L. MISCELLANEA

Let M be a square and symmetric matrix. It is a positive semidefinite matrix if its quadratic form

is non-negative. If M is positive definite, it is also positive semidefinite.

Lemma 12. For a m X m matrix M with elements (m;):; that is symmetric and positive

semidefinite, we have that maxi<i j<m |Mi, ;| < Amax(M).

Proof. Since M is a square symmetric positive semidefinite matrix, Theorem 4.2.8 in Golub and
Van Loan (2013) shows that

max |m; ;| = max m;;.
1<4,5<m 1<i<m

Recall that Amax (M) = max|z,=1 2’ M=z where ||z|2 = />~ #7. Choose z = e; be the j’th unit vec-
tore; = (0,0,...,0,1,0,...,0)', which is such that ||z|]2 = /> =, 7 = 1 and ' Mz = m; ;. Therefore,
for each 1 < ¢ < m we have m;,; < max|g|,=1 &' Mz = Amax(M), and therefore maxi<i j<m |[mi ;| =

maxi<i<m M S )\max(M)- O

The following lemma is well known in the literature, and is used e.g. in Rosseel and Loh (2022).
While the result is given in Johnson and Wichern (2002, Exercise 9.6, p. 531) in the case when ®
is the identity matrix, and can therefore be considered standard, we have not found a reference with
explicit statement and proof of the full result, and we for completeness include a proof for it using our

Assumption 1.

Lemma 13. Suppose given Assumption 1. Then the Thurstone matrix T := ®A’S~! used to
derive the regression factor score is equivalent to T := (<I>71 + A'\IlflA)i1 AT

Proof of Lemma 13. We begin with T" and notice that there are several alternative notations for the
population covariance matrix ¥, := A®A’ + . Let L := A(@é)’, where ®2 is part of the Cholesky
decomposition (see, e.g., Horn & Johnson, 2013, p. 441, Corollary 7.2.9) of & = (<I>%)'<I>%. Here, P2
is an upper triangular matrix. Further, we note that for the Cholesky decomposition the following
identity holds: & ! = ((@é)'<1>%)71 = @7%(®7%)', where ®~ 2 is the inverse of ®2. For the proof,
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we make use of three matrix properties which are sequentially proven. These are based on exercises in
(Johnson & Wichern, 2002, see Exercise 9.6, p. 531):

a) (Ig, + LU D)y 'L/~ =1,

f f
WL (Ia; + L'O'L) ™
(Ia; + LU~

(b) (LI +¥) ' =0
(¢) L' (LL' + W) ' =

— (Ia; + L'V'L)7!
A

D)Lt

Proof of (a). We proof (a) by premultiplying both sides of (a) by Ia, + L'y L

[la; + L'V L] (Ia, + L'UV'L) 'L'U 'L = [Ia, + L'V L] (1a,
— L'V 'L=

— U 'L=0'v"'L

— (Ia; + L'V~
[la, + L'U L] — I,

1L)71)

O
Proof of (b). We provide proof for (b) by postmultiplying both sides of (b) by LL’ + ¥:
(Lr +w) " [LL 4+ W] = (97 = 0L (g, + L0 L) T L) [LL 4 W)
= Iy, =V [LL + W] = UL (Ia, + L0 L) T LT [LL + 0]
= Ly, =V'LL 41y, WL (Ia, + LVTL) T LUTLL -
UL (g, + LOTL) T LT
& qy =0 LD + 1y, — UL [la, — (Ia, + L'UV'L)" ) L'
UL (Ia, + LD L
> I, =V 'LL +1;, =V 'LL'+ ¥ 'L(Iq, + L'U'L) "' L'~
UL (g, + LOTL) L
= Iy, =1a..
O

Proof of (¢). We provide proof for (c) and begin by postmultiplying (b) with L:

1

(LL' +w

= (LL'+ )"

1

L=
L=
L=

— (LL'+9%) L=

L=

1

)
)
& (L +w)™!
)
)

— (LL'+ ¥

Now, we transpose both sides and use that ¥~ (LL' 4+ )

and we have

L (LL +9) ' =

(v

UL - UL (T, +

UL UL Iy, —

— UL (L, + LT ) T ) L

et el

(Io, + L'U'L)"]

UL -V L+ U LI, + LY L)

U LIy, + L'OTL)

—1

(I, + L'v'L)™"

and (Ia, + L'U~'L)~"

vt

are symmetric
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Now, resubstitute L := A('ID%)' in L' (LL +0) "' = (Ia; + L'\IlflL)f1 L'T~! and we have:

|
Il
=
E
+
&
<
=
L
&
<

—1 -1 -1 ’
P =P 2(® 2) 1 1

DA (ADA +0) = (@7 2) (& L4 ATTIA) DI eI T

1

= DTN (ADN + ) = (@7 F) (@ 4 A WA AT

Premultiplying both sides with (<I>%)’ results in

(@2) 2N (ABN +T) ' = (2) (&%) (1 + AU IA) A T!
e BN (ADN +0) ' = (374 A TTIA) T AT
= AT = (@7 HATTIA) T AT

<— T ="1T5.

REFERENCES

Arminger, G., & Muthén, B. O. (1998). A bayesian approach to nonlinear latent variable
models using the gibbs sampler and the metropolis-hastings algorithm. Psychometrika,
63, 271-300.

Aust, F., & Barth, M. (2022). papaja: Prepare reproducible APA journal articles with R
Markdown [Computer software manual]. Retrieved from https://github.com/crsh/
papaja (R package version 0.1.1)

Bartlett, M. S. (1937). The statistical conception of mental factors.  British Jour-
nal of Psychology. General Section, 28(1), 97-104.  https://doi.org/10.1111/j.2044-
8295.1937.tb00863.x

Bauer, D. J. (2005). A semiparametric approach to modeling nonlinear relations among latent
variables. Structural Equation Modeling: A Multidisciplinary Journal, 12(4), 513-535.

Bierens, H. J. (2004). Introduction to the mathematical and statistical foundations of econo-
metrics. Cambridge University Press.

Billingsley, P. (1995). Probability and Measure. New York: John Wiley & Sons. (3rd. Edition)

Bollen, K. A. (1980). Issues in the comparative measurement of political democracy. American
Sociological Review, 45(3), 370-390.

Bollen, K. A. (1995). Structural equation models that are nonlinear in latent variables: A
least-squares estimator. Sociological Methodology, 25, 223-251.

Bollen, K. A., & Arminger, G. (1991). Observational residuals in factor analysis and structural
equation models. Sociological Methodology, 235-262.


https://github.com/crsh/papaja
https://github.com/crsh/papaja

A80 STEFFEN GRONNEBERG" AND JULIEN PATRICK IRMER"

Bollen, K. A., & Paxton, P. (1998). Interactions of latent variables in structural equation
models.  Structural Equation Modeling: A Multidisciplinary Journal, 5(3), 267-293.
https://doi.org/10.1080/10705519809540105

Brandt, H., Cambria, J., & Kelava, A. (2018). An adaptive bayesian lasso approach with spike-
and-slab priors to identify multiple linear and nonlinear effects in structural equation
models. Structural Equation Modeling: A Multidisciplinary Journal, 25(6), 946-960.
https://doi.org/10.1080/10705511.2018.1474114

Biichner, R. D., & Klein, A. G. (2020). A quasi-likelihood approach to assess model fit
in quadratic and interaction SEM. Multivariate Behavioral Research, 55(6), 855-872.
https://doi.org/10.1080/00273171.2019.1689349

Cheung, G. W., & Lau, R. S. (2017). Accuracy of parameter estimates and confi-
dence intervals in moderated mediation models: a comparison of regression and la-
tent moderated structural equations. Organizational Research Methods, 20(4), 746-769.
https://doi.org/10.1177/1094428115595869

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots.
Journal of the American Statistical Association, 74(368), 829-836.

Cleveland, W. S. (1981). LOWESS: A program for smoothing scatterplots by robust locally
weighted regression. The American Statistician, 35(1), 54-54.

Cleveland, W. S., Grosse, E., & Shyu, W. M. (1992). Local regression models. In J. M. Chambers
& T. J. Hastie (Eds.), Statistical models in S (pp. 309-379). Springer.

De Boor, C. (1978). A practical guide to splines. Springer-Verlag New York.

Delaigle, A. (2014). Nonparametric kernel methods with errors-in-variables: constructing
estimators, computing them, and avoiding common mistakes. Australian & New Zealand
Journal of Statistics, 56(2), 105-124. https://doi.org/10.1111/anzs.12066

Delaigle, A., Fan, J., & Carroll, R. J. (2009). A design-adaptive local polynomial estima-
tor for the errors-in-variables problem. Journal of the American Statistical Association,
104(485), 348-359. https://doi.org/10.1198/jasa.2009.0114

Delaigle, A., & Hall, P. (2008). Using simex for smoothing-parameter choice in errors-in-
variables problems. Journal of the American Statistical Association, 103(481), 280-287.
https://doi.org/10.1198/016214507000001355

Edwards, C. H. (1973). Advanced calculus of several variables. Academic Press.

Etezadi-Amoli, J., & McDonald, R. P. (1983). A second generation nonlinear factor analysis.
Psychometrika, 48(3), 315-342.

Fan, J., & Gijbels, I. (1996). Local polynomial modelling and its applications: monographs on
statistics and applied probability 66 (Vol. 66). CRC Press.

Feng, X.-N., Wang, G.-C., Wang, Y.-F., & Song, X.-Y. (2015). Structure detection of semi-
parametric structural equation models with bayesian adaptive group lasso. Statistics in
Medicine, 34(9), 1527-1547. https://doi.org/10.1002/sim.6410

Genz, A., & Bretz, F. (2009). Computation of multivariate normal and t probabilities. Heidel-
berg: Springer-Verlag.

Gibson, W. A. (1959). Three multivariate models: Factor analysis, latent structure analysis,



NON-PARAMETRIC REGRESSION AMONG FACTOR SCORES A81

and latent profile analysis. Psychometrika, 24(3), 229-252.

Golub, G. H., & Van Loan, C. F. (2013). Matriz computations (4th ed.). JHU press.

Grice, J. W. (2001). Computing and evaluating factor scores. Psychological Methods, 6(4),
430-450. https://doi.org/10.1037/1082-989X.6.4.430

Grgnneberg, S., Foldnes, N.; & Marcoulides, K. M. (2022). covsim: An R package for simulating
non-normal data for structural equation models using copulas. Journal of Statistical
Software, 102, 1-45.

Guo, R., Zhu, H., Chow, S.-M., & Ibrahim, J. G. (2012). Bayesian lasso for semiparametric
structural equation models. Biometrics, 68(2), 567-577. https://doi.org/10.1111/j.1541-
0420.2012.01751.x

Hansen, B. (2022). Econometrics. Princeton University Press.

Harville, D. A. (1997). Matriz algebra from a statistician’s perspective. Springer.

Hayashi, F. (2011). Econometrics. Princeton University Press.

Holst, K. K., & Budtz-Jgrgensen, E. (2020). A two-stage estimation proce-
dure for non-linear structural equation models. Biostatistics, 21(4), 676-691.
https://doi.org/10.1093 /biostatistics/kxy082

Horn, R. A., & Johnson, C. R. (2013). Matriz analysis (2nd ed.). Cambridge University Press.

Huang, X., & Zhou, H. (2017). An alternative local polynomial estimator for the error-in-
variables problem. Journal of Nonparametric Statistics, 29(2), 301-325.

Jacod, J., & Protter, P. (2004). Probability essentials. Springer Science & Business Media.

Jin, S., Vegelius, J., & Yang-Wallentin, F. (2020). A marginal maximum likeli-
hood approach for extended quadratic structural equation modeling with ordinal
data. Structural Equation Modeling: A Multidisciplinary Journal, 27(6), 864-873.
https://doi.org/10.1080/10705511.2020.1712552

Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis (6th ed.).
Prentice hall Upper Saddle River, NJ.

Kallenberg, O. (2021). Foundations of modern probability (3rd ed.). Springer.

Kelava, A., & Brandt, H. (2009). Estimation of nonlinear latent structural equation models
using the extended unconstrained approach. Review of Psychology, 16(2), 123-132.
Kelava, A., Kohler, M., Krzyzak, A., & Schaffland, T. F. (2017). Nonparametric estimation of

a latent variable model. Journal of Multivariate Analysis, 154, 112-134.

Kelava, A., & Nagengast, B. (2012). A bayesian model for the estimation of latent interaction
and quadratic effects when latent variables are non-normally distributed. Multivariate
Behavioral Research, 47(5), T17-742. https://doi.org/10.1080/00273171.2012.715560

Kelava, A., Nagengast, B., & Brandt, H. (2014). A nonlinear structural equation mixture
modeling approach for nonnormally distributed latent predictor variables. Structural
Equation Modeling: A Multidisciplinary Journal, 21(3), 468—-481.

Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of
latent variables. Psychological Bulletin, 96(1), 201-210. https://doi.org/10.1037,/0033-
2909.96.1.201



A82 STEFFEN GRONNEBERG" AND JULIEN PATRICK IRMER"

Klein, A. G., & Moosbrugger, H. (2000). Maximum likelihood estimation of Ila-
tent interaction effects with the LMS method.  Psychometrika, 65(4), 457-474.
https://doi.org/10.1007/BF02296338

Klein, A. G., & Muthén, B. O. (2007). Quasi-maximum likelihood estimation of structural
equation models with multiple interaction and quadratic effects. Multivariate Behavioral
Research, 42(4), 647-673. https://doi.org,/10.1080/00273170701710205

Kohler, M., Miiller, F., & Walk, H. (2015). Estimation of a regression function corresponding
to latent variables. Journal of Statistical Planning and Inference, 162, 88-109.

Lee, S.-Y., Song, X.Y. & Cai, J.-H. (2010). A bayesian approach for nonlin-
ear structural equation models with dichotomous variables using logit and probit
links.  Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 280-302.
https://doi.org/10.1080/10705511003659425

Lee, S.-Y., Song, X.-Y., & Tang, N.-S.  (2007). Bayesian methods for analyzing
structural equation models with covariates, interaction, and quadratic latent vari-
ables.  Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 404-434.
https://doi.org/10.1080/10705510701301511

MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation anal-
ysis. Annual Review of Psychology, 58(1), 593-614. (PMID: 16968208)
https://doi.org/10.1146 /annurev.psych.58.110405.085542

Maplesoft, a division of Waterloo Maple Inc.. (2019). Maple [Computer software manual].
Waterloo, Ontario. Retrieved from https://hadoop.apache.org

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. Academic Press.

Marsh, H. W., Wen, Z., & Hau, K.-T. (2004). Structural equation models of latent interactions:
Evaluation of alternative estimation strategies and indicator construction. Psychological
Methods, 9(3), 275-300. https://doi.org/10.1037/1082-989X.9.3.275

McDonald, R. (1967). Nonlinear factor analysis (No. 15). William Byrd Press.

McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: Lawrence Erlbaum.

Mooijaart, A., & Bentler, P. M. (2010). An alternative approach for nonlinear latent variable
models.  Structural Equation Modeling: A Multidisciplinary Journal, 17(3), 357-373.
https://doi.org/10.1080/10705511.2010.488997

Mooijaart, A., & Satorra, A. (2009). On insensitivity of the chi-square model test to nonlinear
misspecification in structural equation models. Psychometrika, 74(3), 443-455.

Mooijaart, A., & Satorra, A. (2012). Moment testing for interaction terms in structural equation
modeling. Psychometrika, 77(1), 65-84. https://doi.org/10.1007/s11336-011-9232-6

Murdoch, D., & Adler, D. (2023). rgl: 3D visualization using OpenGL [Computer software man-
ual]. Retrieved from https://CRAN.R-project.org/package=rgl (R package version
1.1.3)

Narasimhan, B., Johnson, S. G., Hahn, T., Bouvier, A., & Kiéu, K. (2023). cubature: Adaptive
multivariate integration over hypercubes [Computer software manual]. Retrieved from
https://CRAN.R-project.org/package=cubature (R package version 2.0.4.6)

Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.


https://hadoop.apache.org
https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=cubature

NON-PARAMETRIC REGRESSION AMONG FACTOR SCORES A83

Nestler, S. (2015). A specification error test that uses instrumental variables to detect latent
quadratic and latent interaction effects. Structural Equation Modeling: A Multidisci-
plinary Journal, 22(4), 542-551. https://doi.org/10.1080/10705511.2014.994744

Ng, J. C. K., & Chan, W. (2020). Latent moderation analysis: A factor score ap-
proach. Structural Equation Modeling: A Multidisciplinary Journal, 27(4), 629-648.
https://doi.org/10.1080/10705511.2019.1664304

R Core Team. (2023). R: A language and environment for statistical computing [Computer
software manual]. Vienna, Austria. Retrieved from https://www.R-project.org/

Ren, Y.-F., & Liang, H.-Y. (2001). On the best constant in marcinkiewicz—zygmund inequality.
Statistics & Probability Letters, 53(3), 227-233.

Révész, P. (1967). The laws of large numbers (Vol. 4). Academic Press.

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of
Statistical Software, 48(2), 1-36.

Rosseel, Y., & Loh, W. W. (2022). A structural after measurement approach to structural
equation modeling. Psychological Methods, Advance online publication.

Shiryaev, A. N. (2016). Probability 1 (Vol. 95). Springer.

Skrondal, A., & Laake, P. (2001). Regression among factor scores. Psychometrika, 66(4),
563-575.

Solymos, P., & Zawadzki, Z. (2023). pbapply: Adding progress bar to "*apply’ functions
[Computer software manual]. Retrieved from https://CRAN.R-project.org/package=
pbapply (R package version 1.7-0)

Song, X.-Y., & Lee, S.-Y. (2005). Maximum likelihood analysis of nonlinear structural equation
models with dichotomous variables. Multivariate Behavioral Research, 40(2), 151-177.
https://doi.org/10.1207 /s15327906mbr4002_1

Song, X.-Y., & Lu, Z.-H. (2010). Semiparametric latent variable models with bayesian
p-splines. Journal of Computational and Graphical Statistics, 19(3), 590-608.
https://doi.org/10.1198/jcgs.2010.09094

Song, X.-Y., Lu, Z.-H., Cai, J.-H., & Ip, E. H.-S. (2013). A bayesian modeling approach for
generalized semiparametric structural equation models. Psychometrika, 78(4), 624-647.
https://doi.org/10.1007/s11336-013-9323-7

Song, X.-Y., Pan, J.-H., Kwok, T., Vandenput, L., Ohlsson, C., & Leung, P.-C. (2010). A semi-
parametric bayesian approach for structural equation models. Biometrical Journal(3),
314-332. https://doi.org/10.1002/bimj.200900135

Stefanski, L. A., & Carroll, R. J. (1990). Deconvolving kernel density estimators. Statistics,
21(2), 169-184.

The MathWorks Inc. (2023). MATLAB version: 9.13.0 (R2023a) [Computer software manual].
Natick, Massachusetts, United States: Author Retrieved from https://www.mathworks
.com

Wall, M. M., & Amemiya, Y. (2000). Estimation for polynomial structural equa-
tion models.  Journal of the American Statistical Association, 95(451), 929-940.
https://doi.org/10.1080/01621459.2000.10474283


https://www.R-project.org/
https://CRAN.R-project.org/package=pbapply
https://CRAN.R-project.org/package=pbapply
https://www.mathworks.com
https://www.mathworks.com

84 STEFFEN GRONNEBERG" AND JULIEN PATRICK IRMER"

Wall, M. M., & Amemiya, Y. (2001). Generalized appended product indicator procedure for
nonlinear structural equation analysis. Journal of Educational and Behavioral Statistics,
26(1), 1-29. https://doi.org/10.3102/10769986026001001

Wall, M. M., & Amemiya, Y. (2003). A method of moments technique for fitting interaction
effects in structural equation models. British Journal of Mathematical and Statistical
Psychology, 56(1), 47-63. https://doi.org/10.1348,/000711003321645331

Wang, X.-F., & Wang, B. (2011). Deconvolution estimation in measurement error
models: The R package decon.  Journal of Statistical Software, 39(10), 1-24.
https://doi.org/10.18637/jss.v039.i10

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York.
Retrieved from https://ggplot2.tidyverse.org

Wickham, H. (2023). forcats: Tools for working with categorical variables (factors) [Computer
software manual|. Retrieved from https://CRAN.R-project.org/package=forcats (R
package version 1.0.0)

Wickham, H., & Seidel, D. (2022). scales: Scale functions for visualization [Computer software
manual]. Retrieved from https://CRAN.R-project.org/package=scales (R package
version 1.2.1)

Yalcin, I., & Amemiya, Y. (2001). Nonlinear factor analysis as a statistical method. Statistical
Science, 16(3), 275-294.

DEPARTMENT OF EconNoMmics, BI NORWEGIAN BUSINESS SCHOOL, OsLO, NORWAY 0484
E-mail address: steffeng@gmail.com

DEPARTMENT OF PSYCHOLOGY, GOETHE UNIVERSITY FRANKFURT, FRANKFURT AM MAIN, GERMANY

E-mail address: jirmer@psych.uni-frankfurt.de


https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=forcats
https://CRAN.R-project.org/package=scales

	1. Introduction
	1.1. Inputting Factor Scores to Non-Parametric Regression Methods, a Literature Review and an Overview of our Theoretical Contributions
	1.2. The Structure of the Paper

	2. Identification of H based on Population Factor Scores
	2.1. Distributional Approximations of r as dx Increases, Part 1: Approximating r by a Constant Zero Vector
	2.2. Distributional Approximations of r as dx Increases, Part 2: Approximating r by a Normal

	3. Empirical Estimation Strategies
	4. Numerical Illustrations
	4.1. The Distribution of r
	4.2. A Visual Comparison of Approximations to H
	4.3. Simulation Study Based on Mean Integrated Square Error for d= 1
	4.4. Simulation Study Based on Mean Integrated Square Error for d= 2

	5. Concluding Remarks
	Appendix A. A Simple and Practically Oriented Numerical Illustration
	Appendix B. Non-parametric regression among factor scores for a full SEM: a component-wise approach
	B.1. Considerations under Structural Misspecifications

	Appendix C. A Literature review of NLSEM
	Appendix D. Additional Information on the Simulation
	D.1. Data Generating Mechanisms
	D.2. Information on R-packages used in the simulation
	D.3. Additional Information on the Estimation of Non-Parametric Trends Used in the Simulation Study
	D.4. Additional Graphics and Tables with Additional Comments on Simulation Results

	Appendix E. Technical and Mathematical Appendix
	E.1. On Assumption 1
	E.2. A Discussion on Assumption 7 (3) (a)
	E.3. More Details on the Consequences of Asymptotic Normality of r Following Proposition 5
	E.4. Mathematical Results and Proofs

	Appendix F. On non-linear and misspecified measurement models
	F.1. Polynomial measurement models
	F.2. On measurement model misspecification
	F.3. Simulation illustrations with measurement model misspecifications

	Appendix G. Independence between  and  is incompatible with ordinal data
	G.1. A simple illustration
	G.2. The general lemma

	Appendix H. How H is influenced by Transformations of the Units of Measurements of f
	Appendix I. The Problem of Empirically Approximating the Distribution of r
	Appendix J. Non-additive noise
	Appendix K. A Review of Conditional Expectations, and Their Rules
	K.1. Some stability results of -fields generated by random vectors

	Appendix L. Miscellanea
	References

