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Throughout the appendix we use several properties of conditional expectations and measure-theory,

which are stated in Appendix K for completeness.

Appendix A. A Simple and Practically Oriented Numerical Illustration

In this section, we consider a simple simulation-based illustration using a very simple model sum-

marized in Figure 7. Example code in how to estimate the nonlinear trend using Bartlett factor scores

utilizing LOESS is given at the end of this section.
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Figure 7. An example SEM path diagram, where arrows between latent vari-

ables and manifest variables indicate linear relationships, while arrows among

latent variable indicate possible nonlinear relations. Residuals and measure-

ment errors are not shown for simplicity, but are present in the model.

The arrow between ⇠1 and ⌘1 denote an influence, and it may be non-linear. Its equation is

⌘1 = H(⇠1) + ⇣1, ⇠1,⇠ N (0, 1), ⇣1 ⇠ N (0, .34) and independent of each other.

Linear SEM assumes H(x) = �1x. Instead, we will assume

H(x) = �0.5 + 0.4x+ 0.5 ⇤ x2

which is a clearly non-linear quadratic trend. The chosen parameters further imply Var ⌘ = 1.

The measurement model is linear, and given by

xi = �x,i⇠1 + "x,i, yi = �y,i⌘1 + "y,i, i = 1, 2, 3.

We let �x,1 = �y,1 = 1 fixed for identification and let �x,2 = �y,2 = .65 and �x,3 = �y,3 = .5. Further

let "x ⇠ N (0, x) and "y ⇠ N (0, y), with Cov "x =  x = Cov "y =  y = diag(.5625, .5775, .75),

where diag stacks the vector onto the diagonal of a corresponding square matrix. This is the same

model setting as chosen for the simulation study, further described in Section 4 and Appendix D.

We drew a sample with sample-size n = 200. The simulated values of (⌘1, ⇠1) are shown in Figure

8. Standard linear SEM goodness of fit measures report �2

df=8 = 10.11, p = 0.257, RMSEA = 0.036,

SRMR = 0.030, CFI = 0.990, indicating an appropriate fit. This failure of standard linear SEM

estimations to detect non-linear deviations from the model is well-known, see e.g. Mooijaart and

Satorra (2009). The trend we have chosen for the illustration is of a simple quadratic kind. There are
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available tools to detect missing quadratic or interaction terms in SEM, such as the specification test

of Nestler (2015) or significance tests for non-linear SEM (Büchner & Klein, 2020). We here illustrate

how the non-linear trend can be detected using trend estimates based on factor scores.
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Figure 8. Simulated values of (⌘1, ⇠1) with the true trend H.

The data plotted in Figure 8 will never be known to us, and we need to use the manifest variables

x1, x2, x3, y1, y2, y3 to approximate the latent variables. In Figure 9, we have plotted the Bartlett factor

scores with trend estimates using the locally estimated scatterplot smoothing (LOESS) originating from

its weighted version (LOWESS, Cleveland et al., 1992) proposed by Cleveland (1979, Cleveland, 1981),

the cross-validated adaption of the local polynomial estimator by Delaigle et al. (2009, DFC-estimator)

proposed by Huang and Zhou (2017): the HZ-estimator (HZ for local linear estimators for solving errors-

in-variables problems, see Appendix D.3 for more details) specifically tailored for Bartlett factor scores

assuming normality of the prediction residual of the score (see Section 3 for further information), and

the nonlinear factor scores of Kelava et al. (2017) complemented by their implementation of a specific

BSpline (De Boor, 1978) method. In this particular simulation, the LOESS(BFS) has the least mean

integrated square error to the true trend line H, then HZCV(BFS), and finally BSpline(NLFS).

The plotted points of Figure 9 will only be an approximation to the true latent variables f in Figure

8 due to the relation f̈ = f + r for the BFS. Individual realizations of the factors are not possible

to re-gain exactly (for an overview of factor score indeterminacy see, e.g., Grice, 2001), even in the

population. We caution against taking the individual factor scores as equal to the factors. The observed

di↵erences between Figures 8 and 9 illustrate the type of di↵erence one might expect in an empirical

study.

When studying the di↵erence between the latent variables (Figure 8) and their approximation (Fig-

ure 9), it is clear that with a low sample size (n = 200) and a low number of measurement variables

(three per latent variable), there is a large degree of approximation error. Yet both LOESS(BFS)

and HZCV(BFS) clearly indicate that a non-linear trend appears needed, and that a quadratic trend
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Figure 9. Estimated values (⌘̈1, ⇠̈1) using Bartlett factor scores with the

true trend H (True) and estimated trends using LOESS based on BFS

(LOESS(BFS)), BSpline estimator based on NLFS (BSpline(NLFS)), and the

cross-validated HZ-estimator based on BFS (HZCV(BFS)) for n = 200.

appears reasonable. This is less apparent based on BSpline(NLFS), which did not work well in this

particular simulation.

The following R code uses lavaan (Rosseel, 2012) to estimate LOESS(BFS) for this two factor model,

where ⇠1 influences ⌘1, all measured by three observations as represented by Figure 7. As per default

in lavaan, the latent mean per latent variable is fixed to zero, we manually overwrite this by fixing the

first manifest mean per latent variable to zero and freely estimating the latent means. This ensures

that the BFS are allowed to have means which is necessary for the nonparametric trend to converge

towards the population trend and not a linear combination thereof. The code to estimate all other

trends as well as the code resulting in the figures and the data of this section are given in the online

supplementary materials.

# fit model

model <- "

# measurement model formulation

Xi1 =~ 1*x1 + x2 + x3

Eta1 =~ 1*y1 + y2 + y3

Xi1 ~~ Eta1

# fix first intercept per latent to zero for scaling

x1 ~0

y1 ~0

# estimate latent means freely
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Xi1 ~1

Eta1 ~1

"

fit <- lavaan::sem(model, data)

BFS <- as.data.frame(lavaan::lavPredict(fit, method = "Bartlett"))

# fit LOESS(BFS)

fitLOESS <- loess(Eta1 ~ Xi1, data = BFS)

LOESS_BFS <- predict(fitLOESS)

# plot data

df <- data.frame(LOESS_BFS, BFS)

library(ggplot2)

ggplot(data = df, mapping = aes(x = Xi1, y = LOESS_BFS)) +

geom_line()+

geom_point(mapping = aes(x = Xi1, y = Eta1))

Appendix B. Non-parametric regression among factor scores for a full SEM: a

component-wise approach

For a given SEM, the non-parametric estimation methodology developed in this paper can be used to

produce component-wise estimates of the influences onto each endogenous variable in the model. This

can be achieved by taking each endogenous component of the model, and estimating non-parametrically

its regression function using all variables that influence it as explanatory variables. Since this may

include variables that are endogenous in the full system, the explanatory variables of each step in the

component-wise estimates may be a mixture of both exogenous and endogenous variables.

In this section, we consider this procedure via illustrations following the SEM given in Figure 10.

We will illustrate the di↵erences and similarities between considering the reduced form of the SEM and

a component-wise perspective through some example calculations.

In this example model we have one exogenous variable ⇠ = ⇠1 and three endogenous variables

⌘ = (⌘1, ⌘2, ⌘3)
0 in the full system. The reduced form representation of the whole system is the

conditional expectation of all endogenous variables given the exogenous variable ⇠1 distorted by noise

⇣ = (⇣1, ⇣2, ⇣3)
0

⌘ = (⌘1, ⌘2, ⌘3)
0 = H(⇠1) + ⇣, E[⇣|⇠1] = 0,

where H : R 7! R3 is H(x) = E[⌘|⇠1 = x]. This reduced form representation considers how ⇠ = ⇠1

influences ⌘.

In contrast, we may use the structural model from Figure 10. By the existence of the conditional

expectations, we have that there exists functions H̃1, H̃2, H̃3 with

⌘1 = H̃1(⇠1) + ⇣1, E[⇣1|⇠1] = 0,

⌘2 = H̃2(⇠1, ⌘1) + ⇣2, E[⇣2|⇠1, ⌘1] = 0,

⌘3 = H̃3(⇠1, ⌘1, ⌘2) + ⇣3 E[⇣3|⇠1, ⌘1, ⌘2] = 0,
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Figure 10. An example SEM path diagram, where arrows between latent

variables and manifest variables indicate linear relationships, while arrows

among latent variable indicate possible nonlinear relations. Residuals and mea-

surement errors are not shown for simplicity, but are present in the model.

so that

H̃1(x1) = E[⌘1|⇠1 = x1]

H̃2(x1, y1) = E[⌘2|⇠1 = x1, ⌘1 = y1]

H̃3(x1, y1, y2) = E[⌘3|⇠1 = x1, ⌘1 = y1, ⌘2 = y2].

If we assume that all drawn errors in the path diagram indicate dependence, and missing errors

denote independence among variables, the conditional expectation of ⌘3 further simplifies to E[⌘3|⌘1 =

y1, ⌘2 = y2].

In general, the coordinate functions of H will not coincide with H̃1, H̃2, H̃3, both because these

functions depend on other inputs than ⇠1, but also because the reduced form equation including H2

does not take into account for example the influence from ⌘1 to ⌘2, which is accounted for in H̃2.

In NLSEM, traditional estimators make stronger assumptions on the error terms ⇣j than the con-

ditional zero expectation property stated in the above display. Also independence to the variables

influencing each coordinate of ⌘ as well as other error terms are explicitly made (see, e.g., Holst &

Budtz-Jørgensen, 2020; Lee et al., 2007; Mooijaart & Bentler, 2010; Mooijaart & Satorra, 2012; Wall

& Amemiya, 2000, 2001, 2003), or implicitly made via distributional assumption, such as multivariate

normality (see, e.g., Brandt et al., 2018; Kelava & Brandt, 2009; Kenny & Judd, 1984; Klein & Moos-

brugger, 2000; Marsh et al., 2004). In this section we will assume that the regression errors ⇣1, ⇣2, ⇣3
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are independent to what is conditioned on for ease of computation. The rational of our paper is gen-

eral (see also discussion on non-additive errors in Appendix J). Since these independence assumptions

imply that the above stated conditional expectations are zero, we may non-parametrically estimate

H̃1, H̃2, H̃3 using the techniques of the present paper.

Concretely, to estimate H̃1, we input ⇠1 as the explanatory variable for ⌘1. To estimate H̃2, we

input ⇠1 and ⌘1 as explanatory variables for ⌘2. To estimate H̃3, we input ⇠1, ⌘1, and ⌘2 as explanatory

variables for ⌘3.

In each step, the assumptions of the paper have to be fulfilled. In most cases, this is the case if it

holds globally. In a few cases, we may loose identification of the covariance parameters when considering

a measurement model for a reduced equation set. We do not consider this topic systematically here.

For simplicity, the structural part of Figure 10 is recursive, hence, there are no loops and no

correlated error terms. Loops are unproblematic to take into account when considering the model

component-wise: Say there would be an arrow also from ⌘3 to ⌘2. Then the equation for ⌘2 would need

to include ⌘3, giving

⌘2 = H2(⇠1, ⌘1, ⌘3) + ⇣2, E[⇣2|⇠1, ⌘1, ⌘3] = 0.

As for correlated errors in the structural part, we first recall why error terms defined through

conditional expectation requirements are uncorrelated with what is conditioned on. That is, recall that

⇣1, ⇣2, ⇣3 are defined by tautology through

⇣1 = ⌘1 � E[⌘1|⇠1]

⇣2 = ⌘2 � E[⌘2|⇠1, ⌘1]

⇣3 = ⌘3 � E[⌘3|⇠1, ⌘1, ⌘2].

Now firstly, we recall that e.g. E⇣3 = E[E[⇣3|⇠1, ⌘1, ⌘2]] = E0 = 0, and similarly E⇣j = 0 for j = 1, 2.

Since the error terms have zero mean, we get e.g. that

Cov (⇣3, ⌘1) = E⇣3⌘1 = E[E[⇣3⌘1|⇠1, ⇠2, ⌘1, ⌘2]]

where here ⌘1 is conditioned on, and can therefore be taken outside the inner expectation, giving

Cov (⇣3, ⌘1) = E[⌘1E[⇣3|⇠1, ⌘1, ⌘2]] = 0.

Similarly, all error terms are uncorrelated with the explanatory variables within each equation.

The definition of terms in ⇣ = (⇣1, ⇣2, ⇣3)
0 does not imply that they are independent nor uncorrelated.

Consider the data generating mechanism to imply a correlation among ⇣ and assume that the assump-

tions of the error terms hold. This then implies that the conditional expectation of the error terms

when conditioning on the same variables as when defining ⇣1, ⇣2, ⇣3, is equivalent to the error terms

⇣1, ⇣2, ⇣3 because the conditional expectation is almost surely unique. Therefore, since it is possible to

have data generating mechanisms where the error terms in the structural part have correlation, also

the error terms ⇣1, ⇣2, ⇣3 may be correlated. Therefore, the possibility of correlated errors is embedded

within the framework we work with, and cannot be specified to be the case nor chosen away, as we are

simply estimating a conditional expectation and its implied residue ⇣1, ⇣2, ⇣3.

Consequently, residual covariation among endogenous variables can be estimated using estimates for

the residual ⇣ by applying its formula. We note the possible influence of approximation error and do

not consider this topic systematically here.
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We now consider a series of examples, first under model conditions, and then in the upcoming

sub-section under structural misspecification. In Section F, we consider similar issues, though under

measurement misspecification or non-linear measurement models.

Example 1. Consider the linear SEM resulting from the model in Figure 10 by setting all relations

among latent variables as linear. Hence, we get

⌘1 = ↵1 + �1,1,1⇠1 + ⇣1,

⌘2 = ↵2 + �1,2,1⇠1 + �1,2,1⌘1 + ⇣2

⌘3 = ↵3 + �1,3,1⌘1 + �1,3,2⌘2 + ⇣3,

where we use � for the e↵ects of ⇠ to ⌘ and � for the e↵ects among ⌘. Further, the first index in � and

� refers to the order of the e↵ect. Here, only linear e↵ects are present, hence, �1,3,1 refers to the linear

e↵ect of ⌘1 to ⌘3.

Further, assume that the errors ⇣1, ⇣2, ⇣3 have zero means, variances E⇣21 =  11,E⇣22 =  22,E⇣23 =

 33, and are mutually independent to all other error terms and ⇠1. This implies that the error terms

are also independent to the explanatory variables used in the equation where the error term is written.

To see this, notice that the endogenous variables can sequentially be written in terms of ⇠1 and other

error terms (first insert the equation for ⌘1 into the equation for ⌘2, then the equation for ⌘2 into the

equation for ⌘3).

Let us calculate H (with components Hj , j = 1, 2, 3) and H̃1, H̃2, H̃3. We have H1(x1) = H̃1(x1),

because this equation does not depend on any of the endogenous variables. Since E[⌘1|⇠1] = ↵1 +

�1,1,1⇠1 + E[⇣1|⇠1] = ↵1 + �1,1,1⇠1 + E[⇣1] = ↵1 + �1,1,1⇠1 by the assumed independence properties for

⇣1 and it being a residual with zero mean. Therefore, H1(x1) = H̃1(x1) = ↵1 + �1,1,1x1.

For ⌘2, we have

E[⌘2|⇠1] = E[↵2 + �1,2,1⇠1 + �1,2,1⌘1 + ⇣2|⇠1]

= ↵2 + �1,2,1⇠1 + �1,2,1E[⌘1|⇠1] + E[⇣2|⇠1].

Now, we have E [⌘1|⇠1] = ↵1 + �1,1,1⇠1, and E [⇣2|⇠1] = E [⇣2] = 0. Therefore,

E[⌘2|⇠1] = ↵2 + �1,2,1↵1 + (�1,2,1 + �1,2,1�1,1,1)⇠1,

and, hence, H2(x1) = ↵2+�1,2,1↵1+(�1,2,1+�1,2,1�1,1,1)x1. For H̃2 we use Lemma 7 (p. A75) and get

E[⌘2|⇠1, ⌘1] = ↵2 + �1,2,1⇠1 + �1,2,1⌘1,

and, hence, H̃2(x1, y1) = ↵2 + �1,2,1x1 + �1,2,1y1.

Finally, for the reduced form relationship between ⇠1 and ⌘3, we have

E[⌘3|⇠1] = ↵3 + �1,3,1E[⌘1|⇠1] + �1,3,2E[⌘2|⇠1] + E[⇣3|⇠1],

for which we have E[⇣3|⇠1] = 0, and, hence,

E[⌘3|⇠1] = ↵3 + �1,3,1↵1 + �1,3,2↵2 + �1,3,2�1,2,1↵1 + (�1,3,1�1,1,1 ++�1,3,2�1,2,1 + �1,3,2�1,2,1�1,1,1)⇠1.

Therefore, H3(x1) = ↵3+�1,3,1↵1+�1,3,2↵2+�1,3,2�1,2,1↵1+(�1,3,1�1,1,1++�1,3,2�1,2,1+�1,3,2�1,2,1�1,1,1)x1.

For H̃3, we again use Lemma 7 (p. A75) and get

E[⌘3|⇠1, ⌘1, ⌘2] = ↵3 + �1,3,1⌘1 + �1,3,2⌘2,

and, hence, H̃3(x1, y1, y2) = ↵3 + �1,3,1y1 + �1,3,2y2.
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To summarize, we have that

H1(x1) = ↵1 + �1,1,1x1,

H2(x1) = ↵2 + �1,2,1↵1| {z }
↵
?
2

+(�1,1,1�1,2,1 + �1,2,1)| {z }
�
?
1,2,1

x1,

H3(x1) = ↵3 + �1,3,1↵1 + �1,3,2↵2 + �1,3,2�1,2,1↵1| {z }
↵
?
3

+(�1,2,1�1,3,2 + �1,1,1�1,2,1�1,3,2 + �1,1,1�1,3,2)| {z }
�
?
1,3,1

x1,

and, in contrast, for H̃j(j = 1, 2, 3) we get

H̃1(x1) = ↵1 + �1,1,1x1,

H̃2(x1, y1) = ↵2 + �1,2,1x1 + �1,2,1y1,

H̃3(x1, y1, y2) = ↵3 + �1,3,1y1 + �1,3,2y2.

Translating this into mediation analysis framework (see for an overview, MacKinnon et al., 2007),

H2, for instance, refers to the total e↵ect of ⇠1 onto ⌘2, while H̃2 describes the e↵ect of ⇠1 to ⌘2 above

and beyond ⌘1 in a regression sense. Hence, �1,2,1 within H̃2 is the unique linear relation between ⇠1

and ⌘2 above and beyond ⌘1, while �
?

1,2,1 is the total e↵ect of ⇠1 to ⌘2, ignoring any relations mediated

by ⌘1. ⇤

Example 2. Consider the nonlinear SEM

⌘1 = ↵1 + �1,1,1⇠1 + ⇣1,

⌘2 = ↵2 + �1,2,1⇠1 + �1,2,1⌘1 + �2,2,1⌘
2

1 + ⇣2

⌘3 = ↵3 + �1,3,1⌘1 + �1,3,2⌘2 + �2,3,1⌘
2

1 + �3,3,1⌘
3

1 + ⇣3,

as a nonlinear extension of the linear SEM of Example 1, again representing the (possible nonlinear)

relations depicted in Figure 10. We use the same notation as in Example 1, i.e., �3,3,1 is the e↵ect

of the cubic ⌘31 on ⌘3, and, again, assume that the errors ⇣1, ⇣2, ⇣3 have zero means, variances E⇣21 =

 11,E⇣22 =  22,E⇣23 =  33, and are mutually independent to all other error terms and ⇠1.

Let us (again) calculate H (with components Hj , j = 1, 2, 3) and H̃1, H̃2, H̃3.

Identically to Example 1, we have H1(x1) = H̃1(x1) = ↵1 + �1,1,1x1.

For ⌘2, we have

E[⌘2|⇠1] = E[↵2 + �1,2,1⇠1 + �1,2,1⌘1 + �2,2,1⌘
2

1 + ⇣2|⇠1]

= ↵2 + �1,2,1⇠1 + �1,2,1E[⌘1|⇠1] + �2,2,1E[⌘21 |⇠1] + E[⇣2|⇠1].

Now, we have E [⌘1|⇠1] = ↵1 + �1,1,1⇠1, and E [⇣2|⇠1] = E [⇣2] = 0. For the expectation of ⌘21
conditioned on ⇠1 we get

E
⇥
⌘
2

1 |⇠1

⇤
= E

⇥
(↵1 + �1,1,1⇠1 + ⇣1)

2
|⇠1

⇤

= E
⇥
↵
2

1 + �
2

1,1,1⇠
2

1 + ⇣
2

1 + 2↵1�1,1,1⇠1 + 2↵1⇣1 + 2�1,1,1⇠1⇣1|⇠1
⇤

= ↵
2

1 + �
2

1,1,1E
⇥
⇠
2

1 |⇠1

⇤
+ E

⇥
⇣
2

1 |⇠1

⇤
+ 2↵1�1,1,1E [⇠1|⇠1] + 2↵1E [⇣1|⇠1] + 2�1,1,1E [⇠1⇣1|⇠1]

= ↵
2

1 + �
2

1,1,1⇠
2

1 + E
⇥
⇣
2

1

⇤
+ 2↵1�1,1,1⇠1 + 2↵1 · 0 + 2�1,1,1⇠1E [⇣1|⇠1]

= ↵
2

1 + �
2

1,1,1⇠
2

1 +  11 + 2↵1�1,1,1⇠1 + 2�1,1,1⇠1 · 0

= ↵
2

1 +  11 + 2↵1�1,1,1⇠1 + �
2

1,1,1⇠
2

1 .
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Hence, for E[⌘2|⇠1] we have

E[⌘2|⇠1] = ↵2 + �1,2,1⇠1 + �1,2,1 (↵1 + �1,1,1⇠1) + �2,2,1

�
↵
2

1 +  11 + 2↵1�1,1,1⇠1 + �
2

1,1,1⇠
2

1

�

= ↵2 + �1,2,1↵1 + �1,2,1⇠1 + �1,2,1�1,1,1⇠1 + �2,2,1↵
2

1 + �2,2,1 11 + �2,2,12↵1�1,1,1⇠1 + �2,2,1�
2

1,1,1⇠
2

1

= ↵2 + �1,2,1↵1 + �2,2,1 11 + �2,2,1↵
2

1 + �1,2,1⇠1 + �1,2,1�1,1,1⇠1 + 2�2,2,1↵1�1,1,1⇠1 + �2,2,1�
2

1,1,1⇠
2

1

= ↵2 + �1,2,1↵1 + �2,2,1 11 + �2,2,1↵
2

1| {z }
=↵

?
2

+(�1,2,1 + �1,2,1�1,1,1 + 2�2,2,1↵1�1,1,1)| {z }
=�

?
1,2,1

⇠1 + �2,2,1�
2

1,1,1| {z }
=�

?
2,2,1

⇠
2

1 ,

which is a quadratic form in ⇠1. We get H2(x1) = ↵
?

2 + �
?

1,2,1x1 + �
?

2,2,1x
2

1. In contrast, when

conditioning on ⇠1 and ⌘1, we get

E[⌘2|⇠1, ⌘1] = ↵2 + �1,2,1⇠1 + �1,2,1⌘1 + �2,2,1⌘
2

1 ,

so that H̃2(x1, y1) = ↵2 + �1,2,1x1 + �1,2,1y1 + �2,2,1y
2

1 .

Finally, for the reduced form relationship between ⇠1 and ⌘3, we have

E[⌘3|⇠1] = ↵3 + �1,3,1E[⌘1|⇠1] + �1,3,2E[⌘2|⇠1] + �2,3,1E
⇥
⌘
2

1 |⇠1

⇤
+ �3,3,1E

⇥
⌘
3

1 |⇠1

⇤
+ E[⇣3|⇠1],

for which we have already derived E[⌘1|⇠1],E[⌘21 |⇠1], E[⌘2|⇠1], and have that E[⇣3|⇠1] = E[⇣3] = 0 due to

the independence of ⇣3 to all other variables. Hence, we only have to calculate E[⌘31 |⇠1]:

E[⌘31 |⇠] = E
⇥
(↵1 + �1,1,1⇠1 + ⇣1)

3
|⇠1

⇤

= E
⇥
↵
3

1 + 3↵2

1�1,1,1⇠1 + 3↵2

1⇣1 + 3↵1(�1,1,1⇠1)
2 + 6↵1�1,1,1⇠1⇣1 + 3↵1⇣

2

1+

(�1,1,1⇠1)
3 + 3(�1,1,1⇠1)

2
⇣1 + 3�1,1,1⇠1⇣

2

1 + ⇣
3

1 |⇠1

⇤

= ↵
3

1 + 3↵2

1�1,1,1E [⇠1|⇠1] + 3↵2

1E [⇣1|⇠1] + 3↵1�
2

1,1,1E
⇥
⇠
2

1 |⇠1

⇤
+ 6↵1�1,1,1E [⇠1⇣1|⇠1] + 3↵1E

⇥
⇣
2

1 |⇠1

⇤
+

�
3

1,1,1E
⇥
⇠
3

1 |⇠1

⇤
+ 3�2

1,1,1E
⇥
⇠
2

1⇣1|⇠1

⇤
+ 3�1,1,1E

⇥
⇠1⇣

2

1 |⇠1

⇤
+ E

⇥
⇣
3

1 |⇠1

⇤

= ↵
3

1 + 3↵2

1�1,1,1⇠1 + 3↵2

1 · 0 + 3↵1�
2

1,1,1⇠
2

1 + 6↵1�1,1,1⇠1E [⇣1|⇠1] + 3↵1E
⇥
⇣
2

1

⇤
+

�
3

1,1,1⇠
3

1 + 3�2

1,1,1⇠
2

1E [⇣1|⇠1] + 3�1,1,1⇠1E
⇥
⇣
2

1 |⇠1

⇤
+ E

⇥
⇣
3

1

⇤

= ↵
3

1 + 3↵2

1�1,1,1⇠1 + 3↵1�
2

1,1,1⇠
2

1 + 6↵1�1,1,1⇠1 · 0 + 3↵1 11+

�
3

1,1,1⇠
3

1 + 3�2

1,1,1⇠
2

1 · 0 + 3�1,1,1⇠1E
⇥
⇣
2

1

⇤
+ E

⇥
⇣
3

1

⇤

= ↵
3

1 + 3↵1 11 + E
⇥
⇣
3

1

⇤
+
�
3↵2

1�1,1,1 + 3�1,1,1 11

�
⇠1 + ↵1�

2

1,1,1⇠
2

1 + �
3

1,1,1⇠
3

1 .
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⇤

Hence,

E[⌘3|⇠1] = ↵3 + �1,3,1 (↵1 + �1,1,1⇠1) + �1,3,2

�
↵
?

2 + �
?

1,2,1⇠1 + �
?

2,2,1⇠
2

1

�
+

�2,3,1

�
↵
2

1 +  11 + 2↵1�1,1,1⇠1 + �
2

1,1,1⇠
2

1

�
+

�3,3,1

�
↵
3

1 + 3↵1 11 + E
⇥
⇣
3

1

⇤
+
�
3↵2

1�1,1,1 + 3�1,1,1 11

�
⇠1 + ↵1�

2

1,1,1⇠
2

1 + �
3

1,1,1⇠
3

1

�

= ↵3 + �1,3,1↵1 + �1,3,1�1,1,1⇠1 + �1,3,2↵
?

2 + �1,3,2�
?

1,2,1⇠1 + �1,3,2�
?

2,2,1⇠
2

1+

�2,3,1↵
2

1 + �2,3,1 11 + 2�2,3,1↵1�1,1,1⇠1 + �2,3,1�
2

1,1,1⇠
2

1 + �3,3,1↵
3

1 + 3�3,3,1↵1 11+

�3,3,1E
⇥
⇣
3

1

⇤
+ �3,3,1

�
3↵2

1�1,1,1 + 3�1,1,1 11

�
⇠1 + �3,3,1↵1�

2

1,1,1⇠
2

1 + �3,3,1�
3

1,1,1⇠
3

1

= ↵3 + �1,3,1↵1 + �1,3,2↵
?

2 + �2,3,1↵
2

1 + �2,3,1 11 + �3,3,1↵
3

1 + 3�3,3,1↵1 11 + �3,3,1E
⇥
⇣
3

1

⇤
| {z }

=↵
?
3

+

�
�1,3,1�1,1,1 + �1,3,2�

?

1,2,1 + 2�2,3,1↵1�1,1,1 + �3,3,1

�
3↵2

1�1,1,1 + 3�1,1,1 11

��
| {z }

=�
?
1,3,1

⇠1+

�
�1,3,2�

?

2,2,1 + �2,3,1�
2

1,1,1 + �3,3,1↵1�
2

1,1,1

�
| {z }

=�
?
2,3,1

⇠
2

1 + �3,3,1�
3

1,1,1| {z }
=�

?
3,3,1

⇠
3

1 ,

where we get a constant that depends on the skewness of ⇣1, i.e., the third order moment of ⇣1.

Therefore, the reduced form of ⌘3 given ⇠1 is a third order polynomial in ⇠1 with the form

H3(x1) = ↵
?

3 + �
?

1,3,1x1 + �
?

2,3,1x
2

1 + �
?

3,3,1x
3

1.

This reduced form third order polynomial stands in direct conflict with the conditional expectation

given ⇠1, ⌘1, and ⌘2, for which we immediately have that

E[⌘3|⇠1, ⌘1, ⌘2] = ↵3 + �1,3,1⌘1 + �1,3,2⌘2 + �2,3,1⌘
2

1 + �3,3,1⌘
3

1 ,

which does not depend on the values of ⇠1 directly, but only indirectly through the values of ⌘1 and ⌘2.

Consequently, H̃3(x1, y1, y2) = ↵3 + �1,3,1y1 + �1,3,2y2 + �2,3,1y
2

1 + �3,3,1y
3

1 .

To summarize, we have that

H1(x1) = ↵1 + �1,1,1x1,

H2(x1) = ↵
?

2 + �
?

1,2,1x1 + �
?

2,2,1x
2

1,

H3(x1) = ↵
?

3 + �
?

1,3,1x1 + �
?

2,3,1x
2

1 + �
?

3,3,1x
3

1,

and, in contrast, for H̃j(j = 1, 2, 3) we get

H̃1(x1) = ↵1 + �1,1,1x1,

H̃2(x1, y1) = ↵2 + �1,2,1x1 + �1,2,1y1 + �2,2,1y
2

1 ,

H̃3(x1, y1, y2) = ↵3 + �1,3,1y1 + �1,3,2y2 + �2,3,1y
2

1 + �3,3,1y
3

1 .

In conclusion, we emphasize that, for instance, H3 representing the total e↵ect of ⇠1 onto ⌘3 is a

third order polynomial in ⇠1, while H̃3 does not directly depend on ⇠1. Further, the total e↵ect of ⇠1

onto ⌘2 as represented by H2 is a quadratic form in ⇠1, while the direct e↵ect of ⇠1 onto ⌘2 is linear in

the full system, denoted by the function H̃2. The reduced form representation, therefore, does not give

any insights on the directness of the e↵ects of any explanatory variables onto the endogenous variables,

further, the functional form may vary drastically. ⇤
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B.1. Considerations under Structural Misspecifications. Standard covariance based goodness

of fit tests can consistently (i.e., having power approaching one asymptotically) detect model misspecifi-

cation if the misspecification is linear and the degrees of freedom is at least one. In the case of non-linear

misspecifications, this need not be the case (Mooijaart & Satorra, 2009) when using classical goodness

of fit tests (SEM lacking quadratic and interaction terms can be detected using the methods of e.g.,

Büchner & Klein, 2020; Nestler, 2015). This was also illustrated in the simple simulation example

in Section A. An important application class for non-parametric trend estimates is therefore to detect

such non-linear structural misspecification when a linear model is considered. We here consider some

elementary illustrations of this issue.

Example 3. In Mooijaart and Satorra (2009), the three latent variables ⌘1, ⇠1, ⇠2 were considered.

The data-generating mechanism of the structural part in their notation was

⌘1 = �̄0 + �̄1⇠1 + �̄2⇠2 + �̄12⇠1⇠2 + ⇣,

where it was assumed that ⇣ was zero mean and independent to ⇠1, ⇠2, which means that E[⇣|⇠1, ⇠2] = 0.

Therefore, this is the same error term as the one generated from the conditional expectation argument,

as this is (a.s.) unique.

Since E[⌘1|⇠1, ⇠2] = �̄0 + �̄1⇠1 + �̄2⇠2 + �̄12⇠1⇠2. The non-parametric trend estimators would in this

case consistently estimate the function

H(x1, x2) = �̄0 + �̄1x1 + �̄2x2 + �̄12x1x2.

Therefore, the misspecification would be (asymptotically) detectable using the non-parametric ap-

proach. ⇤

When applying non-parametric trend estimates component-wise to a full SEM, we run the risk of

being influenced by structural misspecification. In terms of the non-parametric methods, this would

mean that we approximate the conditional expectation of an endogenous variable, but that we condition

on the right variables compared to if we had knowledge of the correct structural model. Because these

conditional expectation functions always exists, it will be as far as we know impossible with presently

available tools to separate model misspecification or functional misspecification, and we believe such

separation techniques will require further assumptions than considered in the present paper. A full

discussion of the practical implications of this is outside the scope of the present paper. We only

consider the following example of this issue.

Example 4. The data generating mechanism of the example is

⌘1 = ↵1 + �1,1,1⇠1 + ⇣1,(7)

⌘2 = ↵2 + �1,2,1⇠1 + �1,2,1⌘1 + �2,2,1⌘
2

1 + ⇣2(8)

where the error terms ⇣1, ⇣2 have zero mean, E⇣21 =  11,E⇣22 =  22, and are independent to each other

and to ⇠1.

Suppose now that we use a model that is incorrect, and omits the connection from ⌘1 to ⌘2. In the

model, we would therefore suppose

⌘1 = ↵1 + �1,1,1⇠1 + ⇣1

⌘2 = ↵̃2 + �̃1,2,1⇠1 + ⇣̃2.
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⇤

In the misspecified model, ⌘2 is linear in ⇠1, and lacks not only a linear influence from ⌘1 but also the

quadratic influence from ⌘1. The ⇠ indicates that these parameters will not, in general, be the true

parameters of the original system and ⇣̃2 is not the correct residual.

When non-parametrically estimating the structural specification of this system using the component-

wise approach, we would first study the first equation, which here is correctly specified. Then the next

step would consider E[⌘2|⇠1]. If we had knowledge of the correct structural model, we would instead

have considered E[⌘2|⇠1, ⌘1]. But because of the misspecification, we do not condition on ⌘1. We would

instead approximate E[⌘2|⇠1]. We now calculate this conditional expectation.

This calculation is identical to earlier calculations in Example 2, and we get

E[⌘2|⇠1] = ↵2 + �1,2,1↵1 + �2,2,1 11 + �2,2,1↵
2

1| {z }
=↵

?
2

+(�1,2,1 + �1,2,1�1,1,1 + 2�2,2,1↵1�1,1,1)| {z }
=�

?
1,2,1

⇠1+�2,2,1�
2

1,1,1| {z }
=�

?
2,2,1

⇠
2

1 ,

which is a quadratic in ⇠1 instead of the linear function which would be expected if the structural model

was correctly specified.

Based on non-parametric estimates of E[⌘2|⇠1 = x], the psychometrician would therefore know that

there was a model misspecification, and that this model specification induced a square term in this

conditional expectation. With substantive knowledge, this might lead the psychometrician to identify

the correct model.

Example 5. Let us continue the previous example. Suppose now that the psychometrician does update

the model, but that based on plots of approximations of E[⌘2|⇠1 = x] the update does not reach the

correct model, but instead the model

⌘1 = ↵1 + �1,1,1⇠1 + ⇣1

⌘2 = ↵
?

2 + �
?

1,2,1⇠1 + �
?

2,2,1⇠
2

1 + ⇣
?

2 .

This model is still misspecified, but the detection of this misspecification is a more subtle issue, as the

equation for ⌘2 is now compatible with the trend observed in approximations to E[⌘2|⇠1 = x]

While equations of the updated model are similar to the trend in the data generating mechanism,

they are di↵erent, as the psychometrician has not included the direct e↵ect from ⌘1 to ⌘2. Let us

consider this di↵erence a bit closer: Recall that the equation system that generates the data is given

in eq. (7) and (8). In these equations, we insert the expression from ⌘1 into ⌘2, which gives

⌘1 = ↵1 + �1,1,1⇠1 + ⇣1,

⌘2 = ↵2 + �1,2,1↵1 + �1,2,1⇠1 + �1,2,1�1,1,1⇠1 + �1,2,1⇣1+

�2,2,1(↵
2

1 + �
2

1,1,1⇠
2

1 + ⇣
2

1 + 2↵1�1,1,1⇠1 + 2↵1⇣1 + 2�1,1,1⇠1⇣1) + ⇣2

We see that the updated model is in fact the reduced form equations. From this equation we also

deduce that

↵
?

2 = ↵2 + �1,2,1↵1 + �2,2,1↵
2

1,

�
?

1,2,1 = �1,2,1 + �1,2,1�1,1,1 + �2,2,12↵1�1,1,1,

�
?

2,2,1 = �2,2,1�
2

1,1,1,

⇣
?

2 = ⌘2 � E[⌘2|⇠1] = �2,2,1(⇣
2

1 �  11) + (�1,2,1 + 2�2,2,1↵1 + 2�2,2,1�1,1,1⇠1)⇣1 + ⇣2.

We notice that ⇣?2 is not equal to ⇣2 in general, and is substantially di↵erent from ⇣2. For example,

⇣
?

2 includes the term 2�2,2,1�1,1,1⇠1⇣1 which induces a heteroskedasticity into the error, and ⇣
?

2 also

includes a linear contribution from ⇣1.
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We started out with independent error terms ⇣1, ⇣2, and in the reduced form expression we have

Cov (⇣1, ⇣
?

2 ) = E⇣1⇣?2
= E

⇥
⇣1

�
�2,2,1(⇣

2

1 �  11) + (�1,2,1 + 2�2,2,1↵1 + 2�2,2,1�1,1,1⇠1)⇣1 + ⇣2

�⇤

= E�2,2,1(⇣31 �  11⇣1) + (�1,2,1 + 2�2,2,1↵1 + 2�2,2,1�1,1,1E⇠1)E⇣21 + E⇣1⇣2

= E�2,2,1⇣31 + (�1,2,1 + 2�2,2,1↵1 + 2�2,2,1�1,1,1E⇠1) 11,

which is non-zero under most parameter configurations.

If independence between the error terms in the structural part of the model is considered part of

the model, the correlation of the error terms ⇣1, ⇣
?

2 can be seen as an identifiable indication that the

model is misspecified.

Appendix C. A Literature review of NLSEM

Early contributions to nonlinear factor analysis are Gibson (1959), R. McDonald (1967) and Etezadi-

Amoli and McDonald (1983), who focused on examining nonlinear relationships between measurements

and latent variables. This literature formed the theoretical background for NLSEM, which started

fully with Kenny and Judd (1984), who suggested a normal theory product indicator approach for

interaction models. This approach was extended and enhanced by relaxing certain constraints on the

latent structure in Kelava and Brandt (2009); Marsh et al. (2004); Wall and Amemiya (2001).

What may be termed distribution analytic approaches have been proposed, assuming multivariate

normality of both the latent exogenous variables and residuals (LMS, Klein and Moosbrugger, 2000,

QML, Klein and Muthén, 2007). To account for non-normal latent exogenous variables, the LMS

approach has been extended using latent classes (Kelava, Nagengast, & Brandt, 2014). In applied

research, simplified versions of LMS rely on a single indicator per latent variable was suggested (Cheung

& Lau, 2017).

Product indicator approaches traditionally rely on the first two moments of (mixed) polynomials of

the measurements. Mooijaart and Bentler (2010) extended this to third-order moments. Mooijaart and

Satorra (2012) further extended this approach to test the significance of certain moments in interaction

models.

Several Bayesian approaches have been proposed: Arminger and Muthén (1998), Lee et al. (2007),

and Kelava and Nagengast (2012) have all introduced Bayesian methods in this context. The approach

of Lee et al. (2007) can be viewed as a Bayesian counterpart to LMS, while the one of Kelava and

Nagengast (2012) can be seen as a Bayesian version of Kelava et al. (2014). Additionally, a Bayesian

lasso approach for NLSEM, designed to handle multicollinear latent exogenous variables, has been put

forth by Brandt et al. (2018).

Semi-parametric Bayesian models have been suggested: A semi-parametric Bayesian framework with

non-parametric estimates of measurement error distributions was suggested in Song et al. (2010). A

Bayesian lasso-type framework for basis function expansions of the influence from ⇠ to ⌘ was suggested

in Guo, Zhu, Chow, and Ibrahim (2012), which was expanded by employing a grouped lasso approach

that enables model selection (Feng, Wang, Wang, & Song, 2015). Additionally, Song, Lu, Cai, and

Ip (2013) proposed a penalized spline approach that extends a previously suggested spline method

(Song & Lu, 2010) by incorporating penalties and by modeling continuous, dichotomous, and count

data. It should be noted that these Bayesian methods, while very flexible in some parts of the model,

often impose strong distributional assumptions. In most models, the latent exogenous variables ⇠,
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latent residuals ⇣, and measurement errors " are assumed to be normal, while the residuals are further

assumed to be independent.

Moreover, further semi-parametric methods incorporate latent classes (Bauer, 2005; Kelava et al.,

2014). These semiparametric methods support non-linear e↵ects and non-normal distributional rela-

tions among the latent variables, but as far as we can tell, the space of possible non-linear trends and

distributions spanned by these techniques are unknown. For example, in Bauer (2005), there is a fixed

number of latent classes within which (⌘, ⇠) follow a standard linear and usually normal SEM. In Kelava

et al. (2014), this is extended so that within each latent class (⌘, ⇠) follow a parametric non-linear and

usually normal SEM. The space of possible models for each of these suggestions are likely quite large,

and the space spanned by Kelava et al. (2014) likely larger than that of Bauer (2005), but as far as

we know, there are no theoretical descriptions of these spaces, and they are not non-parametric in the

sense that they are able to estimate any structural relationship without distributional restrictions, at

least when using a finite number of latent classes.

Therefore, to the best of our knowledge, the approaches by Kohler et al. (2015) and Kelava et al.

(2017) are the only available non-parametric methods which do not impose parametric distributional

assumptions.

Two-stage estimation techniques constitute another category of NLSEM methods. These approaches

estimate a given functional form, and typically involve using instruments or estimates for the latent

variables in a first step, followed by estimating the structural part of the model in a second step. Bollen

(1995, Bollen & Paxton, 1998) proposed a two-step instrumental variable approach. Ng and Chan (2020)

introduced a simplified version of the (Skrondal & Laake, 2001) method by employing factor scores in

the initial step, which are subsequently analyzed using a simple regression model. This simplification is

derived from the more complex two-stage method of moments (2SMM) approach by Wall and Amemiya

(2000, 2003) where the uncertainty in factor score estimation during parameter estimation and inference

in the second step is accounted for. Holst and Budtz-Jørgensen (2020) proposed a semi-parametric

approach where H is non-parametrically estimated, but which assumes that the predictors follow a

normal distribution. This normality assumption is in contrast to the previously two-step approaches

which have minimal or no distributional assumptions.

Finally, extensions to non-continuous data have been proposed in parametric estimation of NLSEM

using maximum likelihood (Song & Lee, 2005), marginal maximum likelihood (Jin, Vegelius, & Yang-

Wallentin, 2020) or Bayesian techniques (Lee, Song, & Cai, 2010; Song et al., 2013) by the use of link

functions. We consider non-continuous data outside the scope of this article.

Appendix D. Additional Information on the Simulation

D.1. Data Generating Mechanisms. Here, we describe the data generating processes used in the

simulation study Sections 4.2, 4.3, and 4.4, in more detail. For some derivations of the population

values of the trends and model coe�cients, we used numeric integration or symbol derivations in Maple

(Maplesoft, a division of Waterloo Maple Inc.., 2019). The Maple version was 2019.2. The Matlab (The

MathWorks Inc., 2023) version was R2023a.

D.1.1. Population Models for d⇠ = 1. The model parametrization of the true trends is given in Table

2. We chose ⇠ to be either standard normally distributed (⇠ ⇠ N (0, 1)) or standardized uniform

distribution (⇠ ⇠ unif
�
�
p
3,
p
3
�
). The residual ⇣ of the structural part of the model was chosen to

have the same distribution as ⇠ with its variance being chosen in a way so that ⌘ has a variance of

1, since ⌘ = E[⌘|⇠] + ⇣. For the quadratic trend we choose the shape of E[⌘|⇠] to be identical, which
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resulted in di↵ering residual variances, while for all other trends we kept the residual variance Var [⇣] to

be (almost) identical across the di↵erent distributions of ⇠. Still, we note that the di↵erent multivariate

distributions of f = (⇠, ⌘)0 are not directly comparable across di↵erent distributions of ⇠. The trends

themselves only di↵ered by a scaling factor (see Table 2). A visualization of the trends for normal ⇠ is

also given in Figure 11 (as depicted by the dashed black line).

The measurement part of the model was chosen to represent data with rather low reliability for

the model to yield considerable residual variance. See Table 2 for scale reliabilities and variances of

r for the di↵erent simulation conditions. The item-wise reliabilities (e.g., for measurement i of ⇠ it is

computed by (⇤x)
2

i1 Var [⇠]/
⇥
(⇤x)

2

i1 Var [⇠] + ( x)ii
⇤
) were chosen to be equidistant between .64 and

.25 depending on the number of items used. The first factor loadings per latent variable were fixed to

1. Hence, the factor loadings matrix ⇤ and the residual covariance matrix  were chosen as

 =

 
 x 0dx,dy

0dy,dx  y

!
, ⇤ =

 
⇤x 0dx,d⌘

0dy,d⇠ ⇤y

!

for dx = 3, 6, 9 and dy = 3. For dx = 3, ⇤x and  x where chosen as:

⇤x = (1, .65, .5)0,  x = diag(.5625, .5775, .75).

For dx = 6, ⇤x and  x where chosen as:

⇤x = (1, .74, .68, .62, .56, .5)0,  x = diag(.5625, .4524, .5376, .6156, .6864, .75).

Table 2. Overview of the Parametrization used in the Simulation Study for d⇠ = 1

Trend ⇠ E[⌘|⇠] ⇣ Var [⇣] E[⌘] Var [⌘]

quadratic norm �.5 + .4⇠ + .5⇠2 norm .34 0 1

quadratic unif �.5 + .4⇠ + .5⇠2 unif .64 0 1

cubic norm �.128 + 3.2(.4⇠ � .4)(.2⇠ + .3)⇠ norm .427 0 1

cubic unif �.4 + 10(.4⇠ � .4)(.2⇠ + .3)⇠ unif .419 0 1

logit norm 1.776 exp(2 + 5⇠)/ [1 + exp(2 + 5⇠)]� .647 norm .5 0 1

logit unif 1.671 exp(2 + 5⇠)/ [1 + exp(2 + 5⇠)]� .615 unif .5 0 1

piecewise linear norm 2.784 [PL(⇠)� .035] norm .3 0 1

piecewise linear unif 2.745 [PL(⇠)� .026] unif .3 0 1

Note. ⇠ = distribution of ⇠, E[⌘|⇠] = parametrization of the conditional expectation of ⌘ given

⇠ for d⌘ = d⇠ = 1, ⇣ = distribution of the residual ⇣ for ⌘ = E[⌘|⇠] + ⇣, Var [⇣] = variance of ⇣

chosen so that Var [⌘] = 1, with PL(⇠) being the piecewise linear function of ⇠ given by:

PL(⇠) :=

8
>>>>><

>>>>>:

.5 + .5⇠, for � 1  ⇠ < 0,

.5� ⇠, for 0  ⇠ < 1,

�.6 + .1⇠, for 1  ⇠,

0, else.

All displayed coe�cients are rounded to three decimals if more than three decimals are needed;

all decimals are given in the code accompanying the simulation study.
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Table 3. Measurement Information for d⇠ = 1

dx Var[r⇠] Var[r⌘] R
2

⇠ R
2

⌘ !⇠ !⌘

3 0.352 0.352 0.740 0.740 0.710 0.710

6 0.190 0.352 0.840 0.740 0.823 0.710

9 0.129 0.352 0.886 0.740 0.873 0.710

Note. dx = number of measurements for ⇠, Var[r⇠]
= model implied variance of r⇠, Var[r⌘] = model

implied variance of r⌘, R2

⇠ = amount of explained

variance of ⇠̈ by ⇠, R2
⌘ = amount of explained vari-

ance of ⌘̈ by ⌘, !⇠ = McDonald’s coe�cient of relia-

bility for measuring ⇠, !⌘ = McDonald’s coe�cient

of reliability for measuring ⌘.

For dx = 9, ⇤x and  x where chosen as:

⇤x = (1, .7625, .725, .6875, .65, .6125, .575, .5375, .5)0,

 x = diag(.5625, .4185937, .474375, .5273438, .5775, .6248437, .669375, .7110938, .75).

dy was held constant, hence, ⇤y and  y where chosen as for all conditions as:

⇤y = (1, .65, .5)0,  y = diag(.5625, .5775, .75).

The measurement errors with covariance matrix  were either independently normal, uniform, or

scaled gamma distributed. We did not di↵erentiate between the exogenous and the endogenous parts

of the model.

D.1.2. Population Models for d⇠ = 2. The model parametrization of the true trends is given in Table 4.

We extended the univariate simulation conditions by a second exogenous variable so that ⇠ = (⇠1, ⇠2)
0.

We chose a normal copula with normal or uniform marginals. As the uniform marginal case with

normal copula is not a straight forward object, we used numerical approximations for the variance

estimation of ⇠. Hence, the variance of ⌘ in that condition is not exactly 1, but close to 1. The chosen

trends are rather complex compared to simple linear trends, however, much more complex trends are

possible. Hence, this simulation study is limited.

Similarly to the d⇠ = 1 case, the measurement part of the model was chosen to represent data

with rather low reliability for the model to yield considerable residual variance. See Table 5 for scale

reliabilities, McDonald’s ! (R. P. McDonald, 1999), or Bollen’s ! (Bollen, 1980), and variances of r

for the di↵erent simulation conditions. The aim was to extend the univariate case by a second latent

exogenous variable with and without cross relations among the latent exogenous variables. The factor

loadings matrix ⇤ and the residual covariance matrix  were chosen as

 =

 
 x 0dx,dy

0dy,dx  y

!
, ⇤ =

 
⇤x 0dx,d⌘

0dy,d⇠ ⇤y

!
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for dx = dx1 + dx2 with dx1 = dx2 = 3, 6, 9 and dy = 3. For models without cross loadings and without

residual covariances ⇤x simplifies to

⇤x =

 
⇤x1 0dx1 ,1

0dx2 ,1 ⇤x2

!
, . x =

 
 x1 0dx1 ,dx2

0dx2 ,dx1
 x2

!

Hence, we state ⇤x1 ,⇤x2 , x1 , and  x2 in the following. For dx1 = dx2 = 3, we have

⇤x1 = ⇤x2 = (1, .65, .5)0,  x1 =  x2 = diag(.5625, .5775, .75).

For dx1 = dx2 = 6, we have

⇤x1 = ⇤x2 = (1, .74, .68, .62, .56, .5)0,  x1 =  x2 = diag(.5625, .4524, .5376, .6156, .6864, .75).

For dx1 = dx2 = 9, we have

⇤x1 = ⇤x2 = (1, .7625, .725, .6875, .65, .6125, .575, .5375, .5)0,

 x1 =  x2 = diag(.5625, .4185937, .474375, .5273438, .5775, .6248437, .669375, .7110938, .75).

dy, again, was held constant, hence, ⇤y and  y where chosen as for all conditions as:

⇤y = (1, .65, .5)0,  y = diag(.5625, .5775, .75).

For models with cross loadings and cross correlations, we need to adapt the given matrices. Hence,

we state the elements of ⇤ and  that needed to change for the corresponding dxj , j = 1, 2.

For dx1 = dx2 = 3, we changed the following elements in ⇤ to

⇤5,1 = .195,

and in  x to

( x)6,3 = ( x)3,6 = .3.

For dx1 = dx2 = 6, we changed the following elements in ⇤ to

⇤8,1 = .222, ⇤11,1 = .168,

Table 4. Overview of the Parametrization used in the Simulation Study for d⇠ = 2

Trend ⇠ E[⌘|⇠1, ⇠2] ⇣ Var [⇣] E[⌘] Var [⌘]

quadratic norm .15 + .45⇠1 + .32⇠2 + .3⇠1⇠2 � .2⇠21 � .1⇠22 norm .499 0 1

quadratic unif .15 + .45⇠1 + .32⇠2 + .3⇠1⇠2 � .2⇠21 � .1⇠22 unif .499 0 1

cubic norm c(⇠1, ⇠2) norm .507 0 1

cubic unif c(⇠1, ⇠2) unif .605 0 .987

Note. ⇠ = standardized marginal distributions of ⇠1 and ⇠2 with normal copula with

covariance Cov [⇠1, ⇠2] = .5, E[⌘|⇠1, ⇠2] = parametrization of the conditional expecta-

tion of ⌘ given ⇠ = (⇠1, ⇠2)0 for d⌘ = 1, d⇠ = 2, ⇣ = distribution of the residual ⇣

for ⌘ = E[⌘|⇠] + ⇣, Var [⇣] = variance of ⇣ chosen so that Var [⌘] = 1. c(⇠1, ⇠2) =

.15+ .3⇠1+ .2⇠2+ .3⇠1⇠2� .2⇠2
1
� .1⇠2

2
+ .02⇠3

1
+ .02⇠3

2
+ .06⇠1⇠22 . The variance of ⌘ is only

an approximation for the uniform marginal ⇠ case. All displayed coe�cients are rounded

to three decimals if more than three decimals are needed; all decimals are given in the

code accompanying the simulation study.
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Table 5. Measurement Information for d⇠ = 2

dxj cross Var[r⇠1 ] Var[r⇠2 ] Cov12 Cor12 Var[r⌘] R
2

⇠1
R

2

⇠2
R

2

⌘ !⇠1 !⇠2 !⌘

3 no 0.352 0.352 0.000 0.000 0.352 0.740 0.740 0.740 0.710 0.710 0.710

6 no 0.190 0.190 0.000 0.000 0.352 0.840 0.840 0.740 0.823 0.823 0.710

9 no 0.129 0.129 0.000 0.000 0.352 0.886 0.886 0.740 0.873 0.873 0.710

3 yes 0.334 0.313 -0.016 -0.048 0.388 0.749 0.761 0.720 0.710 0.728 0.657

6 yes 0.174 0.150 -0.007 -0.046 0.388 0.852 0.869 0.720 0.823 0.837 0.657

9 yes 0.117 0.099 -0.005 -0.042 0.388 0.895 0.910 0.720 0.873 0.884 0.657

Note. dxj = number of measurements for ⇠j , cross = indicator whether cross-loadings or cross-

correlations are present, Var[r⇠j ] = model implied variance of r⇠j , Cov12 = model implied covari-

ance of r⇠, Cor12 = model implied correlation of r⇠, Var[r⌘] = model implied variance of r⌘, R2

⇠j

= amount of explained variance of ⇠̈j by ⇠j , R2
⌘ = amount of explained variance of ⌘̈ by ⌘, !⇠j =

McDonald’s coe�cient or Bollen’s coe�cient of reliability for measuring ⇠j , !⌘ = McDonald’s coef-

ficient or Bollen’s coe�cient of reliability for measuring ⌘; for j = 1, 2.

and in  x to

( x)9,3 = ( x)3,9 = .21504, ( x)12,6 = ( x)6,12 = .3.

For dx1 = dx2 = 9, we changed the following elements in ⇤ to

⇤11,1 = .22875, ⇤14,1 = .195, ⇤17,1 = .16125,

and in  x to

( x)11,11 = .3662672, ( x)14,14 = .539475, ( x)17,17 = .3662672,

( x)12,3 = ( x)3,12 = .18975, ( x)15,6 = ( x)6,15 = .2499375, ( x)18,9 = ( x)9,18 = .3.

We further introduced a cross correlation in  y so that the we changed

( y)2,3 = ( y)3,2 = .2632489.

The given cross-loadings in ⇤x equal the standardized cross-loadings in value, hence, standardized

cross-loadings vary between .229 and .161. The residual covariances in  are chosen in a way so that

they result in residual correlations of .4. These are significant but not substantial.

From Table 4 it is evident that by introducing cross relations (i.e., cross-loadings and cross-correlations)

the resulting correlation among r⇠ is not large, although the cross relations are not negligible. Further,

for increasing dxj the correlation in r⇠ decreases slightly. It is evident that including cross relation does

have an influence on the scale reliability, computed via the extension of McDonald’s ! (R. P. McDonald,

1999) that includes cross-correlations, also called Bollen’s ! (see Bollen, 1980).

The measurement errors with covariance matrix  were either multivariate normal, or they were

a�ne linear transformations of independent uniform or independent scaled gamma variables. We

used the singular value decomposition of  in order to correlate the measurement errors with cross-

correlations: For dz i.i.d. standardized measurement errors "̃ (e.g., standardized uniform or standard-

ized gamma(1,1)), we computed  
1
2 via the singular value decomposition  

1
2 = V D

1
2
 
U

�1, where

 = V D U
�1 is the singular value decomposition of  , D is the diagonal matrix containing the

singular values (eigenvalues) of  and V is the orthonormal eigenvector matrix that corresponds to the
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eigenvalues. Further U
�1 = V

0 for positive definite matrices and D

1
2
 

is the matrix that contains the

element wise square roots of the eigenvalues in D . Then for

" :=  
1
2 "̃

we have

Cov ["] =  .

The marginal distributions may di↵er between " and "̃ apart from scaling. For instance, for standard-

ized uniform "̃, " is no longer marginally uniformly distributed, but for correlated components shows

distributions that tends towards the normal due to central limit theorem e↵ects. The same holds true

for gamma marginals in " compared to "̃.

D.2. Information on R-packages used in the simulation. All empirical analyses were done in R

(R Core Team, 2023). Data were generated using R-base and stats functions for univariate distribu-

tions and mvtnorm (Genz & Bretz, 2009) and covsim (Grønneberg, Foldnes, & Marcoulides, 2022) for

specific multivariate distributions for which we wanted to control the marginal distributions and the

copula (Nelsen, 2007). The Bartlett factor score and the corresponding CFAs were estimated using

lavaan (Rosseel, 2012). The nonlinear factor scores proposed by Kelava et al. (2017) were estimated

with a modified version of their MATLAB (The MathWorks Inc., 2023) scripts called from R including their

used BSpline method. The HZ-method for local linear estimators for solving errors-in-variables prob-

lems including its simulation based cross-validation techniques for bandwidth selection is implemented

in the lpme package (Huang & Zhou, 2017). We used a slightly modified version of the cross-validation

technique by comparing its performance to a rule-of-thumb estimate for the bandwidth that was sug-

gested by Wang and Wang (2011); for further descriptions see Appendix D.3. For the LOESS and the

smoothed cubic spline function we used their widely used implementations loess and smooth.spline

within the stats package (R Core Team, 2023).

For the examination of performance, we used integration techniques to compute mean integrated

squared errors for the nonparametric trends which are further described in Section 4.3. For univariate

integrals we used the integrate function of the stats package (R Core Team, 2023) and for multi-

variate integrals we used the cubature package (Narasimhan, Johnson, Hahn, Bouvier, & Kiêu, 2023).

Additional packages for visualization and data handling are described in Appendix D.4. An overview

of all package versions is given in Table 6 in the Appendix D.4. All code can be found the online

supplementary material.

D.3. Additional Information on the Estimation of Non-Parametric Trends Used in the

Simulation Study. We here briefly describe the HZ-method of Huang and Zhou (2017) in more detail.

Translating their notation to ours, the proposed estimator is defined for the conditional expectation

E[⌘̈|⇠ = x] = H(x), where ⇠ is measured with error ⇠̈ = ⇠ + r⇠, where ⇠ has density f⇠(x) and r⇠ is

independent to (⇠, ⌘̈)0 with known density fr⇠ (x). ⇠, r⇠, and ⌘̈ are assumed to be continuous. Then

H
⇤(w)f

⇠̈
(w) = (Hf⇠) ⇤ fr⇠ (w), where (Hf⇠) ⇤ fr⇠ (w) =

R
H(x)f⇠(x)fr⇠ (w � x)dx is the convolution

(see Delaigle, 2014). Huang and Zhou (2017) then proposed to use the Fourier inverses on both sides,

which results in �H⇤f⇠̈
(t) = �Hf⇠ (t)�r⇠ (t), where �H⇤f⇠̈

(t) is the Fourier transform of H⇤(w)f
⇠̈
(w),

�Hf⇠ is the Fourier transform of Hf⇠ = H(x)f⇠(x). Their local polynomial estimator of order p for

H(x) is then given by
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ĤHZ(x) =
1

2⇡f̂⇠(x)

Z
e
�itx

�
Ĥ⇤f̂⇠̈

(t)

�r⇠ (t)
dt,(9)

where f̂⇠(x) is the deconvolution kernel density estimator of f⇠(x) in Stefanski and Carroll (1990),

�
Ĥ⇤f̂⇠̈

(t) is the Fourier transform of Ĥ⇤(w)f̂
⇠̈
(w) in which Ĥ

⇤(w) is the pth order local polynomial

estimator of H⇤(w), and f̂
⇠̈
(w) is the regular kernel density estimator of f

⇠̈
(w) (see, e.g., Fan & Gijbels,

1996, Section 2.7.1). In order to estimate kernel densities a selection of a bandwidth is needed, which

can be done using simulation based cross validation techniques for bandwidth selection as proposed

by Delaigle and Hall (2008). Although the rationale of Huang and Zhou (2017) can be generalized to

multivariate ⇠, an implementation for the multivariate predictor case with measurement error is still

lacking.

During preliminary analyses we noticed that the LOESS and the smoothed spline method pro-

duce numerically stable results, while the simulation based cross-validation technique necessary for

bandwidth-selection of the HZ-estimator as described in Delaigle and Hall (2008) was rather unstable:

here a k-fold cross validation sample is drawn, while the sample is refilled in each step to have a total

sample size of n (the original sample size) via simulation assuming the distribution of the residual to

be valid, as n interacts with the performance of a bandwidth. This process is done several times per

cross-validation sample, over which it is then averaged. We choose a 5-fold cross-validation approach

with 10 simulations, each. For more detail see the package documentation of the lpme package and

Delaigle and Hall (2008). The cross-validation technique in the lpme package implemented approach

(Huang & Zhou, 2017) sometimes produced bandwidth that were too small, which then resulted in

strongly oscillating estimated trends. In applied research such a scenario would be noticed by the

researchers simply by comparing the trend and the data. However, in a simulation study we needed

data driven tools that examine whether a suggested bandwidth is useful without jeopardizing the in-

terpretability of the simulation results. This is why we did not use the MISE as described in Section

4.3 to select a useful bandwidth as it cannot be computed in applied research due to the true trend

being unknown. We, therefore, used an estimate for the residual variance in the prediction of the BFS

for ⌘ (namely ⌘̈) using the HZ-estimator. As a comparison we used the rule-of-thumb bandwidth for

nonparametric regression with measurement error as suggested in Wang and Wang (2011, see eq. (13)),

that, translated to our notation and assuming normality for r⇠ for d⇠ = 1, is given by

bwthumb :=

s
2Var [r⇠]
log(n)

.

Although the HZ-estimator using the rule-of-thumb bandwidth is very quick compared to the cross-

validation technique (see Table 7), we did not include a rule-of-thumb estimate of the HZ-estimator into

our main simulation study as the estimate for bwthumb has been criticized to not include the variance

of the latent variable (the variance of ⇠̈ in our notation, the true variance of the BFS) and, therefore,

would give a biased estimate for the bandwidth (see for the Laplace case Delaigle, 2014). Probably

due to the fact that we chose all latent variables to be standardized, this rule-of-thumb estimate for

the bandwidth worked rather well. This is why we used the residual variance in prediction using

the rule-of-thumb bandwidth as a comparison for the bandwidth suggested by the cross-validation. If

the residual variance in prediction was more than 1.5 times higher for the cross-validation bandwidth

compared to the rule-of-thumb bandwidth, we redid the cross-validation step. Hence, we only used the
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cross-validation bandwidth bwcv if

Var
h
ˆ̈⌘ � �bwcv(

ˆ̈
⇠)
i


3
2
Var

h
ˆ̈⌘ � �bwthumb(

ˆ̈
⇠)
i
,

where ˆ̈⌘ and ˆ̈
⇠ are the empirically estimated BFS for ⌘ and ⇠, respectively, and where �bwcv(

ˆ̈
⇠) and

�bwthumb(
ˆ̈
⇠) are the nonparametric estimates for the conditional expectation based on bwcv and bwthumb,

respectively. The di↵erence to the MISE used in simulation studies is that the di↵erence is taken

towards an empirical estimate of ⌘̈ and not the true conditional expectation H(x) = E[⌘|⇠ = x]. The

re-initialization of the cross-validation step significantly increases the runtime for some replications

within our simulation study, which further explains the large variation of runtimes in Table 7 for the

HZCV method.

D.4. Additional Graphics and Tables with Additional Comments on Simulation Results.

Here we display and comment additional plots and tables. Graphs were done using either ggplot2

(Wickham, 2016) in combination with scales (Wickham & Seidel, 2022), or rgl (Murdoch & Adler,

2023) for 3D plots. We further utilized the packages forcats (Wickham, 2023) and papaja (Aust &

Barth, 2022) for data handling and table generation and the parallel package (R Core Team, 2023)

and the the pbapply package (Solymos & Zawadzki, 2023) for parallel computing. Table 6 lists all

packages used (also implicitly loaded packages) and their version number. The R version was 4.2.2.

Table 6. R package

versions used

Package Version

base 4.2.2

covsim 1.0.0

cubature 2.0.4.6

datasets 4.2.2

forcats 0.5.2

ggplot2 3.4.1

graphics 4.2.2

grDevices 4.2.2

lavaan 0.6.15

lpme 1.1.3

methods 4.2.2

mvtnorm 1.1.3

parallel 4.2.2

pbapply 1.7.0

scales 1.2.1

stats 4.2.2

utils 4.2.2

Note. Implicitly

loaded packages are

also displayed.
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D.4.1. Additionals for d⇠ = 1. Figure 11 extends Figure 2 with point-wise 95% coverage intervals

displaying the uncertainty of the average trends for the distributional condition with normal ⇠ and

gamma ". It is evident that the linear SEM has the lowest uncertainty, but also approximates the true

trend the worst as the true trend is nonlinear. The other methods show similar uncertainty, however,

at the edges of the support the HZ methods using cross validation appears to have larger uncertainty

compared to the other methods. Still, this di↵erence is not large.

Table 7 shows the average runtime of each factor score based methods used within Figure 2 for a

cubic trend. This bench marking was done on a 2019 16-inch MacBook Pro with an 2.6 GHz 6-Core

Table 7. Runtime for normal ⇠ and gamma " with a cubic true trend for

d⇠ = 1

BFS HZ-estimator NLFS

dx LOESS Spline HZTH HZCV BSpline LOESS Spline

mean 3 0.12 0.10 1.90 1,754.43 2,115.55 2,115.57 2,115.56

mean 9 0.11 0.08 1.73 1,493.18 2,826.04 2,826.06 2,826.04

sd 3 0.04 0.02 0.19 732.04 259.04 259.05 259.04

sd 9 0.01 0.01 0.15 623.55 210.07 210.08 210.08

median 3 0.11 0.10 1.82 1,444.00 2,192.29 2,192.30 2,192.29

median 9 0.11 0.08 1.75 1,379.59 2,868.18 2,868.19 2,868.19

LB 3 0.09 0.07 1.61 1,148.59 1,324.85 1,324.86 1,324.85

LB 9 0.09 0.07 1.42 1,121.86 2,521.00 2,521.01 2,521.00

UB 3 0.19 0.13 2.21 3,772.66 2,308.38 2,308.40 2,308.39

UB 9 0.12 0.10 1.96 2,976.04 2,972.71 2,972.73 2,972.71

Note. Time in seconds aggregated across 32 replications, BFS = Bartlett factor

scores, NLFS = nonlinear factor scores, HZTH = HZ-estimator using rule-of-

thumb band-width bwthumb, HZCV = HZ-estimator using cross-validation for

bandwidth selection bwcv, BSpline = BSpline method for NLFS, LB = lower

bound of 95% coverage interval, UB = upper bound of 95% coverage interval.

Intel Core i7 processor and 16 GB RAM. From Table 7 it is evident that the LOESS and spline method

based on BFS are extremely quick compared to all other methods. Only the HZ-estimator using the

rule-of-thumb bandwidth on average ran for less than 2 seconds. The HZ-estimator using simulation

based cross-validated bandwidth took more than 24 minutes and the methods based on NLFS took

more than 35 minutes on average. The runtime did not increase but rather decreased with increasing

dx for methods based on BFS or the HZ-estimator but runtime did increase with dx for methods based

on NLFS. Here, runtime was more than 33% longer for dx = 9 compared to dx = 3, on average. Due

to the reinitialization of the adapted version of the cross-validation technique for the HZ-estimator as

described in Appendix D.3, the HZCV showed the largest variation in runtime with a rather skewed

distribution of runtime as suggested by the coverage intervals in Table 7.

Figure 12 emphasizes the relative improvement of MISE in comparison to the linear SEM approx-

imation given that the true trend is nonlinear (see also Table 10 and 11). It is evident that methods

based on NLFS showed an increase in MISE compared to the linear SEM in some conditions with only
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Figure 11. A comparison of nonparametric estimation for E[⌘|⇠] averaged

across 200 replications with n = 1000 for LOESS and smoothed spline based on

BFS and the NLFS, the HZ-estimator, the BSpline estimator based on NLFS

compared to the true trend and a linear SEM estimation with di↵erent true

trends (quadratic, cubic, logit and piecewise linear) and dimensions dx with

normal ⇠ and gamma distributed errors ". Shaded areas correspond to the 95%

coverage interval computed point-wise across the 200 replications.
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Table 8. Average MISE

Population LOESS Spline Other

Trend dx ⇠ " f BFS NLFS f BFS NLFS HZCV BSNLFS SEM

quadratic 3 unif gamma 0.007 0.127 0.193 0.010 0.125 0.203 0.195 0.208 0.449

quadratic 3 unif unif 0.007 0.154 0.239 0.010 0.165 0.257 0.193 0.245 0.446

quadratic 3 unif norm 0.007 0.140 0.215 0.010 0.145 0.230 0.170 0.222 0.446

quadratic 3 norm gamma 0.004 0.139 0.225 0.006 0.139 0.228 0.113 0.234 0.558

quadratic 3 norm unif 0.004 0.190 0.308 0.006 0.195 0.312 0.119 0.330 0.560

quadratic 3 norm norm 0.004 0.168 0.275 0.006 0.170 0.275 0.118 0.288 0.560

quadratic 6 unif gamma 0.008 0.073 0.099 0.010 0.067 0.097 0.118 0.101 0.447

quadratic 6 unif unif 0.007 0.077 0.107 0.009 0.078 0.111 0.117 0.115 0.448

quadratic 6 unif norm 0.007 0.076 0.105 0.009 0.076 0.108 0.110 0.113 0.444

quadratic 6 norm gamma 0.004 0.076 0.115 0.006 0.080 0.118 0.066 0.127 0.560

quadratic 6 norm unif 0.004 0.081 0.125 0.005 0.086 0.127 0.059 0.137 0.556

quadratic 6 norm norm 0.004 0.081 0.123 0.006 0.084 0.130 0.064 0.149 0.559

quadratic 9 unif gamma 0.008 0.054 0.070 0.011 0.050 0.068 0.083 0.075 0.446

quadratic 9 unif unif 0.008 0.054 0.072 0.010 0.052 0.073 0.082 0.071 0.449

quadratic 9 unif norm 0.007 0.052 0.069 0.009 0.050 0.070 0.084 0.076 0.448

quadratic 9 norm gamma 0.004 0.054 0.079 0.006 0.057 0.083 0.053 0.096 0.557

quadratic 9 norm unif 0.004 0.051 0.071 0.006 0.054 0.074 0.045 0.083 0.556

quadratic 9 norm norm 0.004 0.050 0.074 0.006 0.053 0.075 0.047 0.089 0.557

cubic 3 unif gamma 0.032 0.480 0.638 0.011 0.455 0.642 0.681 0.667 1.130

cubic 3 unif unif 0.031 0.548 0.703 0.011 0.550 0.719 0.688 0.707 1.133

cubic 3 unif norm 0.032 0.510 0.651 0.011 0.504 0.674 0.656 0.649 1.137

cubic 3 norm gamma 0.022 0.046 0.068 0.011 0.066 0.087 0.123 0.090 0.541

cubic 3 norm unif 0.019 0.056 0.085 0.011 0.083 0.109 0.097 0.110 0.522

cubic 3 norm norm 0.019 0.051 0.077 0.011 0.078 0.101 0.100 0.095 0.515

cubic 6 unif gamma 0.031 0.311 0.394 0.011 0.256 0.356 0.438 0.366 1.131

cubic 6 unif unif 0.032 0.327 0.417 0.011 0.293 0.398 0.457 0.385 1.138

cubic 6 unif norm 0.031 0.320 0.408 0.010 0.278 0.384 0.446 0.372 1.124

cubic 6 norm gamma 0.020 0.029 0.040 0.011 0.050 0.060 0.078 0.058 0.509

cubic 6 norm unif 0.021 0.032 0.042 0.011 0.053 0.068 0.083 0.065 0.531

cubic 6 norm norm 0.020 0.030 0.042 0.011 0.050 0.069 0.076 0.065 0.508

cubic 9 unif gamma 0.031 0.234 0.296 0.010 0.173 0.242 0.362 0.255 1.125

cubic 9 unif unif 0.032 0.229 0.289 0.010 0.185 0.252 0.362 0.241 1.134

cubic 9 unif norm 0.030 0.225 0.286 0.011 0.178 0.243 0.347 0.232 1.127

cubic 9 norm gamma 0.021 0.026 0.031 0.011 0.042 0.050 0.072 0.051 0.542

cubic 9 norm unif 0.020 0.025 0.032 0.011 0.039 0.052 0.069 0.053 0.511

cubic 9 norm norm 0.019 0.025 0.028 0.010 0.040 0.047 0.066 0.052 0.513

Note. MISE to true trend averaged across 200 replications for n = 1000. ⇠ = distribution of ⇠, " =

distribution of ", f = true latent variables, BFS = Bartlett factor scores, NLFS = nonlinear factor

scores, HZCV = HZ-estimator, BSNLFS = BSpline method for NLFS, SEM = linear SEM.
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Table 9. Average MISE

Population LOESS Spline Other

Trend dx ⇠ " f BFS NLFS f BFS NLFS HZCV BSNLFS SEM

logit 3 unif gamma 0.022 0.126 0.194 0.012 0.127 0.204 0.154 0.192 0.227

logit 3 unif unif 0.022 0.149 0.249 0.011 0.160 0.270 0.181 0.261 0.231

logit 3 unif norm 0.022 0.137 0.215 0.013 0.146 0.233 0.161 0.227 0.230

logit 3 norm gamma 0.023 0.201 0.337 0.012 0.192 0.326 0.151 0.331 0.307

logit 3 norm unif 0.024 0.244 0.402 0.013 0.253 0.422 0.177 0.402 0.306

logit 3 norm norm 0.022 0.239 0.373 0.013 0.250 0.398 0.174 0.388 0.309

logit 6 unif gamma 0.022 0.075 0.101 0.011 0.073 0.104 0.115 0.109 0.227

logit 6 unif unif 0.021 0.079 0.107 0.012 0.081 0.114 0.119 0.118 0.227

logit 6 unif norm 0.022 0.074 0.100 0.012 0.074 0.107 0.110 0.116 0.229

logit 6 norm gamma 0.024 0.119 0.171 0.014 0.112 0.167 0.100 0.177 0.308

logit 6 norm unif 0.024 0.124 0.177 0.013 0.124 0.186 0.105 0.188 0.305

logit 6 norm norm 0.023 0.120 0.168 0.014 0.123 0.178 0.107 0.187 0.308

logit 9 unif gamma 0.022 0.056 0.070 0.012 0.052 0.070 0.089 0.082 0.225

logit 9 unif unif 0.021 0.057 0.074 0.011 0.055 0.076 0.095 0.087 0.226

logit 9 unif norm 0.023 0.057 0.072 0.012 0.054 0.074 0.093 0.088 0.225

logit 9 norm gamma 0.024 0.086 0.112 0.013 0.078 0.110 0.081 0.121 0.308

logit 9 norm unif 0.023 0.088 0.113 0.013 0.086 0.116 0.087 0.125 0.308

logit 9 norm norm 0.023 0.080 0.106 0.014 0.080 0.111 0.081 0.126 0.304

piecewise linear 3 unif gamma 0.125 0.581 0.829 0.012 0.510 0.797 0.748 0.807 1.467

piecewise linear 3 unif unif 0.125 0.706 0.986 0.012 0.670 1.005 0.816 0.988 1.467

piecewise linear 3 unif norm 0.126 0.663 0.912 0.013 0.616 0.918 0.797 0.904 1.469

piecewise linear 3 norm gamma 0.123 0.659 0.925 0.134 0.633 0.915 0.740 0.893 1.599

piecewise linear 3 norm unif 0.125 0.812 1.119 0.138 0.783 1.109 0.787 1.103 1.603

piecewise linear 3 norm norm 0.125 0.734 1.014 0.138 0.706 1.019 0.720 1.002 1.599

piecewise linear 6 unif gamma 0.125 0.377 0.479 0.013 0.281 0.400 0.520 0.402 1.465

piecewise linear 6 unif unif 0.126 0.426 0.552 0.012 0.336 0.489 0.566 0.483 1.466

piecewise linear 6 unif norm 0.123 0.406 0.524 0.012 0.310 0.455 0.541 0.462 1.465

piecewise linear 6 norm gamma 0.124 0.418 0.548 0.139 0.386 0.523 0.550 0.526 1.597

piecewise linear 6 norm unif 0.127 0.446 0.580 0.142 0.408 0.551 0.558 0.555 1.600

piecewise linear 6 norm norm 0.126 0.440 0.569 0.142 0.399 0.536 0.537 0.543 1.602

piecewise linear 9 unif gamma 0.127 0.301 0.360 0.012 0.189 0.262 0.458 0.266 1.466

piecewise linear 9 unif unif 0.125 0.316 0.385 0.012 0.210 0.294 0.486 0.294 1.467

piecewise linear 9 unif norm 0.122 0.300 0.365 0.012 0.193 0.274 0.431 0.277 1.466

piecewise linear 9 norm gamma 0.125 0.316 0.390 0.138 0.283 0.357 0.470 0.358 1.599

piecewise linear 9 norm unif 0.126 0.327 0.398 0.141 0.291 0.366 0.499 0.381 1.598

piecewise linear 9 norm norm 0.123 0.320 0.395 0.136 0.279 0.357 0.474 0.376 1.597

Note. MISE to true trend averaged across 200 replications for n = 1000. ⇠ = distribution of ⇠, " = distribu-

tion of ", f = true latent variables, BFS = Bartlett factor scores, NLFS = nonlinear factor scores, HZCV

= HZ-estimator, BSNLFS = BSpline method for NLFS, SEM = linear SEM.
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3 measurements. Further, the largest improvement in MISE occurred for a cubic trend with normal ⇠,

however, when ⇠ was uniform the improvement in MISE for conditions with cubic trends was compara-

ble to the quadratic trend or the piecewise linear trend. This indicates that the cubic trend is not the

furthest from linearity in all conditions. The logit trend is evident to be closest to linearity in terms of

showing the smallest improvement compared to the linear SEM approximation.

The boxplots in Figure 13 emphasizes the average MISE per trend and dx for each method aggregated

across all distributional conditions. It, therefore, supplements Figure 3, by including information on

the di↵erences across distributional conditions and distinguishes the MISE across di↵erent trends.

From Figure 13 it is evident that the methods show comparable variation in MISE, hence, comparable

heterogeneity across di↵erent distributional conditions. This variation decreases with increasing dx

and is comparable among the methods based on factor scores (i.e., LOESS or smoothed splines using

BFS or NLFS, as well as the BSpline method using NLFS and the HZ-estimator based on BFS). The

methods based on the true latent variables f on average show the smallest variation, i.e., have the

highest precision with regard to MISE. In almost all conditions either the spline or LOESS using BFS

as inputs performed best aggregated across all distributional conditions. This di↵erence is strongest

for the logit or the piecewise linear trend. For the cubic trend di↵erences were not as large. For the

quadratic trend the HZCV method showed good performance, also. With regard to variation: the

cubic trend showed the largest variation among the MISE across the distributional conditions, but the

piecewise linear trend resulted in the largest average MISE.

D.4.2. Additionals for d⇠ = 2. Figure 14 aggregates Figure 5 of the main text for the cross-relations.

Hence, the di↵erence between performance of the LOESS based on BFS and methods based on NLFS

are averaged across the two cross-relation conditions. This averaged result shows the benefit of the

LOESS based on BFS, as within the computation of the BFS the specific structure of the model may

be tested and the BFS may be computed to include all cross-relations among the measurements.

Figure 15 shows all relative average MISE across the 200 replications for all used conditions (see

also Table 14 and 15 for numerical values) in comparison to the linear SEM. Hence this figure and

these tables show the relative improvement compared to a linear trend given that the actual trend

is nonlinear. It is evident that the trends based on NLFS result in larger MISE compared to the

linear SEM for many conditions which included cross-relations. Although being slightly less a↵ected,

the BFSuc also showed similar problems. This emphasizes the importance of a correctly specified

measurement model.

Figure 16 emphasizes that the LOESS based on BFS is much more homogeneous in the MISE

and, hence, in the performance in approximating the true trend. Further, homogeneity increases with

increasing numbers of measurements (dxj ). The LOESS based on BFSuc was less heterogeneous across

all conditions compared to the methods based on NLFS as highlighted by the whiskers of the Box-

Whisker plots.

Figures 17 and 18 depict the three-dimensional true trend. It is evident that the third order e↵ects

are not large as the two trends do not di↵er strongly. However, especially at the borders of the

support the third degree e↵ects are visible. The blue and black lines highlight the marginal relation

between either ⇠1 for given values of ⇠2 or vice versa. These marginal relationships are depicted in the

following Figures to make a comparison between the non-parametric methods based on BFS or NLFS

more evident.

Figures 19, 20, 21, and 22 show the marginal relation between either ⇠1 and H for ⇠2 = 0,�1.6 or

for ⇠2 and H for ⇠1 = 0,�1.6. For the border condition, i.e., ⇠1 or ⇠2 being -1.6, all methods show
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Figure 12. A comparison of the relative averaged MISE in comparison to the

linear SEM approximation across 200 replications with n = 1000 for di↵erent

procedures [(B)Splines vs. LOESS vs. HZ/others] based on di↵erent inputs

(BFS, NLFS, linear SEM, and true latent variables f for comparison) for four

models with di↵erent true trends (quadratic, cubic, logit and piecewise linear)

and dimensions dx. See Table 10 and 11 for numerical values.
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Table 10. Relative average MISE in comparison to linear SEM

Population LOESS Spline Other

Trend dx ⇠ " f BFS NLFS f BFS NLFS HZCV BSNLFS SEM

quadratic 3 unif gamma 0.016 0.282 0.430 0.023 0.279 0.452 0.435 0.464 1.000

quadratic 3 unif unif 0.016 0.345 0.535 0.022 0.370 0.575 0.433 0.550 1.000

quadratic 3 unif norm 0.015 0.314 0.483 0.023 0.325 0.515 0.381 0.498 1.000

quadratic 3 norm gamma 0.007 0.250 0.404 0.010 0.250 0.409 0.202 0.419 1.000

quadratic 3 norm unif 0.008 0.338 0.549 0.011 0.349 0.557 0.213 0.588 1.000

quadratic 3 norm norm 0.008 0.301 0.491 0.012 0.304 0.491 0.211 0.515 1.000

quadratic 6 unif gamma 0.017 0.163 0.221 0.023 0.150 0.217 0.263 0.226 1.000

quadratic 6 unif unif 0.016 0.172 0.238 0.020 0.175 0.248 0.261 0.256 1.000

quadratic 6 unif norm 0.016 0.172 0.236 0.021 0.171 0.243 0.248 0.255 1.000

quadratic 6 norm gamma 0.007 0.136 0.206 0.011 0.143 0.211 0.118 0.227 1.000

quadratic 6 norm unif 0.006 0.146 0.224 0.009 0.154 0.229 0.106 0.246 1.000

quadratic 6 norm norm 0.007 0.145 0.219 0.010 0.151 0.232 0.114 0.266 1.000

quadratic 9 unif gamma 0.017 0.120 0.157 0.024 0.112 0.152 0.185 0.169 1.000

quadratic 9 unif unif 0.017 0.121 0.161 0.022 0.116 0.162 0.183 0.159 1.000

quadratic 9 unif norm 0.016 0.115 0.155 0.021 0.112 0.156 0.188 0.169 1.000

quadratic 9 norm gamma 0.007 0.096 0.141 0.010 0.102 0.149 0.095 0.172 1.000

quadratic 9 norm unif 0.007 0.091 0.127 0.010 0.098 0.133 0.080 0.149 1.000

quadratic 9 norm norm 0.007 0.090 0.133 0.010 0.095 0.134 0.085 0.160 1.000

cubic 3 unif gamma 0.028 0.425 0.564 0.010 0.402 0.568 0.602 0.590 1.000

cubic 3 unif unif 0.027 0.483 0.621 0.009 0.485 0.635 0.607 0.624 1.000

cubic 3 unif norm 0.028 0.448 0.573 0.010 0.443 0.593 0.577 0.571 1.000

cubic 3 norm gamma 0.040 0.085 0.125 0.020 0.122 0.161 0.227 0.166 1.000

cubic 3 norm unif 0.036 0.108 0.162 0.020 0.160 0.210 0.186 0.210 1.000

cubic 3 norm norm 0.038 0.099 0.150 0.021 0.152 0.196 0.194 0.185 1.000

cubic 6 unif gamma 0.027 0.275 0.348 0.009 0.226 0.315 0.388 0.324 1.000

cubic 6 unif unif 0.028 0.287 0.367 0.010 0.258 0.350 0.402 0.338 1.000

cubic 6 unif norm 0.027 0.285 0.363 0.009 0.247 0.342 0.396 0.331 1.000

cubic 6 norm gamma 0.039 0.057 0.078 0.021 0.098 0.117 0.153 0.115 1.000

cubic 6 norm unif 0.039 0.060 0.080 0.021 0.100 0.129 0.156 0.123 1.000

cubic 6 norm norm 0.040 0.060 0.082 0.022 0.099 0.136 0.151 0.127 1.000

cubic 9 unif gamma 0.028 0.208 0.263 0.009 0.154 0.215 0.322 0.227 1.000

cubic 9 unif unif 0.028 0.202 0.255 0.009 0.163 0.223 0.319 0.212 1.000

cubic 9 unif norm 0.027 0.200 0.253 0.009 0.158 0.215 0.308 0.206 1.000

cubic 9 norm gamma 0.039 0.048 0.057 0.020 0.077 0.092 0.133 0.093 1.000

cubic 9 norm unif 0.040 0.049 0.062 0.021 0.076 0.102 0.134 0.103 1.000

cubic 9 norm norm 0.037 0.049 0.055 0.020 0.077 0.091 0.130 0.101 1.000

Note. Relative MISE to true trend in comparison to linear SEM averaged across 200 replications for

n = 1000. ⇠ = distribution of ⇠, " = distribution of ", f = true latent variables, BFS = Bartlett fac-

tor scores, NLFS = nonlinear factor scores, HZCV = HZ-estimator, BSNLFS = BSpline method for

NLFS, SEM = linear SEM.
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Table 11. Relative average MISE in comparison to linear SEM

Population LOESS Spline Other

Trend dx ⇠ " f BFS NLFS f BFS NLFS HZCV BSNLFS SEM

logit 3 unif gamma 0.098 0.553 0.854 0.052 0.557 0.898 0.678 0.844 1.000

logit 3 unif unif 0.095 0.647 1.078 0.050 0.695 1.171 0.786 1.131 1.000

logit 3 unif norm 0.098 0.595 0.935 0.056 0.637 1.017 0.699 0.988 1.000

logit 3 norm gamma 0.074 0.656 1.097 0.040 0.623 1.060 0.491 1.077 1.000

logit 3 norm unif 0.077 0.798 1.312 0.042 0.825 1.376 0.577 1.313 1.000

logit 3 norm norm 0.072 0.774 1.210 0.044 0.811 1.289 0.562 1.258 1.000

logit 6 unif gamma 0.098 0.333 0.444 0.051 0.322 0.458 0.508 0.483 1.000

logit 6 unif unif 0.095 0.349 0.473 0.051 0.359 0.503 0.527 0.519 1.000

logit 6 unif norm 0.094 0.325 0.439 0.054 0.324 0.468 0.483 0.509 1.000

logit 6 norm gamma 0.079 0.386 0.554 0.046 0.365 0.541 0.325 0.574 1.000

logit 6 norm unif 0.077 0.407 0.581 0.044 0.408 0.611 0.343 0.617 1.000

logit 6 norm norm 0.075 0.391 0.546 0.044 0.400 0.579 0.348 0.607 1.000

logit 9 unif gamma 0.096 0.250 0.309 0.051 0.230 0.312 0.395 0.364 1.000

logit 9 unif unif 0.092 0.252 0.326 0.050 0.243 0.337 0.420 0.384 1.000

logit 9 unif norm 0.100 0.253 0.318 0.053 0.239 0.328 0.413 0.392 1.000

logit 9 norm gamma 0.077 0.278 0.365 0.041 0.255 0.356 0.263 0.392 1.000

logit 9 norm unif 0.075 0.286 0.366 0.042 0.280 0.377 0.283 0.405 1.000

logit 9 norm norm 0.077 0.262 0.349 0.045 0.262 0.364 0.265 0.413 1.000

piecewise linear 3 unif gamma 0.085 0.396 0.565 0.008 0.348 0.543 0.510 0.550 1.000

piecewise linear 3 unif unif 0.085 0.481 0.672 0.008 0.456 0.685 0.556 0.674 1.000

piecewise linear 3 unif norm 0.086 0.451 0.621 0.009 0.420 0.625 0.542 0.615 1.000

piecewise linear 3 norm gamma 0.077 0.412 0.578 0.084 0.396 0.572 0.462 0.558 1.000

piecewise linear 3 norm unif 0.078 0.507 0.698 0.086 0.489 0.692 0.491 0.688 1.000

piecewise linear 3 norm norm 0.078 0.459 0.635 0.087 0.441 0.637 0.450 0.627 1.000

piecewise linear 6 unif gamma 0.085 0.257 0.327 0.009 0.192 0.273 0.355 0.274 1.000

piecewise linear 6 unif unif 0.086 0.291 0.377 0.009 0.229 0.333 0.386 0.330 1.000

piecewise linear 6 unif norm 0.084 0.277 0.358 0.008 0.211 0.310 0.369 0.315 1.000

piecewise linear 6 norm gamma 0.078 0.262 0.343 0.087 0.242 0.327 0.344 0.329 1.000

piecewise linear 6 norm unif 0.079 0.279 0.363 0.089 0.255 0.345 0.349 0.347 1.000

piecewise linear 6 norm norm 0.078 0.275 0.355 0.089 0.249 0.334 0.335 0.339 1.000

piecewise linear 9 unif gamma 0.086 0.205 0.246 0.008 0.129 0.179 0.313 0.181 1.000

piecewise linear 9 unif unif 0.085 0.215 0.262 0.008 0.143 0.201 0.331 0.201 1.000

piecewise linear 9 unif norm 0.083 0.204 0.249 0.008 0.132 0.187 0.294 0.189 1.000

piecewise linear 9 norm gamma 0.078 0.198 0.244 0.086 0.177 0.224 0.294 0.224 1.000

piecewise linear 9 norm unif 0.079 0.205 0.249 0.088 0.182 0.229 0.312 0.238 1.000

piecewise linear 9 norm norm 0.077 0.200 0.247 0.085 0.175 0.223 0.297 0.235 1.000

Note. Relative MISE to true trend in comparison to linear SEM averaged across 200 replications for n =

1000. ⇠ = distribution of ⇠, " = distribution of ", f = true latent variables, BFS = Bartlett factor scores,

NLFS = nonlinear factor scores, HZCV = HZ-estimator, BSNLFS = BSpline method for NLFS, SEM =

linear SEM.
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Figure 13. A comparison of the averaged MISE across 200 replications with

n = 1000 for di↵erent procedures [(B)Splines vs. LOESS vs. HZ/others] based

on di↵erent inputs (BFS, NLFS, linear SEM, and true latent variables f for

comparison) for di↵erent dimensions dx aggregated across all distributions used

in the simulation study described in Section 4.3.



NON-PARAMETRIC REGRESSION AMONG FACTOR SCORES A31

Table 12. Average MISE with d⇠ = 2 without cross-relations

Population LOESS Other

Cross Trend dxj ⇠ " f BFS BFSuc NLFS BSNLFS SEM

uncrossed quadratic 3 unif gamma 0.137 0.418 0.418 0.574 0.619 0.726

uncrossed quadratic 3 unif unif 0.134 0.471 0.471 0.612 0.665 0.722

uncrossed quadratic 3 unif norm 0.140 0.484 0.484 0.622 0.659 0.730

uncrossed quadratic 3 norm gamma 0.153 0.435 0.435 0.608 0.670 0.628

uncrossed quadratic 3 norm unif 0.154 0.502 0.502 0.706 0.778 0.621

uncrossed quadratic 3 norm norm 0.157 0.517 0.517 0.711 0.752 0.625

uncrossed quadratic 6 unif gamma 0.132 0.316 0.316 0.383 0.434 0.719

uncrossed quadratic 6 unif unif 0.131 0.353 0.353 0.420 0.476 0.720

uncrossed quadratic 6 unif norm 0.136 0.358 0.358 0.435 0.485 0.714

uncrossed quadratic 6 norm gamma 0.160 0.325 0.325 0.390 0.441 0.613

uncrossed quadratic 6 norm unif 0.152 0.345 0.345 0.434 0.495 0.620

uncrossed quadratic 6 norm norm 0.163 0.362 0.362 0.443 0.523 0.618

uncrossed quadratic 9 unif gamma 0.137 0.277 0.277 0.329 0.382 0.716

uncrossed quadratic 9 unif unif 0.142 0.296 0.296 0.341 0.392 0.712

uncrossed quadratic 9 unif norm 0.132 0.292 0.292 0.344 0.399 0.711

uncrossed quadratic 9 norm gamma 0.155 0.279 0.279 0.331 0.390 0.618

uncrossed quadratic 9 norm unif 0.154 0.296 0.296 0.343 0.418 0.617

uncrossed quadratic 9 norm norm 0.158 0.289 0.289 0.340 0.406 0.613

uncrossed cubic 3 unif gamma 0.141 0.412 0.412 0.535 0.588 0.752

uncrossed cubic 3 unif unif 0.146 0.459 0.459 0.592 0.649 0.747

uncrossed cubic 3 unif norm 0.144 0.478 0.478 0.596 0.641 0.752

uncrossed cubic 3 norm gamma 0.172 0.402 0.402 0.547 0.603 0.713

uncrossed cubic 3 norm unif 0.167 0.456 0.456 0.601 0.665 0.726

uncrossed cubic 3 norm norm 0.168 0.461 0.461 0.611 0.656 0.718

uncrossed cubic 6 unif gamma 0.144 0.328 0.328 0.390 0.440 0.744

uncrossed cubic 6 unif unif 0.147 0.357 0.357 0.426 0.487 0.740

uncrossed cubic 6 unif norm 0.145 0.350 0.350 0.421 0.474 0.737

uncrossed cubic 6 norm gamma 0.166 0.297 0.297 0.358 0.436 0.707

uncrossed cubic 6 norm unif 0.170 0.339 0.339 0.402 0.464 0.716

uncrossed cubic 6 norm norm 0.169 0.324 0.324 0.403 0.462 0.709

uncrossed cubic 9 unif gamma 0.145 0.279 0.279 0.336 0.405 0.735

uncrossed cubic 9 unif unif 0.144 0.290 0.290 0.344 0.401 0.732

uncrossed cubic 9 unif norm 0.140 0.292 0.292 0.342 0.406 0.733

uncrossed cubic 9 norm gamma 0.171 0.269 0.269 0.321 0.380 0.696

uncrossed cubic 9 norm unif 0.168 0.279 0.279 0.327 0.386 0.709

uncrossed cubic 9 norm norm 0.165 0.268 0.268 0.318 0.361 0.713

Note. MISE to true trend averaged across 200 replications for n = 1000. Cross = if crossed,

then cross relations were present, ⇠ = distribution of ⇠, " = distribution of ", f = true la-

tent variables, BFS = Bartlett factor scores, BFSuc = Bartlett factor scores without cross-

relations in corresponding CFA, NLFS = nonlinear factor scores, BSNLFS = BSpline method

for NLFS, SEM = linear SEM.
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Table 13. Average MISE with d⇠ = 2 with cross-relations

Population LOESS Other

Cross Trend dxj ⇠ " f BFS BFSuc NLFS BSNLFS SEM

crossed quadratic 3 unif gamma 0.133 0.408 0.687 0.892 0.926 0.724

crossed quadratic 3 unif unif 0.134 0.467 0.780 1.001 1.048 0.722

crossed quadratic 3 unif norm 0.127 0.468 0.792 1.008 1.045 0.722

crossed quadratic 3 norm gamma 0.151 0.441 0.810 1.111 1.153 0.624

crossed quadratic 3 norm unif 0.156 0.500 0.944 1.275 1.324 0.625

crossed quadratic 3 norm norm 0.159 0.512 0.936 1.292 1.315 0.623

crossed quadratic 6 unif gamma 0.136 0.310 0.582 0.708 0.729 0.719

crossed quadratic 6 unif unif 0.138 0.334 0.622 0.758 0.786 0.716

crossed quadratic 6 unif norm 0.140 0.355 0.630 0.755 0.793 0.716

crossed quadratic 6 norm gamma 0.157 0.316 0.656 0.842 0.895 0.612

crossed quadratic 6 norm unif 0.155 0.335 0.705 0.886 0.929 0.618

crossed quadratic 6 norm norm 0.155 0.337 0.701 0.886 0.919 0.619

crossed quadratic 9 unif gamma 0.135 0.271 0.532 0.642 0.665 0.716

crossed quadratic 9 unif unif 0.134 0.278 0.538 0.654 0.694 0.713

crossed quadratic 9 unif norm 0.134 0.290 0.536 0.658 0.691 0.713

crossed quadratic 9 norm gamma 0.158 0.275 0.598 0.736 0.776 0.617

crossed quadratic 9 norm unif 0.165 0.289 0.620 0.766 0.809 0.619

crossed quadratic 9 norm norm 0.155 0.278 0.603 0.756 0.805 0.617

crossed cubic 3 unif gamma 0.138 0.414 0.641 0.724 0.764 0.745

crossed cubic 3 unif unif 0.146 0.456 0.685 0.813 0.844 0.748

crossed cubic 3 unif norm 0.143 0.475 0.709 0.814 0.849 0.747

crossed cubic 3 norm gamma 0.171 0.390 0.635 0.817 0.859 0.724

crossed cubic 3 norm unif 0.169 0.458 0.730 0.948 1.005 0.714

crossed cubic 3 norm norm 0.171 0.435 0.690 0.923 0.959 0.726

crossed cubic 6 unif gamma 0.143 0.321 0.534 0.577 0.608 0.745

crossed cubic 6 unif unif 0.145 0.341 0.564 0.609 0.640 0.743

crossed cubic 6 unif norm 0.141 0.336 0.563 0.615 0.635 0.739

crossed cubic 6 norm gamma 0.171 0.300 0.536 0.643 0.684 0.704

crossed cubic 6 norm unif 0.161 0.314 0.551 0.665 0.718 0.705

crossed cubic 6 norm norm 0.164 0.314 0.551 0.663 0.700 0.710

crossed cubic 9 unif gamma 0.140 0.281 0.486 0.525 0.561 0.741

crossed cubic 9 unif unif 0.145 0.287 0.502 0.537 0.587 0.734

crossed cubic 9 unif norm 0.145 0.286 0.503 0.536 0.569 0.738

crossed cubic 9 norm gamma 0.168 0.260 0.470 0.547 0.587 0.702

crossed cubic 9 norm unif 0.168 0.269 0.485 0.566 0.618 0.701

crossed cubic 9 norm norm 0.165 0.274 0.499 0.573 0.607 0.702

Note. MISE to true trend averaged across 200 replications for n = 1000. Cross = if

crossed, then cross relations were present, ⇠ = distribution of ⇠, " = distribution of ",

f = true latent variables, BFS = Bartlett factor scores, BFSuc = Bartlett factor scores

without cross-relations in corresponding CFA, NLFS = nonlinear factor scores, BSNLFS

= BSpline method for NLFS, SEM = linear SEM.
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Table 14. Relative average MISE with d⇠ = 2 without cross-relations in comparison to

linear SEM

Population LOESS Other

Cross Trend dxj ⇠ " f BFS BFSuc NLFS BSNLFS SEM

uncrossed quadratic 3 unif gamma 0.189 0.575 0.575 0.790 0.852 1.000

uncrossed quadratic 3 unif unif 0.186 0.653 0.653 0.848 0.922 1.000

uncrossed quadratic 3 unif norm 0.192 0.662 0.662 0.851 0.903 1.000

uncrossed quadratic 3 norm gamma 0.244 0.692 0.692 0.968 1.066 1.000

uncrossed quadratic 3 norm unif 0.248 0.808 0.808 1.136 1.252 1.000

uncrossed quadratic 3 norm norm 0.251 0.828 0.828 1.139 1.204 1.000

uncrossed quadratic 6 unif gamma 0.184 0.440 0.440 0.533 0.603 1.000

uncrossed quadratic 6 unif unif 0.181 0.490 0.490 0.584 0.660 1.000

uncrossed quadratic 6 unif norm 0.191 0.502 0.502 0.610 0.679 1.000

uncrossed quadratic 6 norm gamma 0.260 0.529 0.529 0.636 0.718 1.000

uncrossed quadratic 6 norm unif 0.245 0.557 0.557 0.699 0.797 1.000

uncrossed quadratic 6 norm norm 0.264 0.585 0.585 0.717 0.846 1.000

uncrossed quadratic 9 unif gamma 0.191 0.387 0.387 0.460 0.534 1.000

uncrossed quadratic 9 unif unif 0.200 0.416 0.416 0.479 0.550 1.000

uncrossed quadratic 9 unif norm 0.186 0.411 0.411 0.484 0.562 1.000

uncrossed quadratic 9 norm gamma 0.251 0.451 0.451 0.535 0.631 1.000

uncrossed quadratic 9 norm unif 0.250 0.480 0.480 0.556 0.678 1.000

uncrossed quadratic 9 norm norm 0.257 0.471 0.471 0.555 0.661 1.000

uncrossed cubic 3 unif gamma 0.187 0.548 0.548 0.711 0.782 1.000

uncrossed cubic 3 unif unif 0.195 0.614 0.614 0.793 0.868 1.000

uncrossed cubic 3 unif norm 0.191 0.635 0.635 0.793 0.852 1.000

uncrossed cubic 3 norm gamma 0.241 0.563 0.563 0.768 0.847 1.000

uncrossed cubic 3 norm unif 0.230 0.629 0.629 0.828 0.916 1.000

uncrossed cubic 3 norm norm 0.234 0.643 0.643 0.851 0.914 1.000

uncrossed cubic 6 unif gamma 0.194 0.441 0.441 0.524 0.591 1.000

uncrossed cubic 6 unif unif 0.199 0.483 0.483 0.575 0.658 1.000

uncrossed cubic 6 unif norm 0.197 0.475 0.475 0.571 0.643 1.000

uncrossed cubic 6 norm gamma 0.235 0.421 0.421 0.506 0.617 1.000

uncrossed cubic 6 norm unif 0.237 0.474 0.474 0.561 0.648 1.000

uncrossed cubic 6 norm norm 0.238 0.457 0.457 0.568 0.651 1.000

uncrossed cubic 9 unif gamma 0.197 0.379 0.379 0.457 0.551 1.000

uncrossed cubic 9 unif unif 0.196 0.396 0.396 0.470 0.548 1.000

uncrossed cubic 9 unif norm 0.191 0.398 0.398 0.467 0.554 1.000

uncrossed cubic 9 norm gamma 0.245 0.387 0.387 0.461 0.546 1.000

uncrossed cubic 9 norm unif 0.237 0.393 0.393 0.462 0.544 1.000

uncrossed cubic 9 norm norm 0.231 0.376 0.376 0.447 0.507 1.000

Note. Relative MISE to true trend in comparison to linear SEM averaged across 200 repli-

cations for n = 1000. Cross = if crossed, then cross relations were present, ⇠ = distribution

of ⇠, " = distribution of ", f = true latent variables, BFS = Bartlett factor scores, BFSuc
= Bartlett factor scores without cross-relations in corresponding CFA, NLFS = nonlinear

factor scores, BSNLFS = BSpline method for NLFS, SEM = linear SEM.
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Table 15. Relative average MISE with d⇠ = 2 with cross-relations in comparison to

linear SEM

Population LOESS Other

Cross Trend dxj ⇠ " f BFS BFSuc NLFS BSNLFS SEM

crossed quadratic 3 unif gamma 0.184 0.564 0.949 1.233 1.280 1.000

crossed quadratic 3 unif unif 0.185 0.647 1.082 1.387 1.452 1.000

crossed quadratic 3 unif norm 0.176 0.648 1.096 1.396 1.447 1.000

crossed quadratic 3 norm gamma 0.243 0.707 1.298 1.780 1.847 1.000

crossed quadratic 3 norm unif 0.250 0.800 1.511 2.041 2.119 1.000

crossed quadratic 3 norm norm 0.255 0.821 1.501 2.073 2.109 1.000

crossed quadratic 6 unif gamma 0.189 0.431 0.810 0.985 1.015 1.000

crossed quadratic 6 unif unif 0.193 0.467 0.869 1.059 1.098 1.000

crossed quadratic 6 unif norm 0.195 0.496 0.880 1.054 1.108 1.000

crossed quadratic 6 norm gamma 0.256 0.516 1.071 1.374 1.461 1.000

crossed quadratic 6 norm unif 0.251 0.542 1.141 1.432 1.502 1.000

crossed quadratic 6 norm norm 0.251 0.544 1.133 1.432 1.486 1.000

crossed quadratic 9 unif gamma 0.188 0.379 0.742 0.896 0.928 1.000

crossed quadratic 9 unif unif 0.188 0.390 0.756 0.918 0.974 1.000

crossed quadratic 9 unif norm 0.188 0.407 0.752 0.923 0.969 1.000

crossed quadratic 9 norm gamma 0.256 0.446 0.969 1.193 1.258 1.000

crossed quadratic 9 norm unif 0.266 0.466 1.002 1.236 1.306 1.000

crossed quadratic 9 norm norm 0.252 0.450 0.976 1.225 1.304 1.000

crossed cubic 3 unif gamma 0.186 0.555 0.861 0.972 1.025 1.000

crossed cubic 3 unif unif 0.195 0.609 0.916 1.087 1.129 1.000

crossed cubic 3 unif norm 0.191 0.635 0.949 1.089 1.137 1.000

crossed cubic 3 norm gamma 0.237 0.538 0.877 1.128 1.186 1.000

crossed cubic 3 norm unif 0.237 0.641 1.023 1.328 1.407 1.000

crossed cubic 3 norm norm 0.235 0.599 0.951 1.272 1.322 1.000

crossed cubic 6 unif gamma 0.193 0.431 0.717 0.775 0.816 1.000

crossed cubic 6 unif unif 0.195 0.459 0.759 0.819 0.860 1.000

crossed cubic 6 unif norm 0.191 0.455 0.762 0.833 0.860 1.000

crossed cubic 6 norm gamma 0.243 0.426 0.761 0.913 0.970 1.000

crossed cubic 6 norm unif 0.228 0.445 0.782 0.945 1.019 1.000

crossed cubic 6 norm norm 0.231 0.442 0.776 0.934 0.987 1.000

crossed cubic 9 unif gamma 0.189 0.379 0.656 0.709 0.757 1.000

crossed cubic 9 unif unif 0.198 0.391 0.684 0.731 0.800 1.000

crossed cubic 9 unif norm 0.196 0.387 0.682 0.727 0.771 1.000

crossed cubic 9 norm gamma 0.239 0.371 0.669 0.779 0.836 1.000

crossed cubic 9 norm unif 0.239 0.383 0.691 0.807 0.881 1.000

crossed cubic 9 norm norm 0.235 0.389 0.711 0.816 0.864 1.000

Note. Relative MISE to true trend in comparison to linear SEM averaged across 200 repli-

cations for n = 1000. Cross = if crossed, then cross relations were present, ⇠ = distribution

of ⇠, " = distribution of ", f = true latent variables, BFS = Bartlett factor scores, BFSuc
= Bartlett factor scores without cross-relations in corresponding CFA, NLFS = nonlinear

factor scores, BSNLFS = BSpline method for NLFS, SEM = linear SEM.
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Figure 14. A comparison of the averaged MISE across 200 replications with

n = 1000 for di↵erent procedures [(B)Splines vs. LOESS vs. HZ/others] based

on di↵erent inputs (BFS, NLFS, linear SEM, and true latent variables f for

comparison) for di↵erent dimensions dxj aggregated across all distributions,

trends and inclusion of cross-relations (cross-loadings and cross-correlations

in ⇤x, x, and  y) used in the simulation study.

poor performance in approximating the true trend. However, for ⇠1 or ⇠2 being 0, i.e., the center of

the distribution, the LOESS based on BFS outperforms the other methods. This di↵erence is larger in

the conditions where cross-relations are present (see Figures 21, and 22), where also LOESS based on

BFSuc di↵ers from LOESS based on BFS using the true model. However, LOESS based on BFSuc still

outperforms the methods based on NLFS on average. This suggests that for the presented scenarios

even a misspecified Bartlett score results in a better non-parametric estimation of the trend compared

to the methods based on NLFS. Further, the methods based on BFS show slightly less variation as

highlighted by the confidence bands in Figures 19 and 20.

To summarize, similarly to the univariate case, the non-parametric methods approach the true trend

for increasing numbers of measurements with LOESS based on BFS showing better approximations to

the true trend as already suggested by Figure 5 of the main text. However, the di↵erence to the true

trend appears slightly larger than in the univariate case.
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Figure 15. A comparison of the relative averaged MISE compared to the lin-

ear SEM approximation across 200 replications with n = 1000 for di↵erent

procedures [(B)Splines vs. LOESS vs. HZ/others] based on di↵erent inputs

(BFS, NLFS, linear SEM, and true latent variables f for comparison) for two

models with di↵erent true trends (quadratic and cubic), dimensions dxj , and in-

clusion of cross-relations (cross-loadings and cross-correlations in ⇤x, x, and

 y) and distributions (row and column names refer to marginal distributions)

used in the simulation study for d⇠ = 2. See Table 14 and 15 for numerical

values.
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Figure 16. A comparison of the averaged MISE across 200 replications with

n = 1000 for di↵erent procedures [(B)Splines vs. LOESS vs. HZ/others] based

on di↵erent inputs (BFS, NLFS, linear SEM, and true latent variables f for

comparison) for two models with di↵erent true trends (quadratic and cubic)

and dimensions dxj for d⇠ = 2 aggregated across all distributions and and

inclusion of cross-relations (cross-loadings and cross-correlations in ⇤x, x,

and  y) used in the simulation study described in Section 4.4.
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Figure 17. True quadratic trend of used in the simulation study. black lines

and blue lines indicate the specific marginal relationships between H and ⇠

further depicted in Figures 19, and 20.
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Figure 18. True cubic trend of used in the simulation study. black lines and

blue lines indicate the specific marginal relationships between H and ⇠ further

depicted in Figures 19, and 20.
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Figure 19. A comparison of nonparametric estimation for E[⌘|⇠] averaged

across 200 replications with n = 1000 for LOESS based on BFS and the NLFS,

the BSpline estimator based on NLFS compared to the true trend and a linear

SEM estimation with di↵erent true trends (quadratic, cubic) and dimensions

dxj with multivariate normal ⇠ and gamma distributed errors " and measure-

ments without cross-relations for specific values of ⇠2. Shaded areas correspond

to the 95% coverage interval computed point-wise across the 200 replications.
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Figure 20. A comparison of nonparametric estimation for E[⌘|⇠] averaged

across 200 replications with n = 1000 for LOESS based on BFS and the NLFS,

the BSpline estimator based on NLFS compared to the true trend and a linear

SEM estimation with di↵erent true trends (quadratic, cubic) and dimensions

dxj with multivariate normal ⇠ and gamma distributed errors " and measure-

ments without cross-relations for specific values of ⇠1. Shaded areas correspond

to the 95% coverage interval computed point-wise across the 200 replications.
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Figure 21. A comparison of nonparametric estimation for E[⌘|⇠] averaged

across 200 replications with n = 1000 for LOESS based on BFS and the NLFS,

the BSpline estimator based on NLFS compared to the true trend and a linear

SEM estimation with di↵erent true trends (quadratic, cubic) and dimensions

dxj with multivariate normal ⇠ and gamma distributed errors " and measure-

ments with cross-relations for specific values of ⇠2. Shaded areas correspond to

the 95% coverage interval computed point-wise across the 200 replications.
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Figure 22. A comparison of nonparametric estimation for E[⌘|⇠] averaged

across 200 replications with n = 1000 for LOESS based on BFS and the NLFS,

the BSpline estimator based on NLFS compared to the true trend and a linear

SEM estimation with di↵erent true trends (quadratic, cubic) and dimensions

dxj with multivariate normal ⇠ and gamma distributed errors " and measure-

ments with cross-relations for specific values of ⇠1. Shaded areas correspond to

the 95% coverage interval computed point-wise across the 200 replications.
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Appendix E. Technical and Mathematical Appendix

E.1. On Assumption 1. The assumption of at least two finite moments firstly implies that E[⌘|⇠]
exists, and secondly that the mentioned covariances are finite (by the Cauchy-Schwartz inequality).

Assumption 1 (1) is a minimum requirement for z̃ to be said to follow a factor model, as otherwise

the covariance structure is misspecified. Let G(⇤) be the set of matrices which fulfill A⇤ = Idf , i.e., the

left inverses of ⇤. Since a matrix has left inverses if and only if it has full column rank (Harville, 1997,

Lemma 8.1.1), G(⇤) is non-empty if and only if ⇤ has full column rank. Therefore, Assumption 1 (2) is

foundational. Assumption 1 (3) means that no linear combinations of f has zero variance, which would

mean that the dimensionality of f is misspecified. Assumption 1 (4) is also foundational. Suppose (4)

does not hold. Since  is a covariance matrix, this means that some of its non-negative eigenvalues are

zero.  is diagonalizable with  = PDP
0 for a diagonal matrix D with real and ordered eigenvalues,

and P a dz ⇥ dz orthonormal matrix. Therefore, let "̃ = P
0
", whose last coordinates are zero, so that

Cov ("̃) = P
0 P = D, and P

0
z̃ = P⇤f + "̃ follows a factor model whose last coordinates have no

measurement error. Assumption 1 (4) disallows this, which under parameter identification would mean

there is no need for factor scores.

E.2. A Discussion on Assumption 7 (3) (a). Recall that Assumption 7 (3) (a) is that

sup
x2S⇢ |E!(x, r⇠)| ! 0 as dx ! 1, where !(x, h) = H(x�h)�H(x). We here verify this assumption

in the simple class of functions H that are univariate polynomials, assuming the strong assumptions as

in Section 2.2. Extensions of this argument can be developed, but we consider this verification mainly

an illustration.

Let us start getting familiar with this assumption in some special cases for real valued coe�cients ai,

for i � 0. SupposeH(x) = a0+a1x is linear. ThenH(x�r⇠)�H(x) = �a1r⇠ and so EH(x�r⇠)�H(x) =

�a1Er⇠ = 0. Suppose then that H(x) = a0 + a1x + a2x
2 is a second degree polynomial. Then

H(x�r⇠)�H(x) = �a1r⇠+a2[(x�r⇠)
2
�x

2] = �a1r⇠+a2(�2xr⇠+r
2

⇠), so that E [H(x� r⇠)�H(x)] =

a2

�
�2xEr⇠ + Er2⇠

�
= a2 Var r⇠, which goes to zero e.g. under the conditions of Proposition 3.

For both of these cases, the convergence holds irrespective of the size of S⇢, which will not be the

case in general. Indeed, let us consider a third order polynomial. Let

(10) Hp(x) =
pX

i=0

aix
p

i
, with ap 6= 0.

Then H3(x � r⇠) � H3(x) = H2(x � r⇠) � H2(x) + a3(x � r⇠)
3
� a3x

3 = H2(x � r⇠) � H2(x) +

a3

�
�3x2

r⇠ + 3xr2⇠ � r
3

⇠

�
with expectation (a2 + a33x)Var r⇠ + a3Er3⇠ . Due to the inclusion of x, we

cannot have that sup
x2S⇢ |E!(x, r⇠)| ! 0 if S⇢ has infinite extension. For general functions, we will

therefore assume that S⇢ has a finite extension, and we see from the third order case that this cannot

be weakened.

Since ⌘, ⇠ has all practically relevant realizations within a region of finite extension, assuming that

S
⇢ has finite extension will not matter in practical applications, especially with finite sample settings.

A di↵erent proof technique could give a requirement where this is not needed, and this is considered

outside the scope of the present paper.

To finish the argument in the the third order polynomial case, if s = | sup{x 2 S
⇢
}|, then using

the triangle inequality, we have sup
x2S⇢ |E!(x, r⇠)| = sup

x2S⇢ |(a2 + a33x)Var r⇠ + a3Er3⇠ |  (|a2| +

|a3|3s)Var r⇠ + |a3||Er3⇠ | ! 0 where Er3⇠ ! 0 follows by the upcoming Lemma 5.

We now consider the general polynomial case.
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Assumption 10. Suppose

(1) d⌘ = d⇠ = 1.

(2) for a p � 1 we have

sup
j�1

E |"j |
p

p
 jj

< 1.

(3) Suppose S
⇢ from Assumption 7 (3) has finite extension, that is there is a number MS⇢ > 0

such that S⇢ ✓ [�MS⇢ ,MS⇢ ].

(4) Suppose H is a polynomial of degree p, where p is the constant from (2) above.

Proposition 6. Suppose given Assumption 1, 8, 9 (2) and (3), and 10.

Then sup
x2S⇢ |E!(x, r⇠)| ! 0 as dx ! 1.

Proof. We have H = Hp as in eq. (10). Suppose p � 2, as p = 1 follows as above. We have

EHp(x� r⇠)�Hp(x) = E
pX

i=0

ai(x� r⇠)
i
�

pX

i=0

aix
i

= E
pX

i=0

ai[(x� r⇠)
i
� x

i]

(a)

=
pX

i=2

aiE[(x� r⇠)
i
� x

i]

=
pX

i=2

aiE
" 

iX

j=0

 
i

j

!
x
i�j(�1)jErj

⇠

!
� x

i

#

(b)

=
pX

i=2

aiE
iX

j=1

 
i

j

!
x
i�j(�1)jErj

⇠

(c)

=
pX

i=2

ai

iX

j=2

 
i

j

!
x
i�j(�1)jErj

⇠

(a) For i = 0 we have (x � r⇠)
i
� x

i = 0, so the i = 0 term vanishes. Also, for i = 1, we get

E(x � r⇠)
i
� x

i = x � Er⇠ � x = 0. Therefore, only terms with i � 2 are relevant. (b) For j = 0 we

have
�
i

j

�
x
i�j(�1)jErj

⇠
= x

i, which cancels by the term �x
i. (c) If j = 1 then Erj

⇠
= 0, and hence this

term vanishes.

Therefore, by Assumption 10 (3) and the triangle inequality, we have

sup
x2S⇢

|EHp(x� r⇠)�Hp(x)|  sup
|x|MA

|EHp(x� r⇠)�Hp(x)|

= sup
|x|MA

pX

i=2

ai

iX

j=2

 
i

j

!
|x

i�j
||Erj

⇠
|



pX

i=2

ai

iX

j=2

 
i

j

!
M

i�j

A
E|r⇠|j

Since E|r⇠|i ! 0 for 2  i  p by the forthcoming Lemma 5, we get the desired convergence, as the

number of terms in the sum is fixed as dx increase. ⇤
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Lemma 5. Suppose given Assumption 1, 8, 9 (2) and (3), and 10. Then E|r⇠|q ! 0 for any integer

2  q  p.

Proof. Notice that from Assumption 8 (1), "x has independent components. This independence will

be crucial for the result.

By the Lyapunov inequality, we have E|r⇠|q  (E|r⇠|p)q/p. Therefore, E|r⇠|q ! 0 for 2  q  p as

long as E|r⇠|p ! 0, which is what we show.

We use one of the several inequalities that carry the name“the Marczinkiewicz-Zygmund inequality”,

see (Révész, 1967, Theorem 2.1.3) and the more recent refinement in Ren and Liang (2001) which gives

the soon to be stated bound for the soon mentioned constant C. It says that for independent X1, . . .

with zero mean and sup
i�1

E|Xi|
p
< 1 for p � 2 we have that that for a constant C  (3

p
2)ppp/2 we

have

(11) E
�����

nX

i=1

Xi

�����

p

 Cn
(p/2)�1

nX

i=1

E|Xi|
p
.

As in the proof of Proposition 5, see eq. (17) (p. A57), we get from Assumption 8 that

r⇠ =
1

ndx

dxX

i=1

p
↵juj

where uj =
"jp
 jj

↵j =
�
2
ji

 jj
and ndx =

P
dx
j=1

↵j . Notice ↵j � 0.

This gives

E|r⇠|p = n
�p

dx
E
�����

dxX

i=1

p
↵juj

�����

p

 Cn
�p

dx
d
(p/2)�1

x

dxX

i=1

E|p↵juj |
p

 Cn
�p

dx
d
(p/2)�1

x

dxX

i=1

p
↵j

p

 
sup
j�1

E |"j |
p

p
 jj

!

=

 
sup
j�1

E |"j |
p

p
 jj

!
Cn

�p

dx
d
(p/2)�1

x

dxX

i=1

p
↵j

p
.

We now use Assumption 9 (2), i.e., that

✓
�
2
j1

 jj

◆

1jdx

⇢ [m�/ ,M�/ ] for numbers 0 < m�/ 

M�/ < 1. This gives

ndx =
dxX

j=1

↵j �

dxX

j=1

m�/ = dxm�/ 

and
dxX

i=1

p
↵j

p


dxX

i=1

p
M�/ 

p

= dx

p
M�/ 

p

.

Inserting this in the series of inequalities from above gives

E|r⇠|q 

 
sup
j�1

E |"j |
p

p
 jj

!
Cm

�p

�/ 
d
�p

x d
(p/2)�1

x

p
M�/ 

p

dx

=

 
sup
j�1

E |"j |
p

p
 jj

!
Cm

�p

�/ 

p
M�/ 

p

d
�p/2

x
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Since p > 0 we have �p/2 < 0 and so the convergence is shown as d�p/2

x ! 0 for dx ! 1, sup
j�1

E |"j |pp
 jj

was assumed to be finite, and the remaining are finite constants. ⇤

E.3. More Details on the Consequences of Asymptotic Normality of r⇠ Following Propo-

sition 5. Using our notation as well as the the conclusion from Lemma 2 that E[⌘̈|⇠ = x] = H(x),

Huang and Zhou (2017) is based on the equality

H(x) =
1

2⇡f
⇠̈
(x)

Z
e
�itx

�Hdxf⌘̈ (t)

�r⇠ (t)
dt

where Hdx(x) = E[⌘̈|⇠̈ = x], where �Hdxf⌘̈ is the characteristic function of the convolution between

Hdx and f⌘̈, and where �r⇠ is the characteristic function of r⇠. Except �r⇠ , all quantities in the above

display are identified. Proposition 5 motivates approximating �r⇠ by the characteristic function of a

re-scaled normal random vector, which has a known formula. To simplify notation, consider the special

case d⌘ = d⇠ = 1. Then the suggested approximation is

H̆(x) =
1

2⇡f
⇠̈
(x)

Z
e
�itx

�Hdxf⌘̈ (t)

�Z/cdx
(t)

dt, Z ⇠ N(0, 1),

which is the population version of the Huang and Zhou (2017) estimator when using it with the nor-

mality approximation from Proposition 5. However, replacing r⇠ with zero is shown to yield uniformly

consistent approximations of H as dx increase in Proposition 4, and so merely getting this from the

normal approximation does seem needed, as the asymptotic normality also implies that r⇠ converges to

zero in probability, thereby fulfilling Assumption 7 (4), which means that such a result would not give

new insight. Therefore, the possible benefits of the normality approximation would be not in terms of

asymptotic identification, but if H̆ was better than Hdx of Proposition 4 as an approximation to H.

This seems complex to investigate mathematically, especially since Z/cdx goes to zero for dx increasing,

and is considered outside the scope of the present paper.

E.4. Mathematical Results and Proofs.

E.4.1. Proof of Lemma 1.

Proof of Lemma 1. Statement 1: We have Cov (f, rA) = Cov (f,Az̃ � f) = Cov (f,Az̃) � Cov (f) =

Cov (f,A⇤f+A")�Cov (f) = A⇤Cov (f)�Cov (f)+ACov (f, ") = (A⇤�Idf ) Cov (f) = (A⇤�Idf )�.

Suppose A 2 G(⇤). Then A⇤ � Idf = 0, so that Cov (f, rA) = 0� = 0. Suppose Cov (f, rA) = 0.

Then 0 = (A⇤ � Idf ) Cov (f) so that right multiplying both sides of the equality by ��1 gives 0 =

A⇤� Idf , and so A 2 G(⇤).

Statement 2: This follows from E[Az̃|f ] = E[A(⇤f + ")|f ] = A⇤E[f |f ] + AE["|f ] = A⇤f , which

equals f if and only if A is a left inverse of ⇤, i.e., A 2 G(⇤).

Statement 3: We first show that T exists. This is implied from that ⌃ = Cov z = ⇤�⇤0 +  is

invertible under Assumption 1 (3) and (4), as we now show. We will do this by showing that ⌃ is

positive definite. Let x be a non-zero dz dimensional vector. Since  is positive definite by Assumption

1 (4), x0 x > 0. We have x
0⌃x = x

0⇤�⇤0
x + x

0 x = y
0�y + x

0 x where y = ⇤x. If y = 0, then

x
0⌃x = x

0 x > 0. If y 6= 0, then also y
0�y > 0 since � is positive definite by Assumption 1 (3).

Therefore, ⌃ is positive definite and, hence, invertible.

Let T = Cov (f)⇤0 Cov (z)�1 = �⇤0(⇤�⇤0 +  )�1. Now we show that T /2 G(⇤) by contradic-

tion: Assume that T 2 G(⇤). That is, T⇤ = Idf . By Lemma 13 (p. A77), we can also write T =
�
��1 + ⇤0 �1⇤

��1

⇤0 �1. Now, we have by assumption that T⇤ =
�
��1 + ⇤0 �1⇤

��1

⇤0 �1⇤ =

Idf . Right multiplying on both sides with ��1 +⇤0 �1⇤ gives ⇤0 �1⇤ = ��1 +⇤0 �1⇤ which holds
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if and only if ��1 = 0, which is not the case, because ��1 is positive definite since � is positive definite

by Assumption 1 (3). This is a contradiction, so it follows that T /2 G(⇤).

Statement 4: We first show that � exists, which holds if ⇤0 �1⇤ is invertible. We show that

⇤0 �1⇤ has the same rank as  �1. This implies that ⇤0 �1⇤ is invertible, because it has the same

dimensionality as  �1, which is an invertible matrix by Assumption 1 (4).

Recall (Harville, 1997, Lemma 8.3.2) that for two matrices A,B of compatible dimensions, we have

that rank(AB) = rank(B) if A has full column rank, and that rank(AB) = rank(A) if B has full row

rank.

Since  has full rank, since it is positive definite,  �1 has full row and full column rank and

this gives rank( �1⇤) = rank(⇤). Since ⇤ has full column rank, ⇤0 has full row rank. Therefore,

rank(⇤0 �1⇤) = rank( �1⇤) = rank(⇤). The rank of ⇤ is df as it has full column rank and since

df < dz. Since ⇤0 �1⇤ is a df ⇥ df matrix, it has full rank and, therefore, is invertible. Hence, the

Bartlett matrix � exists.

We have that � is in G(⇤) because �⇤ = (⇤0 �1⇤)�1⇤0 �1⇤ = Idf . The optimality property

follows from standard theory on GLS, see e.g. (Hansen, 2022, Chapter 4.6).

⇤

E.4.2. Proof of Lemma 2.

Proof of Lemma 2. By eq. (5), by the displayed above and the linearity of conditional expectations,

we have E[⌘̈|⇠] = E[⌘|⇠] + E[r⌘|⇠]. Let 0p,q be the p ⇥ q matrix of zeros and Ip be the p ⇥ p identity

matrix, we have r⌘ = (0d⌘ ,d⇠ , Id⌘ )A". Therefore, we have E[r⌘|⇠] = (0d⌘ ,d⇠ , Id⌘ )AE["|⇠]. By Assumption

Assumption 1 (1) and Assumption 2, " has zero mean and is independent to f = (⇠0, ⌘0)0. It is therefore

also independent to ⇠. Therefore, E["|⇠] = E" = 0 and E[⌘̈|⇠] = E[⌘|⇠]. ⇤

E.4.3. Proof of Proposition 1.

Proof of Proposition 1. For concreteness, let us choose to work with A = �, the Bartlett factor matrix

which under Assumption 1 exists using Lemma 1 (4), and form f̈ = (⇠̈0, ⌘̈0)0. Consider the characteristic

function of (⇠̈0, ⌘̈0)0, which we recall uniquely characterizes its joint distribution. For a vector t = (t0⇠, t
0
⌘)

0

of dimension df and component dimensions d⇠, d⌘, we have

Eeit
0
(⇠̈

0
,⌘̈

0
)
0
= Eeit

0
⇠ ⇠̈+it

0
⌘ ⌘̈ = Eeit

0
⇠(⇠+r⇠)+it

0
⌘ ⌘̈ = Eeit

0
⇠r⇠e

it
0
⇠⇠+it

0
⌘ ⌘̈.

From Assumption 2, " is independent to f . Therefore, r = A" is also independent to f . Since r⇠ is just

the first d⇠ coordinates of r, it too is independent to f , and hence to ⇠ and ⌘. By Assumption 4 (2), r⇠

is also independent to r⌘. Therefore, r⇠ is independent to both ⇠ and ⌘̈ = ⌘ + r⌘ (since ⌘̈ is a function

of ⌘ and r⌘). Therefore, the expectation of the product in the above display factorizes to the product

of expectations of the terms, and we get

Eeit
0
⇠⇠+it

0
⌘ ⌘̈ =

Eeit(⇠̈
0
,⌘̈

0
)
0

Eeit
0
⇠r⇠

.

Since the distribution of r⇠ is known by Assumption 4 (1), and f̈ = Az̃ has a distribution given by

A and the distribution of z̃, which is identified by Assumption 3, this shows that the distribution of

(⇠, ⌘̈) is identified. From this distribution, we may compute E[⌘̈|⇠ = x] which from Lemma 2 equals

E[⌘|⇠ = x] = H(x), which is therefore identified. ⇤
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E.4.4. Proof of Lemma 3.

Proof of Lemma 3. As in eq. (6), we have

Az̃ =

 
Ax⇤x⇠ +Ax"x

Ay⇤y⌘ +Ay"y

!
=

 
⇠

⌘

!
+

 
Ax"x

Ay"y

!
= f +

 
r⇠

r⌘

!

by the assumed Ax 2 G(⇤x) and Ay 2 G(⇤y) for r⇠ = Ax"x and r⌘ = Ay"y. Since we assume that "x

and "y are independent, we have that also r⇠ and r⌘ are independent, as they are functions of only "x

and "y, respectively. ⇤

E.4.5. Proof of Proposition 2.

Proof of Proposition 2. Using partition matrix rules, we have

 �1 =

 
 �1

x 0dx,dy

0dy,dx  �1

y

!
.

Since
⇣
⇤0

x 0d⇠,dy

⌘ 
0dx,dy

 �1

y

!
= 0d⇠,dy , and

⇣
0d⌘ ,dx ⇤

0
y

⌘  �1

x

0dy,dx

!
= 0d⌘ ,dx ,

we get

⇤0 �1 =

 
⇤0

x 0d⇠,dy

0d⌘ ,dx ⇤0
y

! 
 �1

x 0dx,dy

0dy,dx  �1

y

!
=

 
⇤0

x 
�1

x 0d⇠,dy

0d⌘ ,dx ⇤0
y 

�1

y

!
.

Since
⇣
⇤0

x 
�1

x 0d⇠,dy

⌘ 
0dx,d⌘

⇤y

!
= 0d⇠,d⌘ , and

⇣
0d⌘ ,dx ⇤

0
y 

�1

y

⌘ ⇤x

0dy,d⇠

!
= 0d⌘ ,d⇠ ,

we get

⇤0 �1⇤ =
⇥
⇤0 �1

⇤
⇤ =

 
⇤0

x 
�1

x 0d⇠,dy

0d⌘ ,dx ⇤0
y 

�1

y

! 
⇤x 0dx,d⌘

0dy,d⇠ ⇤y

!
=

 
⇤0

x 
�1

x ⇤x 0d⇠,d⌘

0d⌘ ,d⇠ ⇤0
y 

�1

y ⇤y

!
.

Since ⇤x has full column rank from the last statement in Assumption 5, and  x is positive definite

being a principle sub-matrices of a positive definite matrix  (Horn & Johnson, 2013, Observation

7.1.2), the matrix ⇤0
x 

�1

x ⇤x is invertible by the same argument as in the proof of Statement 4 in

Lemma 1 (replacing ⇤, with ⇤x, x respectively). The same holds for ⇤0
y 

�1

y ⇤y. Hence, both �x

and �y exist.

Also, since each non-zero partition is invertible, the partitioned diagonal matrix ⇤0 �1⇤ can be

inverted using the partition rules, giving

(12)
�
⇤0 �1⇤

��1

=

 �
⇤0

x 
�1

x ⇤x

��1

0d⇠,d⌘

0d⌘ ,d⇠

�
⇤0

y 
�1

y ⇤y

��1

!
,

Therefore,

� = (⇤0 �1⇤)�1⇤0 �1 =

 �
⇤0

x 
�1

x ⇤x

��1

0d⇠,d⌘

0d⌘ ,d⇠

�
⇤0

y 
�1

y ⇤y

��1

! 
⇤0

x 
�1

x 0d⇠,dy

0d⌘ ,dx ⇤0
y 

�1

y

!

=

 �
⇤0

x 
�1

x ⇤x

��1

⇤0
x 

�1

x 0d⇠,dy

0d⌘ ,dx

�
⇤0

y 
�1

y ⇤y

��1

⇤0
y 

�1

y

!

=

 
�x 0d⇠,dy

0d⌘ ,dx �y

!
.
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As for Cov r, we calculate in general that

Cov r = Cov [�"] = �Cov ["]�0

=
⇥
(⇤0 �1⇤)�1⇤0 �1

⇤
 
⇥
(⇤0 �1⇤)�1⇤0 �1

⇤0

= (⇤0 �1⇤)�1⇤0 �1 | {z }
=I

h�
 �1

�0
(⇤0)0

⇥
(⇤0 �1⇤)�1

⇤0i

= (⇤0 �1⇤)�1⇤0 �1⇤
| {z }

=I

⇥
(⇤0 �1⇤)0

⇤�1

= (⇤0 �1⇤)�1
,

which together with eq. (12) gives the stated formula. This formula also shows that Cov r is positive

definite, because it is invertible as shown in the proof of Statement 4 in Lemma 1. The last statement,

that
�
⇤0

x 
�1

x ⇤x

��1

and
�
⇤0

y 
�1

y ⇤y

��1

are positive definite, follows since they the inverse of positive

definite matrices, as shown when we above showed that �x,�y exists. ⇤

E.4.6. Proof of Proposition 3.

Proof of Proposition 3. Statement (1): We will use the following property twice: For a symmetric

positive definite m ⇥ m matrix M , we have that max1i,jm |Mi,j |  �max(M). Since we have not

found a reference for this likely well-known result with a complete proof, we provide a proof in Lemma

12 (p. A77).

From Proposition 2 we have that Cov r⇠ = (⇤0
x 

�1

x ⇤x)
�1, and that it is a positive definite matrix.

We therefore have that

(13) max
1i,jd⇠

|(Cov r⇠)i,j |  �max

�
(⇤0

x 
�1

x ⇤x)
�1
�
=

1

�min(⇤0
x 

�1
x ⇤x)

where the last step follows from the spectral decomposition theorem, see e.g. Corollary A.6.4.1 in

Mardia et al. (1979).

We now show that

�min(⇤
0
x 

�1

x ⇤x) � min
1id⇠

Ni

0

@m
2

⇤x

M x

�
M

2

⇤x

m x

1
Ni

X

1jd⇠,j 6=i

Ci,j

1

A ,

which from eq. (13) implies the conclusion of the first statement.

Now ⇤0
x 

�1

x ⇤x has a constant dimension of d⇠ ⇥ d⇠, and has entries of the form

(⇤0
x 

�1

x ⇤x)i,j = (⇤x)
0
·,i 

�1

x (⇤x)·,j

where (⇤x)·,j is the i’th column of ⇤x.

We make use of the Greshgorin circle theorem (Horn & Johnson, 2013, Theorem 6.1.1), which

states that each eigenvalue �M of a dm ⇥ dm square matrix M = (mi,j)i,j is contained in the complex

plane D(mi,i, Ri) of radius Ri =
P

i 6=j,1jdm
|mi,j |. Now in our scenario the matrix M is positive

definite and we know all of the dm eigenvalues are real. Hence, all dm eigenvalues are contained in

the intervals of the form Di = [mi,i � Ri,mi,i + Ri], so that all eigenvalues are in D =
S

1idm
Di.

Since the radius Ri � 0 for all 1  i  dm, we need to consider the smallest point G within D, i.e.,

G = mind2D = min1idm(mi,i � Ri). If now G ! 1, then the eigenvalues of M diverge without

bound and consequently, the eigenvalues of M�1 converge to zero. Therefore, by translation to our
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notation, the smallest eigenvalue of ⇤0
x 

�1

x ⇤x is greater than

G = min
1id⇠

0

@(⇤x)
0
·,i 

�1

x (⇤x)·,i �
X

1jd⇠,j 6=i

|(⇤x)
0
·,i 

�1

x (⇤x)·,j |

1

A .

Since �min( 
�1

x ) = 1/�max( x), Assumption 6 (1) implies that 1/�max( x) > 1/M x > 0. Since

(⇤x)
0
·,i(⇤x)·,i =

P
dx
k=1

(⇤x)
2

k,i > 0, we have

(⇤x)
0
·,i 

�1

x (⇤x)·,i = ((⇤x)
0
·,i(⇤x)·,i) · [(⇤x)

0
·,i 

�1

x (⇤x)·,i/(⇤x)
0
·,i(⇤x)·,i| {z }

�M
�1
 x

]

� M
�1

 x
(⇤x)

0
·,i(⇤x)·,i = M

�1

 x

dxX

k=1

(⇤x)
2

k,i.

By Assumption 6 (2) and (3), there are Ni non-zero elements in this sum, and these are larger than

m
2

⇤x
> 0. Therefore,

dxX

k=1

(⇤x)
2

k,i > Nim
2

⇤x ,

which further implies

(⇤x)
0
·,i 

�1

x (⇤x)·,i > M
�1

 x
Nim

2

⇤x .

We now bound the negative term in G from below, which means providing an upper bound for
P

1jd⇠,j 6=i
|(⇤x)

0
·,i 

�1

x (⇤x)·,j |. From the triangle inequality, we have that

|(⇤x)
0
·,i 

�1

x (⇤x)·,j | = |

dxX

k=1

dxX

l=1

(⇤x)k,i(⇤x)l,j( 
�1

x )k,l| 
dxX

k=1

dxX

l=1

|(⇤x)k,i(⇤x)l,j( 
�1

x )k,l|.

Recalling that Ci,j is the number of non-zero elements in the sum, we get that

dxX

k=1

dxX

l=1

|(⇤x)k,i(⇤x)l,j( 
�1

x )k,l|  Ci,j max
1i,jdx

|(⇤x)k,i(⇤x)l,j( 
�1

x )k,l|.

By Assumption 6 (2), we have that |(⇤x)k,i(⇤x)l,j | < M
2

⇤x
which is fixed for all dx. Again, we

use that for a symmetric positive definite m ⇥ m matrix M , we have that max1i,jm |Mi,j | 

max|x|=1 x
0
Mx = �max(M). Since  x is a positive definite matrix, we therefore get from Lemma

12 that max1i,jdx |( �1

x )i,j |  �max( 
�1

x ) = 1/�min( ). Since �min( ) > m x > 0 we get

1/�min( ) < 1/m x . Therefore, we get that max1i,jdx |(⇤x)k,i(⇤x)l,j( 
�1

x )k,l|  M
2

⇤x
/m x , which

gives
dxX

k=1

dxX

l=1

|(⇤x)k,i(⇤x)l,j( 
�1

x )k,l|  Ci,jM
2

⇤x/m x .

We therefore get that

G � min
1id⇠

0

@M
�1

 x
Nim

2

⇤x �

X

1jd⇠,j 6=i

Ci,j max
1i,jdx

|(⇤x)k,i(⇤x)l,j( 
�1

x )k,l|

1

A

� min
1id⇠

0

@M
�1

 x
Nim

2

⇤x �

X

1jd⇠,j 6=i

Ci,jM
2

⇤x/m x

1

A

� min
1id⇠

Ni

0

@m
2

⇤x

M x

�
M

2

⇤x

m x

1
Ni

X

1jd⇠,j 6=i

Ci,j

1

A .

This shows the first statement by inversion of both sides.
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Statement (2):

Let ẽ > 0 be given. Suppose ẽ is so small that M�1

 x
m

2

⇤x
/(M2

⇤x
/m x)� ẽ/(M2

⇤x
/m x) > 0. This is

possible because M
�1

 x
m

2

⇤x
/(M2

⇤x
/m x) > 0 and (M2

⇤x
/m x) > 0.

Recall that Ni > 0 and Ci,j � 0 and since limdx!1
1

Ni

P
1jd⇠,j 6=i

Ci,j = 0 for all 1  i 

d⇠ by Assumption 6 (4), we have that there exists a D > 0 so that for all dx > D we have 0 

1

Ni

P
1jd⇠,j 6=i

Ci,j < M
�1

 x
m

2

⇤x
/(M2

⇤x
/m x)� ẽ/(M2

⇤x
/m x) for all 1  i  d⇠. Therefore, recalling

that M2

⇤x
/m x > 0 for all such dx and any 1  i  d⇠ we have

m
2

⇤x

M x

�
M

2

⇤x

m x

1
Ni

X

1jd⇠,j 6=i

Ci,j �
m

2

⇤x

M x

�
M

2

⇤x

m x

�
M

�1

 x
m

2

⇤x/(M
2

⇤x/m x)� ẽ/(M2

⇤x/m x)
�

=
m

2

⇤x

M x

�M
�1

 x
m

2

⇤x + ẽ

= ẽ.

Therefore, for all su�ciently large dx, we have

G � min
1id⇠

Ni

�
M

�1

 x
m

2

⇤x �M
2

⇤x/m xM
�1

 x
m

2

⇤x/(M
2

⇤x/m x)� ẽ/(M2

⇤x/m x)
�

= min
1id⇠

Niẽ

which by Assumption 6 (3) goes to infinity. Therefore, the smallest eigenvalue of ⇤0
x 

�1

x ⇤x goes to

infinity and, consequently, the largest eigenvalue of Cov r⇠ =
�
⇤0

x 
�1

x ⇤x

��1

goes to zero, which further

implies

lim
dx!1

max
1i,jd⇠

Cov r⇠ = 0.

⇤

E.4.7. Proof of Proposition 4.

Proof of Proposition 4. All limits are with respect to dx ! 1.

Let H̃dx(x) = E[⌘|⇠̈ = x]. We start by showing that Hdx(x) = H̃dx(x). We have that E[⌘̈|⇠̈] =
E[⌘ + r⌘|⇠̈] = E[⌘|⇠̈] + E[r⌘|⇠̈].

We have that ⇠̈ = ⇠ + r⇠ is independent to r⌘, because ⇠ and r⇠ is, which is seen as follows: By

Assumption 4 (2), we have r⇠ is independent to r⌘. We now show that also ⇠ is independent to r⌘:

Since r⌘ is a function of ", and ⇠ is a function of f , ⇠ is independent to r⌘ by Assumption 2 (1) which

says that " is independent to f .

Therefore, E[r⌘|⇠̈] = E[r⌘] = E�⌘"y = �⌘E"y, which is zero by Assumption 1 (1).

The desired conclusion therefore follows if we show that sup
x2A

|H̃dx(x)�H(x)| ! 0.

From Assumption 7 (1), f = (⇠0, ⌘0)0 and r⇠ have densities. From Assumption 4 (1), r⇠ is independent

to f . Therefore, (⌘0, ⇠̈0) = (⌘0, ⇠0 + r
0
⇠)

0 has a density given by the convolution formula

(14) f
⇠̈,⌘

(x, y) = f⇠+r⇠,⌘(x, y) = Ef⇠,⌘(x� r⇠, y).

Recall that we without loss of generality assume d⌘ = 1. By Assumption 7 (1), ⌘, ⇠ have densities, and

therefore the conditional expectation H̃dx is given by the classical formula

H̃dx(x) =

Z 1

�1
y
f
⇠̈,⌘

(x, y)

f
⇠̈
(x)

dy.
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We notice that

H̃dx(x) =

Z 1

�1
y
f
⇠̈,⌘

(x, y)

f
⇠̈
(x)

dy

=
f⇠(x)
f
⇠̈
(x)

Z 1

�1
y
f
⇠̈,⌘

(x, y)

f⇠(x)
dy

Recalling eq. (14), we have

Z 1

�1
y
f
⇠̈,⌘

(x, y)

f⇠(x)
dy =

Z 1

�1
y
Ef⇠,⌘(x� r⇠, y)

f⇠(x)
dy

= E
Z 1

�1
y
f⇠,⌘(x� r⇠, y)

f⇠(x)
dy

= EH(x� r⇠),

and so for !(x, h) = EH(x� h)�H(x)

H̃dx(x) =
f⇠(x)
f
⇠̈
(x)

EH(x� r⇠)

= [EH(x� r⇠)]�

 
1�

f⇠(x)
f
⇠̈
(x)

!
[EH(x� r⇠)]

= [EH(x� r⇠)]�
f
⇠̈
(x)� f⇠(x)

f
⇠̈
(x)� f⇠(x) + f⇠(x)

| {z }
=Rdx (x)

[EH(x� r⇠)]

= H(x) + [E (H(x� r⇠))�H(x)]�Rdx(x) [E (H(x� r⇠))�H(x)]�Rdx(x)H(x)

(a)

= H(x) + [E (H(x� r⇠)�H(x))]�Rdx(x) [E (H(x� r⇠)�H(x))]�Rdx(x)H(x)

= H(x) + [E!(x, r⇠)]�Rdx(x) [E!(x, r⇠)]�Rdx(x)H(x)(15)

(a) H(x) is non-random, therefore E (H(x� r⇠))�H(x) = E (H(x� r⇠)�H(x)).

In a separate step below, we show that sup
x2S⇢ |Rdx(x)| ! 0. We now show that this leads to the

required conclusion.

From eq. (15), the triangle inequality and that sup
x
|a(x)b(x)|  (sup

x
|a(x)|)(sup

x
|b(x)|), we get

sup
x2S⇢

|H̃dx(x)�H(x)|

= sup
x2S⇢

����[E!(x, r⇠)]�Rdx(x) [E!(x, r⇠)]�Rdx(x)H(x)

����

 sup
x2S⇢

|E!(x, r⇠)|+ sup
x2S⇢

|Rdx(x)| sup
x2S⇢

|E!(x, r⇠)|+ sup
x2S⇢

|Rdx(x)| sup
x2S⇢

|H(x)|.

The conclusion now follows: Firstly we have sup
x2S⇢ |E!(x, r⇠)| ! 0 by Assumption 7 (3) (a). Secondly,

by the separate step proved below, we have sup
x2S⇢ |Rdx(x)| ! 0. Thirdly, from Assumption 7 (3) (b)

we have sup
x2S⇢ |H(x)| < 1, so that also the last term above goes to zero.

Bounding of Rdx , step 1: We first show that sup
x2S⇢ |f⇠(x)� f

⇠̈
(x)| ! 0, and then use this to show

that sup
x2S⇢ |Rdx(x)| ! 0.

Let x 2 S
⇢. The density f

⇠̈
= f⇠+r⇠ is given by the convolution expression

f⇠+r⇠ (x) = Ef⇠(x� r⇠).
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Therefore, for the indicator function I{kr⇠k2 < ⇢}, which is one i↵ kr⇠k2 < ⇢ and zero else, we have

sup
x2S⇢

|f
⇠̈
(x)� f⇠(x)| = sup

x2S⇢
|Ef⇠(x� r⇠)� f⇠(x)|

= sup
x2S⇢

��EI{kr⇠k2 < ⇢}
⇥
f⇠(x� r⇠)� f⇠(x)

⇤
+ EI{kr⇠k2 � ⇢}

⇥
f⇠(x� r⇠)� f⇠(x)

⇤��

 sup
x2S⇢

��EI{kr⇠k2 < ⇢}
⇥
f⇠(x� r⇠)� f⇠(x)

⇤��+

sup
x2S⇢

��EI{kr⇠k2 � ⇢}
⇥
f⇠(x� r⇠)� f⇠(x)

⇤��,

by the triangle inequality.

We bound the two terms separately. Recall that kak2 is the Euclidean norm of a vector a.

First, suppose kr⇠k2 < ⇢. We can then bound |f⇠(x) � f⇠(x � r⇠)| via the mean value theorem

(e.g. Edwards, 1973, p 90, Theorem 3.4): Since f⇠ is continuously di↵erentiable in S
⇢ by Assumption

7 (3) (d), we have for the (random, dx-dependent) line segment L(x, r⇠) = {x+ ↵(x� r⇠) : ↵ 2 [0, 1]}.

Then f⇠(x) � f⇠(x � r⇠) = f
0(c)r⇠ where c 2 L(x, r⇠) and f

0(c) is the derivative row vector f
0(c) =

(D1f(c), . . . , Ddxf(c)) where Dj is partial derivation with respect to the j’th coordinate. This gives

|f⇠(x)� f⇠(x� r⇠)| = |f
0(c)r⇠|

(a)

 kf
0(c)k2kr⇠k2

(b)

 sup
z2L(x,r⇠)

kf
0
⇠(z)k2kr⇠|2

(a) Cauchy-Schwartz. (b) Since c 2 L(x, r⇠).

Since kr⇠k2 < ⇢, we have L(x, r⇠) ✓ S
⇢ by the definition of S

⇢, and so sup
z2L(x,r⇠)

|f
0
⇠(z)| 

sup
z2S⇢ kf

0
⇠(z)k2 < 1 by Assumption 7 (3) (d), and consequently

(16) |f⇠(x)� f⇠(x� r⇠)|  sup
z2S⇢

kf
0
⇠(z)k2kr⇠k2.

This shows that

I{kr⇠k2 < ⇢}|f⇠(x� r⇠)� f⇠(x)|  I{kr⇠k2 < ⇢}kr⇠k2 sup
z2S⇢

|f
0
⇠(z)|,

because either kr⇠k2 < ⇢, and then eq. (16) holds, or kr⇠k2 � ⇢, and then the indicator functions both

sizes of the inequality are zero, and equality is preserved.

This shows that

sup
x2S⇢

|EI{kr⇠k2 < ⇢}[f⇠(x� r⇠)� f⇠(x)]|  sup
x2S⇢

EI{kr⇠k2 < ⇢}|f⇠(x� r⇠)� f⇠(x)|

 sup
x2S⇢

EI{kr⇠k2 < ⇢}kr⇠k2 sup
z2S⇢

kf
0
⇠(z)k2

=

✓
sup
y2S⇢

kf
0
⇠(y)k2

◆
EI{kr⇠k2 < ⇢}kr⇠k2.

Recall that r⇠ converges in probability by Assumption 7 (4). Since the function g(x) = I{kxk2 <

⇢}kxk2 is continuous, g(r⇠) converges in probability to g(0) = 0 by the continuous mapping theorem.

Since I{kr⇠k2 < ⇢}kr⇠k2 is bounded by ⇢ and converges in probability to 0 as dx ! 1, the variable

therefore also converges in expectation (e.g. Theorem 6.4 in Bierens, 2004). Therefore the above display

goes to zero since sup
y2S⇢ kf

0
⇠(y)k2 < 1 by Assumption 7 (3) (d).
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We now consider sup
x2S⇢ |EI{kr⇠k2 � ⇢}[f⇠(x � r⇠) � f⇠(x)]|, which by the triangle inequality is

bounded by

sup
x2S⇢

|EI{kr⇠k2 � ⇢}[|f⇠(x� r⇠)|+ |f⇠(x)]|

 sup
x2S⇢

EI{kr⇠k2 � ⇢}2 sup
y2S⇢

|f⇠(y)|

= EI{kr⇠k2 � ⇢}2 sup
y2S⇢

|f⇠(y)|

= 2 sup
y2S⇢

|f⇠(y)|EI{kr⇠k2 � ⇢}

= P (kr⇠k2 � ⇢)2 sup
y2S⇢

|f⇠(y)|,

which goes to zero as dx ! 1 by the definition of convergence in probability since r⇠ = oP (1) by

Assumption 7 (4).

Bounding of Rdx , step 2: We now return to Rdx(x) directly, using the bound from step 1. Now

recall 0 < infy2S⇢ f⇠(y)  f⇠(x). By Step 1, we have that for any ẽ > 0, we have that for all su�ciently

large dx, we have �ẽ < f
⇠̈
(x) � f⇠(x) < ẽ for all x 2 S

⇢. Let 0 < ẽ < infy2S⇢ f⇠(y), so that

�ẽ+ infy2S⇢ f⇠(y) > 0. Then

f
⇠̈
(x)� f⇠(x) + f⇠(x) > �ẽ+ f⇠(x) � �ẽ+ inf

y2S⇢
f⇠(y) > 0

Therefore, |f
⇠̈
(x)� f⇠(x) + f⇠(x)| = f

⇠̈
(x)� f⇠(x) + f⇠(x), and

�����
f
⇠̈
(x)� f⇠(x)

f
⇠̈
(x)� f⇠(x) + f⇠(x)

����� =
|f
⇠̈
(x)� f⇠(x)|

|f
⇠̈
(x)� f⇠(x) + f⇠(x)|


ẽ

�ẽ+ infy2S⇢ f⇠(y)
.

Since infy2S⇢ f⇠(y) > 0 by Assumption 7 (3) (c),

lim
ẽ!0+

ẽ

�ẽ+ infy2S⇢ f⇠(y)
=

0
�0 + infy2S⇢ f⇠(y)

= 0

and the convergence occurs at a rate that is independent of x. Therefore,

sup
x2S⇢

|Rdx(x)| = sup
x2S⇢

�����
f
⇠̈
(x)� f⇠(x)

f
⇠̈
(x)� f⇠(x) + f⇠(x)

�����! 0.

⇤

E.4.8. Proof of Lemma 4. The following proof is done for the dx measurements of ⇠, as it is needed

specifically for the rationale. It can easily be extended for all dz measurements by simply replacing

dx by dz = dx + dy, d⇠ by df = d⇠ + d⌘, "x by " = ("0x, "
0
y)

0 and by enlarging ⇤x and  x by the

corresponding elements of regarding the measurements of ⌘.

Proof of Lemma 4. From Assumption 8 we have that Cov "x =  x is an invertible diagonal dx ⇥ dx

matrix, which further implies  �1

x is a diagonal matrix. We call  ii the residual variance of variable i,

for i = 1, . . . , dx:

 x := diag( 11, . . . , dxdx) =

0

BB@

 11

0
. . .

0 . . . 0  dxdx

1

CCA , and , �1

x := diag

✓
1
 11

, . . . ,
1

 dxdx

◆
,

where diag stacks the given vector into a diagonal matrix. Further, we call �ij the (i, j)-entry of ⇤x.
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⇤

From Assumption 8 (2) we have that ⇤x only has one non-zero element per row, which implies that

⇤0
x 

�1

x is a d⇠ ⇥ dx matrix that has the identical non-zero elements as ⇤0
x, the elements are

⇤0
x 

�1

x :=

✓
�ij

 ii

◆

j,i,i=1,...,dx,j=1,...,d⇠

.

Hence, the element (j, i) of ⇤0
x 

�1

x is
�ij

 ii
, where �ij is either zero or non-zero. Post-multiplying

with ⇤x results in a diagonal d⇠ ⇥ d⇠ matrix:

⇤0
x 

�1

x ⇤x = diag

0

@
 

dxX

i=1

�
2

ij

 ii

!

j=1,...,d⇠

1

A .

The o↵-diagonal elements are zero, since the columns of ⇤x are orthogonal, i.e., (⇤·,j1)
0⇤·,j2 = 0, for

j1 6= j2, where ⇤·,j1 and ⇤·,j2 correspond to the j1-th and j2-th column of ⇤x, respectively. The j-th

diagonal element of ⇤0
x x⇤x is the sum

P
dx
i=1

�
2
ij

 ii
, which is nonzero since ⇤x has full column rank.

Now, since ⇤0
x 

�1

x ⇤x is a diagonal matrix, we have for its inverse a d⇠ ⇥ d⇠ matrix:

(⇤0
x 

�1

x ⇤x)
�1 = diag

0

B@

0

@ 1
P

dx
i=1

�
2
ij

 ii

1

A

j=1,...,d⇠

1

CA .

The derived entities are used in the following proofs for the specific subsections of Lemma 4.

Statement (1): Since (⇤0
x 

�1

x ⇤x)
�1 is diagonal and ⇤0

x 
�1

x has the identical non-zero elements as

⇤0
x, we have that (⇤0

x 
�1

x ⇤x)
�1⇤0

x 
�1

x also has the identical non-zero elements as ⇤0
x. The elements

result as

�x = (⇤0
x 

�1

x ⇤x)
�1⇤0

x 
�1

x =

0

@ �ij

 ii

P
dx
k=1

�
2
kj

 kk

1

A

j,i,i=1,...,dx,j=1,...,d⇠

.

The elements of �x are nonzero if �ij is nonzero.

Statement (2): Now, since �x has the same non-zero elements as ⇤0
x, this implies that r⇠ = �x"x

consists of elements that are independent sums. This is so since their elements are mutually independent

and ⇤x has only one non-zero element per row (and ⇤0
x only has one non-zero element per column).

For r⇠ := (r1, . . . , rd⇠ )
0 we have for j = 1, . . . , d⇠:

rj :=
dxX

i=1

�ij

 ii

P
dx
k=1

�
2
kj

 kk

"i,

where "i is the i-th element of "x, for i = 1, . . . , dx, and �ij is non-zero for the set of variables

measuring the j-th latent variable denoted as Ij (the item set of the j-th latent variable) with [
d⇠
j=1

Ij =

{1, . . . , dx} and with Ij1 \ Ij2 = ; for j1 6= j2. Hence, we can write rj as

rj :=
X

i2Ij

�ij

 ii

P
dx
k=1

�
2
kj

 kk

"i.

Now since the Ij are disjoint, it follows from Assumption 8 that the components of r⇠ are indepen-

dent.
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Statement (3): We have that

Cov r⇠ = (⇤0
x 

�1

x ⇤x)
�1

.

from Proposition 2. We have already derived the specific shape of this object under Assumption 5.

Hence,

Cov r⇠ := (⇤0
x 

�1

x ⇤x)
�1 = diag

0

B@

0

@ 1
P

dx
k=1

�
2
kj

 kk

1

A

j=1,...,d⇠

1

CA .

The diagonal elements of Cov r⇠ are, therefore, dj :=

0

@ 1

Pdx
k=1

�2
kj

 kk

1

A for j = 1, . . . , d⇠.

This completes the proof of Lemma 4.

⇤

E.4.9. Proof of Proposition 5.

Proof of Proposition 5. Since r⇠ consists of independent elements from Lemma 4 (2), we may without

loss of generality consider just one of the elements, say the first, as joint convergence in distribution

of independent random variables is implied by their marginal convergence in distribution, e.g., by

the convergence of their characteristic function which is the product of their marginal characteristic

functions. To simplify notation, this argument is equivalent to d⇠ = 1, which we assume without loss

of generality.

By Lemma 4, we have

r1,dx =
1

P
dx
k=1

�
2
k1
 kk

dxX

j=1

�j1

 jj

"j =
1

P
dx
k=1

�
2
k1
 kk

dxX

j=1

�j1p
 jj

"jp
 jj

.

Define the standardized errors

uj :=
"jp
 jj

.

Also define

↵j :=
�
2

j1

 jj

and notice that (↵j)j is a sequence of positive numbers. Let us also write

ndx =
dxX

j=1

↵j .

When ↵j is constant and equal to ↵0, ndx = dx↵0, and so ndx is similar to the sample size in non-

weighted sums.

With this notation, we have

(17) r1,dx =
1

ndx

dxX

i=1

p
↵juj .

We apply the Lyapunov central limit theorem (Billingsley, 1995, Section 27), which says that for an

independent sequence of variables X1, . . . , we have

(18)
1
sdx

dxX

i=1

Xi

d

����!
dx!1

N(0, 1)
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where s
2

dx
=
P

dx
i=1

Var Xi, as long as the Lyapunov condition

(19) lim
n!1

�n,� = 0, where �n,� =
1

s
2+�

dx

dxX

i=1

E|Xi|
2+�

is fulfilled, for a � > 0.

Let Xi =
p
↵iui. Since for ui = "i/

p
 ii, (ui)i is a sequence of independent standardized random

variables from Assumption 9, eq. (18) will follow as long as the Lyapunov condition is fulfilled for a

� > 0.

We will now show that the Lyapunov condition is fulfilled with the � from Assumption 9 (2). This

will give the stated conclusion, because

s
2

dx =
dxX

i=1

Var Xi =
dxX

i=1

↵i = ndx ,

since Var uj = 1

 jj
Var "j = 1, and eq. (18) works with

1
sdx

dxX

i=1

Xi =
1

p
ndx

dxX

i=1

p
↵iui =

p
ndx

1
ndx

dxX

i=1

p
↵iui =

p
ndxr1,dx .

We have

(20) E|Xi|
2+� = E(p↵j |uj |)

2+� = ↵
1+�/2

j
E|uj |

2+�

and

(21) s
2+�

dx
= (s2dx)

1+�/2 =

 
dxX

i=1

↵j

!1+�/2

By Assumption 9 (3), we have

c� := sup
j

E|uj |
2+�

< 1

Therefore,

�n,� =
1

s
2+�

dx

dxX

i=1

E|Xi|
2+� (a)

=
1

⇣P
dx
i=1

↵j

⌘
1+�/2

dxX

i=1

↵
1+�/2

j
E|uj |

2+�

(b)

 c�

P
dx
i=1

↵
1+�/2

j

⇣P
dx
i=1

↵j

⌘
1+�/2

= c�

 
dxX

i=1

↵
1+�/2

j

!
1

⇣P
dx
i=1

↵j

⌘
1+�/2

(c)

 c�dxM
1+�/2

�/ 

1

dx
1+�/2

m
1+�/2

�/ 

= (c�M
1+�/2

�/ 
m

�1��/2
�/ 

)dx
��/2

(d)

! 0 as dx ! 1.

(a) Use eq. (20) and (21). (b) Since (↵j)j is a sequence of positive numbers, all terms in the two

sums are positive, and ↵
1+�/2

j
E|uj |

2+�
 ↵

1+�/2

j
c�. Then factorize out c�. (c) From Assumption

9 (2), we know that each ↵j is contained within a finite interval, [m�/ ,M�/ ] with m�/ > 0.

Therefore
P

dx
i=1

↵
1+�/2

j

P

dx
i=1

M
1+�/2

�/ 
= dxM

1+�/2

�/ 
and

P
dx
i=1

↵j �
P

dx
i=1

m�/ = dxm�/ , so that
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1⇣Pdx
i=1 ↵j

⌘1+�/2 
1

(dxm�/ )1+�/2
. (d) Since � > 0 we have dx

��/2
! 0. The constants are non-zero and

finite. ⇤

Appendix F. On non-linear and misspecified measurement models

F.1. Polynomial measurement models. We here consider polynomial measurement models in the

context of the present paper. Such measurement models have long history, see R. McDonald (1967) for

an early monograph on the subject. For simplicity, we consider only a very restricted class of models,

though our arguments can be extended in various directions. Keeping the linear measurement model

of eq. (2), suppose without loss of generality that the two first coordinates of ⇠ and ⌘ are of the form

(✓1,x, ✓
mx
1,x

)0, (✓1,y, ✓
my
1,y

)0 mx,my > 1

respectively. That is, there may be deterministic though non-linear relations between the coordinates of

⇠ and ⌘. This is a special case of a polynomial measurement model understood as a linear measurement

model with non-linear deterministic connections between the latent variables (This is an old observation,

see Chapter 3 in R. McDonald, 1967).

While treating such a polynomial measurement model as if it was linear may have certain drawbacks

as the deterministic relationships between the latent variables are not taken into account e.g. when

forming factor scores, such non-linear measurement models may be be compatible with the assumptions

of the present paper. A core assumption in the paper is Assumption 3, where parameter identification

is assumed. The error in variables parametrization of Yalcin and Amemiya (2001) can be used to secure

this. Yalcin and Amemiya (2001) also provides an estimation method. Both identification (to fulfill

Assumption 3) and an available estimation method (to apply the method in a practical setting), are

taken as given in the following, as well as the remaining relevant assumptions.

Suppose given Assumption 1 and 3. By Lemma 1, � exists and is a left inverse of ⇤. Therefore, the

key correspondence

�(x̃0
, ỹ

0)0 = (⇠0, ⌘0)0 + (r0⇠, r
0
⌘)

0

still holds. In the presence of deterministic relationships between the coordinates of ⇠ and ⌘, it is

usually not of interest to compute the full E[⌘|⇠ = x]. We now review why. For simplicity, we assume

that ⇠ and ⌘ are bivariate, have quadratic measurement models, and therefore only contain (✓1,x, ✓
2

1,x)
0

and (✓1,y, ✓
2

1,y)
0 respectively.

Since ✓21,x is a function of ✓1,x we have that �(✓1,x, ✓
2

1,x) = �(✓1,x) by Lemma 11 (p. A76) since

'(x) = x
2 is a Borel function. Therefore, E[⌘|✓1,x, ✓21,x] = E[⌘|✓1,x]. Therefore, the non-uniqueness

(up to probability one) of conditional expectations now enter in a detrimental manner: Recall that

E[⌘|✓1,x, ✓21,x] is a function H of ✓1,x and ✓21,x. However, since �(✓1,x, ✓
2

1,x) = �(✓1,x), and H(✓1,x, ✓
2

1,x) =

E[⌘|✓1,x] = '(✓1,x), for some function ', we have that the functional mapping H is highly non-unique.

Indeed, any function H such that H(x1, x2) = '(x1) fulfills the requirement. While all such variables

agree with probability one when evaluated at ✓1,x, ✓
2

1,x, the functional relationship within the mappings

can vary: For example, H(x1, x2) = '(x1) and H(x1, x2) = '(
p

|x2| sign(x1)) are two members of this

class. It is therefore of interest to approximate ' and not H.

The degeneracy induced by the deterministic relationship between ✓1,x and ✓21,x is also incompatible

with Assumption 7 used in Proposition 4 unless the set S
⇢ is chosen in a manner which takes the

deterministic relationship into account. For example, in Assumption 7 we assume that f⇠ is continuously

di↵erentiable in S
⇢. For simplicity, assume that ✓1,x > 0. The joint cumulative distribution of ✓1,x and



A60 STEFFEN GRØNNEBERG
⇤
AND JULIEN PATRICK IRMER

⇤

✓
2

1,x is by definition

P(✓1,x  t1, ✓
2

1,x  t2)
(a)

= P(✓1,x  t1, ✓1,x 
p
t2)

(b)

= P
�
✓1,x  min(t1,

p
t2)
� (c)

= F✓1,x

�
min(t1,

p
t2)
�

(d)

=

(
F✓1,x(t1) if t1 

p
t2

F✓1,x(
p
t2) if t1 >

p
t2

(a) Recall that we assume that ✓1,x > 0. (b) Recall that the comma in the probability stands for

intersection. Therefore, the event can only happen if ✓1,x is less than or equal the smallest of the two

upper limits. (c) F✓1,x is the cumulative distribution function of ✓1,x, defined as F✓1,x(z) = P (✓1,x  z).

(d) We consider the two cases where we know the value of the minimum.

We therefore take the two partial derivatives of the above joint cumulative distribution function of

✓1,x, ✓
2

1,x, and find that its density is given by

f⇠(t1, t2) =

(
f✓1,x(t1) if t1 

p
t2

f✓1,x(
p
t2) if t1 >

p
t2

= f✓1,x(t1)I{t1 
p
t2}+ f✓1,x(

p
t2)I{t1 >

p
t2},

whose partial derivatives are

(@/@t1)f⇠(t1, t2) = f
0
✓1,x

(t1)I{t1 
p
t2}, (@/@t2)f⇠(t1, t2) =

1
2
f
0
✓1,x

(
p
t2)t

�1/2

2
I{t1 >

p
t2}

Since these partial derivatives have jumps except in sets (t1, t2) where t1 and
p
t2 have a fixed order,

f⇠ is not continuously di↵erentiable even when f✓1,x is.

Another issue is that ✓21,y is considered as part of ⌘ only since we are considering a non-linear

measurement model from a linear perspective. We are interested in how ✓1,y varies with ✓1,x, where

✓1,y is measured via a quadratic measurement equation. We therefore want to approximate

E[✓1,y|✓1,x = x] and not

 
E[✓1,y|✓1,x = x1]

E[✓21,y|✓1,x = x1]

!
.

Both issues can be dealt with by a minor modification of the framework of the paper. This can also

be done in practice because the non-linear measurement model is provided by the user. Consider a

linear transformation P such that

(
...
⇠

0
,
...
⌘

0)0 := P�(x̃0
, ỹ

0)0 = P (⇠0, ⌘0)0 + P (r0⇠, r
0
⌘)

0 = (⇠1, ⌘1)
0 + (r1,⇠, r1,⌘)

0

removes the redundant variables, i.e., ✓21,x, ✓
2

1,y. The statistical behavior of
...
⇠ ,

...
⌘ can be treated as

population Bartlett scores and inputted into non-parametric regression methods as described above.

This will approximate H̃ and not H.

F.2. On measurement model misspecification. We here investigate what happens when the mea-

surement model is misspecified, focusing on a general non-linear measurement framework. We show

that such misspecifications will be mixed in with the non-parametric trend estimate for H, and with-

out assumptions leading to non-linear and possibly non-parametric identification of the measurement

model and the structural relations, it is impossible to disentangle where contributions to the estimate

of H comes from. Such identification results appear not to be available in the literature, and seems

di�cult to reach.

Suppose the data-generating mechanism is such that

x = Gx(⇠,�
x) + "x, y = Gy(⌘,�

y) + "y.

where Gx(·,�
x) = ((Gx(·,�

x

i ))
dx
i=1

)0, and Gy(·,�
y) = ((Gy(·,�

y

i
))

dy
i=1

)0 are functions of the latent vari-

ables with parameter vectors �x
,�

y. The other parts of the data generating model is kept as is.
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While the model as stated will not be identified without more assumptions, we may still suppose the

data-generating mechanism is contained within this class. Notice that this general case also includes

the linear case with a misspecified dimensionality, and even the case when the measurement model

considered in the paper is correct.

Suppose we apply the non-parametric regression methods based on Bartlett scores as described

earlier. This procedure will then estimate H̃(z) = E[�̃y ỹ|�̃xx̃ = z] where �̃y, �̃x are the Bartlett

transformations for the endogenous and exogenous measurement models respectively, defined via the

population limits of a given possibly inconsistent estimator.

Since "x is mean zero and independent to x, we still have a conclusion similar to Lemma 2. Let

G̃x(⇠,�
x) = Gx(⇠,�

x)� Ex and G̃y(⌘,�
y) = Gy(⌘,�

y)� Ey. Then

E
h
�̃y ỹ|�̃xx̃

i
= E

h
�̃yG̃y(⌘,�

y)
���̃x[G̃x(⇠,�

x) + "x]
i

= E
h
�̃yG̃y(H(⇠) + ⇣,�

y)
���̃x[G̃x(⇠,�

x) + "x]
i
.(22)

This cannot in general be simplified further, but we see that the non-parametric trends are mixed

together, and cannot easily be separated without strong assumptions. Especially, we see that the

relationship G̃y(H(⇠) + ⇣,�
y) implies that non-linearities in G̃y and H cannot be separated without

further assumptions, as any function pair with the same function composition leads to the same values

of E[�̃yy|�̃xx].

With more assumptions, E[�̃yy|�̃xx] can be further simplified. As an illustration, we consider the

case of normality.

Example 6. Suppose ⇠, ⇣, "x are zero mean and jointly normal, and Gx is linear, say Gx(⇠,�
x) = ⇤̃x⇠.

Then, in eq. (22), we condition on �̃x[⇤̃x⇠ + "x], which is normal. Then Z := (�̃x[⇤̃x⇠ + "x], ⇠ + ⇣)

is jointly normal. This joint normality implies that when conditioning ⇠ + ⇣ on �̃x[⇤̃x⇠ + "x] is again

normal. We now use Lemma 8 (p. A75) to find this distribution.

Since Cov (�̃x⇤̃x⇠+�̃x"x) = �̃x⇤̃x�⇤̃
0
x�̃

0
x+⇤̃x x⇤̃

0
x = �̃x(⇤̃x�⇤̃

0
x+ x)�̃

0
x, and Cov (⇠+⇣) = �+

 ⇣ , where  ⇣ = Cov (⇣). Hence, we have that ⌃Y,X = Cov (⇠+ ⇣, �̃x⇤̃x⇠+ �̃x"x) = Cov (⇠, �̃x⇤̃x⇠) +

Cov (⇠, �̃x"x) + Cov (⇣, �̃x⇤̃x⇠) + Cov (⇣, �̃x"x) = �⇤̃0
x�̃

0
x, and analogously, ⌃X,Y = (�⇤̃0

x�̃
0
x)

0 =

�̃x⇤̃x�. Therefore, Z is zero mean with covariance matrix

⌃ =

 
�̃x(⇤̃x�⇤̃

0
x + x)�̃

0
x, �̃x⇤̃x�

�⇤̃0
x�̃

0
x, �+ ⇣

!
.

From Lemma 8, we have that ⇠ + ⇣|⇤̃x⇠ + "x is normal with mean

µ(�̃x[⇤̃x⇠ + "x]) = �⇤̃
0
x�̃

0
x[�̃x(⇤̃x�⇤̃

0
x + x)�̃

0
x]

�1�̃x[⇤̃x⇠ + "x]

and covariance

⌃̃ = �+ ⇣ � �⇤̃
0
x�̃

0
x[�̃x(⇤̃x�⇤̃

0
x + x)�̃

0
x]

�1�̃x⇤̃x�

Let Z ⇠ Nd⇠ (0, I) and independent to ⇠. Then for ⌃̃1/2(̃⌃1/2)0 = ⌃̃

⌃̃1/2
Z + µ(�̃x[⇤̃x⇠ + "x])

is a stochastic representation of ⇠ + ⇣|�̃x[⇤̃x⇠ + "x]. Therefore,

E
h
�̃yy|�̃xx

i
= EZ

h
�̃yG̃y

⇣
H

⇣
⌃̃1/2

Z + µ(�̃x[⇤̃x⇠ + "x])
⌘
,�

y

⌘i

where EZ is expectation with respect only to Z.
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Example 7. We continue Example 6, and verify its correctness in the case when the linear measurement

model is in fact correct, and that

H(x) = Bx.

We compute directly that

E[�̃y⇤̃y⌘|�̃xx̃] = E[⌘|⇠ + r⇠] = E[B⇠ + ⇣|⇠ + r⇠] = BE[⇠|⇠ + �̃x"x].

We have Cov (⇠ + �̃x"x) = � + �̃x x�̃
0
x. We also have Cov (⇠) = �. Further, Cov (⇠, ⇠ + �̃x"x) =

Cov (⇠, ⇠) + Cov (⇠, �̃x"x) = �, and Cov (⇠ + �̃x"x, ⇠) = �0 = �. Therefore, (⇠ + �̃x"x, ⇠) is normal

with zero mean and covariance matrix
 
�+ �̃x x�̃

0
x, �

�, �

!
.

We therefore have that ⇠|⇠ + �̃x"x is normal, with mean

µ
�(⇠ + �̃x"x) = �(�+ �̃x x�̃

0
x)

�1(⇠ + �̃x"x).

E[�̃y⇤̃y⌘|�xx] = BE[⇠|⇠ + �̃x"x]

= B�(�+ �̃x x�̃
0
x)

�1(⇠ + �̃x"x).

We now verify that the expression from Example 6 is the same as found directly above. We have

that �̃yG̃y and �̃xG̃x becomes the identity by Lemma 1. Then, using that H(x) = Bx, we get that

E[�̃yy|�̃xx] = EZ [�̃yG̃y(H(⌃̃1/2
Z + µ(�̃x[⇤̃x⇠ + "x]),�

y)]

= EZ [B(⌃̃1/2
Z + µ(�̃x[⇤̃x⇠ + "x])]

= Bµ(�̃x[⇤̃x⇠ + "x])

= B�⇤̃0
x�̃

0
x[�̃x(⇤̃x�⇤̃

0
x + x)�̃

0
x]

�1�̃x[⇤̃x⇠ + "x]

= B�[�+ �̃x x�̃
0
x]

�1[⇠ + �̃x"x],

The last equality follows as �̃x is a left inverse of ⇤̃x, which also implies that ⇤̃0
x�̃

0
x = (�̃x⇤̃x)

0 = I.

We see that the expressions match with the earlier calculation.

Let us seize the occasion to verify the conclusion of Proposition 4 in this direct and simple case.

Since �̃xx = ⇠̈, we have

Hdx(x) = E[⌘̈|⇠̈ = x] = E[⌘|⇠̈ = x] = B�[�+ �̃x x�̃
0
x]

�1
x.

Since E[⌘|⇠] = E[B⇠ + ⇣|⇠] = BE[⇠|⇠] + E[⇣|⇠] = B⇠ we have

H(x) = E[⌘|⇠ = x] = Bx.

Therefore, for any set S⇢, we have

sup
x2S⇢

|Hdx(x)�H(x)| = sup
x2S⇢

|B�[�+ �̃x x�̃
0
x]

�1
x�Bx|

= sup
x2S⇢

���B
⇣
�[�+ �̃x x�̃

0
x]

�1
� I

⌘
x

��� .

By Proposition 2, we have �̃x x�̃
0
x = Cov r⇠ =

�
⇤0

x 
�1

x ⇤0
x

��1

, which goes to zero as dx increases

under e.g. the assumptions of Proposition 3. Since matrix inversion is continuous, we see that �[� +

�̃x x�̃
0
x]

�1
! �[�]�1 = I and so

B

⇣
�[�+ �̃x x�̃

0
x]

�1
� I

⌘
! B(I � I) = 0.
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Therefore, as long as S
⇢ has finite extension, sup

x2S⇢ |Hdx(x)�H(x)| goes to zero. If S⇢ has infinite

extension, the supremum is infinite for each dx. This is interesting with respect to the conditions identi-

fied in Appendix E.2 (p.A44) where the required convergence concerning ! is shown under Assumption

10, which include an assumption of finite extension. We therefore see that even in this simplest of

cases, finite extension is actually needed. ⇤

When specifying Gy, concrete expressions for Hdx can be reached, as we now illustrate.

Example 8. Suppose that

xi = �
x

i,1⇠ + "i,x, i = 1, 2, . . . , dx,

yj = �
y

j,1
⌘ + �

y

j,2
⌘
2 + "j,x, j = 1, 2, . . . , dy,

where the structural trend is linear and given by

⌘ = ⇠ + ⇣.

All error terms have zero mean, and are independent of each other as well as to ⇠. Suppose ⇠ and ⇣ are

standardized. For computational tractability, we assume that all latent random variables are jointly

normal.

Suppose we estimate a single-factor linear factor model. We will show that E[⌘̈|⇠̈ = x] is a second

degree polynomial in x. The missing non-linearity in the measurement model therefore shows up in

the non-parametric trend estimates of the structural variables.

As earlier, the misspecified single-factor linear factor model without correlated errors is assumed

estimated using a specific estimator, such as the normal theory ML or the GLS estimator. The asymp-

totic limit that this estimator converges to as the sample size increases will be denoted by (�̃x

i ), (�̃
y

i
),

and similarly for error variances estimated by the misspecified model, denoted by ( ̃ii,x)
dx
i=1

, ( ̃ii,y)
dy
i=1

for respectively error variances of the measurement error of ⇠ and ⌘.

Let Lx, Ly be the linear operators defined by their application to sequences cx = (c1, c2, . . . , cdx)

and cy = (c1, c2, . . . , cdy ) through the operation

Lxcx =

 
dxX

k=1

(�̃x

k)
2

 ̃kk,x

!�1
dxX

i=1

�̃
x

i ( ̃ii,x)
�1

ci

Lycy =

0

@
dyX

k=1

(�̃y

k
)2

 ̃kk,y

1

A
�1

dyX

i=1

�̃
y

i
( ̃ii,y)

�1
ci.

Then, from Lemma 4, the Bartlett factor scores for ⇠ and ⌘ respectively, are

Lxx̃, x̃i = xi � Exi

Ly ỹ, x̃i = yi � Eyi.

Now Exi = 0 and Eyi = E�y

i,2
⌘
2 = �

y

i,2
Var ⌘ = �

y

i,2
Var (⇠ + ⇣) = �

y

i,2
[Var (⇠) + Var (⇣)] = 2�y

i,2
.

The linearity of Lx implies that

Lxx̃ = [Lx(�
x

i,1)
dx
i=1

]
| {z }

=:�̃S,x

⇠ + Lx"i,x| {z }
=:"S,x

= �̃S,x⇠ + "S,x.



A64 STEFFEN GRØNNEBERG
⇤
AND JULIEN PATRICK IRMER

⇤

Similarly,

Ly ỹ = Lx(�2�y

i,2
+ �

y

i,1
⌘ + �

y

i,2
⌘
2 + "i,x)

dx
i=1

= Lx(�2�y

i,2
)dx
i=1| {z }

=:�̃S,0,y

+Lx(�
y

i,1
)dx
i=1| {z }

=:�̃S,1,y

⌘ + Lx(�
y

i,2
)dx
i=1| {z }

=:�̃S,2,y

⌘
2 + Lx("i,x)

dx
i=1| {z }

=:"S,y

= �̃S,0,y + �̃S,1,y⌘ + �̃S,2,y⌘
2 + "S,y.

From our assumptions, "S,y, "S,x have zero mean and are independent to each other and to ⇠. The

LOESS estimator based on the Bartlett scores from the misspecified model will therefore asymptotically

reach

E[Ly ỹ|Lxx̃] = �̃S,0,y + �̃S,1,yE[⌘|�̃S,x⇠ + "S,x] + �̃S,2,yE[⌘2||�̃S,x⇠ + "S,x] + E["S,y|�̃S,x⇠ + "S,x]

= �̃S,0,y + �̃S,1,yE[⇠ + ⇣|�̃S,x⇠ + "S,x] + �̃S,2,yE[⇠2 + 2⇠⇣ + ⇣
2
||�̃S,x⇠ + "S,x]

= �̃S,0,y + �̃S,1,yE[⇠|�̃S,x⇠ + "S,x] + �̃S,2,yE[⇠2|�̃S,x⇠ + "S,x] + 2E[⇠⇣|�̃S,x⇠ + "S,x]

+ E[⇣2|�̃S,x⇠ + "S,x].

Since ⇣2 is independent to �̃S,x⇠ + "S,x, we use eq. (27) (p. A75) to get that E[⇣2|�̃S,x⇠ + "S,x] =

E⇣2 = 1.

Since �̃S,x⇠ + "S,x is a function of ⇠ and "S,x, we have that �(�̃S,x⇠ + "S,x) ✓ �(⇠, "S,x). Therefore,

we apply Theorem 4 (p. A74) and get that E[⇠⇣|�̃S,x⇠ + "S,x] = E[E[⇠⇣|⇠, "S,x]|�̃S,x⇠ + "S,x]. Since ⇠ is

�(⇠, "S,x)-measurable, E[⇠⇣|⇠, "S,x] = ⇠E[⇣|⇠, "S,x] (use Theorem 3 on p. A74). Since ⇣ is independent to

both ⇠, "S,x, we use eq. (27) (p. A75) to get that E[⇣|⇠, "S,x] = E[⇣] = 0. Therefore, E[⇠⇣|�̃S,x⇠+"S,x] =

0.

Since (�̃S,x⇠ + "S,x, ⇠) is jointly normal, we use Lemma 8 to see that

E[⇠|�̃S,x⇠ + "S,x = z] = Cov (⇠, �̃S,x⇠ + "S,x)Var (�̃S,x⇠ + "S,x)
�1

x,

which is linear in x.

Finally, since

Var
h
⇠|�̃S,x⇠ + "S,x

i
= E[⇠2|�̃S,x⇠ + "S,x]� (E[⇠|�̃S,x⇠ + "S,x])

2

we get that

E[⇠2|�̃S,x⇠ + "S,x = z] = Var
h
⇠|�̃S,x⇠ + "S,x = z

i
+ (E[⇠|�̃S,x⇠ + "S,x = z])2.

Again, since (�̃S,x⇠+"S,x, ⇠) is jointly normal, and therefore Var
h
⇠|�̃S,x⇠ + "S,x

i
is non-stochastic from

Lemma 8, it will not vary with x. Since we have already shown E[⇠|�̃S,x⇠ + "S,x = z] to be linear in z,

we conclude that E[⇠2|�̃S,x⇠ + "S,x = z] is a second degree polynomial in z. In conclusion, this shows

that also E[Ly ỹ|Lxx̃ = z] is a second degree polynomial in z, with coe�cients deducible from the above

argument. ⇤

F.3. Simulation illustrations with measurement model misspecifications. In this section we

provide numerical illustrations of the e↵ect of having a nonlinear factor model, when assuming a

linear measurement model in the estimation of H. We consider only two empirical estimators: the

LOESS(BFS) method and the BSpline(NLFS) method.

For both estimators, the examples show that for low degrees of nonlinearity in the measurement

model, the structural part of the model is adequately estimated, while for stronger degree of nonlin-

earity, larger influences on the structural part are vivid. The supplemental material includes complete

computer code and all parameter values.
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Example 9 shows the e↵ect of a nonlinear e↵ect in the measurement as well as the structural part

of the model which result in an estimated linear trend. Example 10 and 11 show that a nonlinear

misspecification in the measurement model can result in estimates of the structural trend that is

erroneously nonlinear (the true trend is linear). This happens both for the LOESS(BFS) and the the

nonlinear factor scores of Kelava et al. (2017) in the BSpline(NLFS), which both assume a correctly

specified and linear measurement model.

Example 9. Consider the measurement models

(23) xi = µx,i + �x,i,1⇠ + ↵�x,i,2⇠
2 + "x,i, i = 1, 2, 3, yj = µy,j + �y,j,1⌘ + "y,j,2, j = 1, 2, 3,

which is a nonlinear factor model for xi, where ↵ > 0 controls the degree of nonlinearity. For ↵ = 0

this is a linear factor model. We assume a quadratic structural model

⌘ = ↵⌘ + ⇠ + ⇠
2 + ⇣,

and simulate all variables to be normal with ⇠ ⇠ N (0, .5), ⇣ ⇠ N (0, .3), ↵⌘ = �.5 so that E⌘ =

0,Var ⌘ = 1.3 and set the factor loadings as �x,1,1 = �y,1,1 = 1, �x,2,1 = �y,2,1 = .8, and �x,3,1 =

�y,3,1 = .7. For the nonlinear part in ⇠
2

1 we set �x,1,2 = 1.3, �x,2,2 = 1, and �x,3,2 = .4. Further,

we set Var "x,i and Var "y,j so that the reliabilities are constant across all values of ↵ with Rel[x1] =

Rel[y1] = .81, Rel[x2] = Rel[y2] = .64, Rel[x3] = Rel[y3] = .49. The reliability are computed as

Rel[xi] =
�
2

x,i,1 Var ⇠ + 2↵2
�
2

x,i,2(Var ⇠)
2

�
2

x,i,1
Var ⇠ + 2↵2�

2

x,i,2
(Var ⇠)2 +Var "x,i

and Rel[yj ] =
�
2

y,i,1 Var ⌘

�
2

y,i,1
Var ⌘ +Var "y,i

.

Further, µx,i = �.5�x,i so that Exi = 0, i = 1, 2, 3.

We used two methods of the original simulation study. We estimated the (partly wrongly specified)

linear factor model

xi = µx,i + �̃x,i⇠̃ + "̃x,i, i = 1, 2, 3, yj = µy,j + �y,j ⌘̃ + "̃y,j , j = 1, 2, 3,

and used this linear measurement model to estimate H non-parametrically using LOESS(BFS) based

on the Bartlett (1937) factor scores. Further, we estimated BSpline(NLFS) using the nonlinear factor

scores of Kelava et al. (2017). Figure 23 shows that for small ↵ (i.e., small nonlinearity in the measure-

ment part of the model), the estimates for H clearly suggest a nonlinear (quadratic trend) for both

methods. In contrast, for large ↵, i.e., ↵ = 1, a trend close to linear is suggested. This happens for

LOESS(BFS) as well as BSpline(NLFS).

⇤

Example 10. The second example is almost identical to Example 9, except, we assume a linear

structural model

⌘ =
p

2⇠ + ⇣,

where, again, all parameters were chosen so that all reliabilities are identical across di↵erent values of

↵ and E⌘ = 0,Var ⌘ = 1.3. We (again) estimated the (partly wrongly specified) linear factor model

xi = µx,i + �̃x,i⇠̃ + "̃x,i, i = 1, 2, 3, yj = µy,j + �y,j ⌘̃ + "̃y,j , j = 1, 2, 3,

and used this linear measurement model to estimate H non-parametrically using LOESS(BFS) based

on the Bartlett (1937) factor scores. Further, we estimated BSpline(NLFS) using the nonlinear factor

scores of Kelava et al. (2017). Figure 24 suggest a linear trend for small values of ↵, i.e., small nonlinear

e↵ects in the measurement part of the model. For ↵ = 1 a clear nonlinear trend is evident, which has

slower than linear growth.

⇤



A66 STEFFEN GRØNNEBERG
⇤
AND JULIEN PATRICK IRMER

⇤

BSpline(NLFS) LOESS(BFS)
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Figure 23. Predicted trends for quadratic structural model using

LOESS(BFS) and BSpline(NLFS) for di↵erent values of ↵ representing

di↵erent degree of nonlinearity (quadratic) in the factor model for ⇠ for

n = 1000.

BSpline(NLFS) LOESS(BFS)
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Figure 24. Predicted trends for linear structural model using LOESS(BFS)

and BSpline(NLFS) for di↵erent values of ↵ representing di↵erent degree of

nonlinearity (quadratic) in the factor model for ⇠.
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Example 11. In this example we consider a linear measurement model for the exogenous part of the

model, but a nonlinear one for the endogenous part of the model. Consider the measurement models

(24) xi = µx,i + �x,i,1⇠ + "x,i, i = 1, 2, 3, yj = µy,j + �y,j,1⌘ + ↵�y,j,3⌘
3 + "y,j , j = 1, 2, 3,

which is a nonlinear factor model for yi, where ↵ > 0 controls the degree of nonlinearity. For ↵ = 0

this is a linear factor model. We assume a linear structural model

⌘ = ⇠ + ⇣,

and simulate all variables to be normal with ⇠ ⇠ N (0, .5), ⇣ ⇠ N (0, .5), so that E⌘ = 0,Var ⌘ = 1 and

set the factor loadings of the linear e↵ects as in Example 9 and 10. For the nonlinear part in ⌘31 we set

�y,1,3 = .2, �y,2,3 = .15, and �y,3,3 = .1. Further, we set Var "x,i and Var "y,j so that the reliabilities

are constant across all values of ↵ with Rel[x1] = Rel[y1] = .81, Rel[x2] = Rel[y2] = .64, Rel[x3] =

Rel[y3] = .49. The reliability are computed as

Rel[xi] =
�
2

y,i,1 Var ⇠

�
2

y,i,1
Var ⇠ +Var "y,i

and

Rel[yi] =
�
2

y,i,1 Var ⌘ + �
2

y,i,3↵
2 Var ⌘3 + 2↵�y,i,1�y,i,3 Cov [⌘, ⌘

3]

�
2

y,i,1
Var ⌘ + �

2

y,i,3
↵2 Var ⌘3 + 2↵�y,i,1�y,i,3 Cov [⌘, ⌘3] + Var "y,i

.

Further, µx,i = µy,i = 0 so that Exi = Eyi = 0, i = 1, 2, 3. Note that for a standardized normal ⌘ we

have Var ⌘3 = E⌘6 = 15 and Cov [⌘, ⌘3] = E⌘4 = 3.

We (again) estimated the (partly wrongly specified) linear factor model

xi = µx,i + �̃x,i⇠̃ + "̃x,i, i = 1, 2, 3, yj = µy,j + �y,j ⌘̃ + "̃y,j , j = 1, 2, 3,

and used this linear measurement model to estimate H non-parametrically using LOESS(BFS) based

on the Bartlett (1937) factor scores. Further, we estimated BSpline(NLFS) using the nonlinear factor

scores of Kelava et al. (2017). Figure 25 suggests a linear trend for small values of ↵, i.e., small nonlinear

e↵ects in the measurement part of the model. For ↵ = 1 a clear nonlinear trend is evident with growth

quicker than linear.

For ↵ 6= 0, the estimates of H are a↵ected by the misspecified non-linear measurement model. For

↵ = 1, the estimated non-linear trend appears to be a third order polynomial. We conjecture that this

is due to the same type of e↵ect as shown analytically in Example 8 (p. A63).

⇤

Appendix G. Independence between ⇠ and " is incompatible with ordinal data

Suppose a factor model X = ⇤x⇠ + "x, where X has ordinal coordinates and ⇠ continuous. Since

then ⇤x⇠ is continuous, we can apply the following Lemma (Lemma 6 below) coordinate by coordinate

to X and see that the coordinates of "x cannot be independent to
P

j
�
x

k,j⇠j , which implies that "x is

not independent to ⇠.

This conclusion seems intuitively clear: Since X can only take on a finite number of values, but ⇠

can take on a continuum of possible values, "x = X � ⇤x⇠ has to compensate for the continuity of ⇠

whose influence on X is filtered in such a way that the result of ⇤x⇠+ "x only takes on a finite number

of values. This compensation leads to dependence between "x and ⇠.
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Figure 25. Predicted trends for a linear structural model using LOESS(BFS)

and BSpline(NLFS) for di↵erent values of ↵ representing di↵erent degree of

nonlinearity (cubic) in the factor model for ⇠.

G.1. A simple illustration. Let us look at this lack of independence in more detail using a proto-

typical factor model for univariate x, ⇠, and "x, namely

x = µx + �x⇠ + "x.

Here, µx,�x are numbers, and ⇠ is an arbitrary continuous random variable.

As an extreme though practically relevant case, we suppose x is a binary variable. For concreteness,

suppose x fulfills the equations of an ordinal factor model

x = I{⇠ + U > ⌧},

where ⇠, U are independent. If the distributions of ⇠, U are chosen, we may use them to choose constants

�x, µx so that the identifying restrictions Cov (⇠, "x) = 0 and E"x = 0 are fulfilled. To see this, notice

that

0 = Cov (⇠, "x) = Cov (⇠, x� �x⇠) = Cov (⇠, x)� �x Var ⇠

which gives

�x =
Cov (⇠, x)
Var ⇠

We then choose µx so that E"x = 0, which is achieved by µx = Ex� �xE⇠.
Now consider the formula for "x, which is

" = x� µx � �x⇠ = I{⇠ + U > ⌧}� µx � �x⇠.

Simulated values when ⇠ ⇠ N(0, 1), U ⇠ N(0, 1), ⌧ = 0 are visualized in Figure 26, showing extreme

negative dependence with a perfect locally linear trend �µx � �xx randomly distorted by adding 1

when ⇠ + U  0. The Pearson correlation is zero by design.
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While a general discussion of this topic is outside the scope of the present paper, we warn against

using the above argument as a justification for treating ordinal data as continuous, among other reasons

because the error terms from di↵erent ordinal variables will be correlated unless more restrictions

are imposed. This implies that standard identification criteria for confirmatory factor models are

not fulfilled. Therefore, the binary variables do not in fact follow a confirmatory factor model in a

meaningful way, and the statistical properties of the binary variables will therefore not be derivable

from general results on confirmatory factor models.

−1.0

−0.5

0.0

0.5

1.0

−2 0 2
ξ

ε

Figure 26. Scatterplot between " and ⇠ in the illustrative binary case, with

trend lines in blue.

G.2. The general lemma.

Lemma 6. Suppose univariate x attains only a countable number of values, and

x = ⇠ + "x

where ⇠ is a continuous random variable and "x is a random variable. Then ⇠ and "x cannot be

independent.

Proof. Let the unique attainable values of x be a1, a2, . . .. Suppose, to reach a contradiction, that ⇠

and "x are independent. Then, for k = aj for j � 1, we have by the assumed independence that

P(x = k) = P(⇠ + "x = k) = EP(⇠ + "x = k|⇠)

(a)

=

Z

R
P(z + "x = k)f⇠(z) dz

=

Z

R
P("x = k � z)f⇠(z) dz.

(a) This is the step that follows by independence. It is justified e.g. by Lemma 4.11 in Kallenberg

(2021).
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Therefore,

1 =
X

j�1

P(x = aj) =

Z

R

X

j�1

P(" = aj � z)f⇠(z) dz

=

Z

R
P([j�1{" = aj � z})f⇠(z) dz.

Since 0  P([j�1{" = aj � z})  1 and
R
R f⇠(z) dz = 1 we must have P([j�1{" = aj � z}) = 1

for all z such that f⇠(z) > 0 except on a Lebesgue measure zero. To see this, notice that otherwise

1 =
R
R P([j�1{" = aj � z})f⇠(z) dz <

R
R f⇠(z) dz = 1 which is impossible.

Now the support S = {z : f⇠(z) > 0} of f⇠(z) must have positive Lebesgue measure, since otherwise

it is impossible that
R
R f⇠(z) dz = 1. We therefore conclude that P([m

j=1{" = aj � z}) = 1 for all

z 2 S \ M where M has Lebesgue measure zero. Since the Lebesgue measure of S̃ := S \ M equals

that of S which is positive, also S̃ has positive Lebesgue measure. Choose two distinct values z1, z2

in S̃ that are not equal to any aj , j � 1. This is possible because any set with a positive Lebesgue

measure has an uncountable number of outcomes, and the list aj , j � 1 is countable and therefore does

not exhaust the values in S̃ in case there is overlap. Then [j�1{" = aj �z1} and [j�1{" = aj �z2} are

disjoint events, and their probability equals their sum, which is 2, which is impossible, and, therefore,

we reach a contradiction which proves that the assumed statement of independence is impossible. ⇤

Appendix H. How H is influenced by Transformations of the Units of

Measurements of f

By the well-known scaling problem in confirmatory factor analysis, the unit of measurement of f is

not identified from the measurement model in eq. (2), and an arbitrary scale is fixed in applications.

Let us therefore consider the e↵ect of going from one scale to another.

We here show that conditional expectations are well-behaved under scale changes. This is surely

established in the literature earlier, and the lack of importance of scale transformations is also mentioned

in Kelava et al. (2017), but we have failed to find a reference for this, nor the exact formulas for how

the changes influence H, and we therefore include derivations on this issue here.

Since conditional expectations are defined coordinate wise, we may without loss of generality assume

that ⌘ is univariate.

A scale transformation of one coordinate fi of f is of the form afi + b where a > 0. How does

H(x) = E[⌘|⇠ = x]

change under such transformations? The coordinate fi is either contained in ⌘ or ⇠. Scale changes in

⌘ are dealt with from the linearity of conditional expectation, so that E[a⌘+ b|⇠] = aE[⌘|⇠] + b. Let us

therefore consider a scale transformation in a ⇠.

First, let us consider a univariate and continuous ⇠. We have

H̆(z) = E[⌘|a⇠ + b = z] =

Z

R
yf⌘|a⇠+b(y|z) dy =

Z

R
y
f⌘,a⇠+b(y, z)
fa⇠+b(z)

dy.

We have

fa⇠+b(z) =
@

@z
P (a⇠ + b  z) =

@

@z
P (⇠  (z � b)/a) = a

�1
f⇠((z � b)/a)
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and similarly

f⌘,a⇠+b(y, z) =
@
2

@y@z
P (⌘  y, a⇠ + b  z)

=
@
2

@y@z
P (⌘  y, ⇠  (z � b)/a)

= a
�1

f⌘,⇠(y, (z � b)/a).

Therefore

E[⌘|a⇠ + b = z] =

Z

R
y
f⌘,⇠(y, (z � b)/a)
f⇠((z � b)/a)

dy

= E[⌘|⇠ = (z � b)/a)],

since the a
�1 cancels. Therefore, H̆(z) = H((z � b)/a).

Similar calculations show that scale transformations of ⇠ in general makes the function H stay the

same, except a scale and shift transformation in each of its inputs.

Appendix I. The Problem of Empirically Approximating the Distribution of r⇠

The theoretical basis for choosing between our suggested approximations for H depend on the

distribution of r⇠. One way to approximate the distribution of r⇠ = �x"x based on data would be

to calculate a type of a residual, say "̂x and then inspect the empirical distribution of r̂⇠ = �̂"̂x.

Unfortunately, this appears to be di�cult.

Factor residuals have been studied in Bollen and Arminger (1991), who suggest defining residuals in

the way "̂x = (x� µ̂x)� ⇤̂x⇠̂ where ⇠̂ is an a�ne factor score, such as the Bartlett factor score. If we use

the Bartlett factor score and set ⇠̂ = �̂x(x� µ̂x), then r̂⇠ = �̂x"̂x = �̂x(x� µ̂x)� �̂x⇤̂x�̂x(x� µ̂x) =

�̂x(x�µ̂x)��̂x(x�µ̂x) = 0 using that �̂x is a left inverse of ⇤̂x. Therefore, the resulting approximation

does not work.

In general, for an a�ne factor score of the form ⇠̂ = Âx(x� µ̂x) we get r̂⇠ = �̂x(I � ⇤̂Ax)(x� µ̂x).

Numerical experiments with using the Thurstone matrix Ax = Tx (see Lemma 1 (3)) indicates that the

shape of the distribution of r⇠ is lost in this transformation likely due to a central limit e↵ect induced by

the summation involved in the matrix multiplication of �̂x(I � ⇤̂Ax): The empirical distribution of r̂⇠

is much too normal compared to the distribution of r⇠, and, therefore, cannot be used for diagnostics.

Numerical experiments show that this also happens when using the non-parametric factor scores of

Kelava et al. (2017). Hence, the empirical approximation of the distribution of r⇠ is an open problem.

Appendix J. Non-additive noise

Since the methodology considered in this paper is centered around conditional expectation, which

is related to averaging and therefore addition, it is most suitable when the relation between ⌘ and ⇠ is

that of a trend with additive noise. We here provide a very simple illustration of modeling trends with

non-additive noise from a conditional expectation framework. While this is a practically important

topic, the same issue is met in standard regression modeling with observed variables, and this topic is

discussed in text-books on non-linear regression modeling. We consider a full discussion of this issue

outside the scope of the present paper.

Consider a non-linear SEM with a structural model where the error term enters in a multiplicative

(and therefore non-additive) way through

(25) ⌘1 = exp(�0 + �1⇠1 + u1) = e
�0+�1⇠1

· e
u1
,
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where ⇠1, u1 are zero mean and independent of each other.

In the non-parametric framework,

⌘1 = H(⇠1) + ⇣1, H(x) = E[⌘1|⇠1 = x]

which is additive, and the foundational property E[⇣|⇠] = 0 is gained by the tautological definition of

⇣1 := ⌘1 �H(⇠) = ⌘1 � E[⌘1|⇠] and basic properties of the conditional expectation.

In the example, we use the independence between u1, ⇠1 to calculate

E[⌘1|⇠1] = e
�0+�1⇠1E[eu1

|⇠] = e
�0+�1⇠1E[eu1 ].

Therefore, H(x) = e
�0+�1xE[eu1 ] is still an exponential trend, though with a di↵erent level than the

description in eq. (25). If e.g. u1 ⇠ N(0, 1), we have Eeu1 = e
1/2. Then H(x) = e

�0+�1xe
1/2 =

e
0.5+�0+�1x.

Of course, ⇣1 will not be u1. The error term of eq. (25) u1 is independent to ⇠1. And the independence

between ⇠ and ⇣1 is not expected, and not assumed in the paper. This might be problematic for

parametric estimation methods which assumes such an independence.

We here have

⇣1 = ⌘1 � E[⌘1|⇠1] = e
�0+�1⇠1 (eu1

� E[eu1 ])

While known from general theory, we confirm that

E[⇣1|⇠] = e
�0+�1⇠1E[eu1

� E[eu1 ]|⇠1] = E[⇣1|⇠1] = e
�0+�1⇠1E[eu1

� E[eu1 ]] = 0

where the next to last equality follows from the independence between e
u1 � E[eu1 ] and ⇠1, as implied

by the independence between ⇠1 and u1.

From general results we also get that ⇣1 is uncorrelated with ⇠ and has zero mean. But ⇣1 is not

independent to ⇠, and in fact ⇣1 may be highly dependent to ⇠, as is the case in the present example.

Since E[⇣1|⇠] = 0, we have that

Var [⇣1|⇠] = E[⇣21 |⇠] = e
2�0+2�1⇠1E

⇥
(eu1

� E[eu1 ])2|⇠
⇤

= e
2�0+2�1⇠1E

⇥
(eu1

� E[eu1 ])2
⇤
= e

2�0+2�1⇠1 Var eu1
.

As far as we can see, this is problematic for the presently available NLSEM estimators. The prac-

titioner could therefore use factor score plots and trend estimates to detect signs of such dependence,

such as conditional heteroskedasticity as seen in the above example, if a parametric model is to be

fitted to a model using traditional methods. In the simple case of eq. (25), taking a log transform of

⌘1 would be a possibility, though we do not study the statistical implications of this. In econometrics,

a large literature presents solutions to this problem (see e.g. Hayashi, 2011). It seems plausible that

using these solutions using factor scores, can aid the problem, possibly with some modification. We

consider a full analysis of this outside the scope of the present paper.

In the present example, a preferred method would be to identify that a non-additive noise model

would be more appropriate. The estimation ofH as a trend estimate may be inappropriate to summarize

the trend in the factor sore in such cases, but the factor scores themselves might still be of use in a

more traditional manner to motivate non-linear models with additive noise. Also this is considered

outside the scope of the present paper.
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Appendix K. A Review of Conditional Expectations, and Their Rules

In this section, we provide a short review of conditional expectation and their most important

properties, properties used especially in Appendix B, F, G, and H.

Suppose given a probability space (⌦,F , P ). We consider mappings from ⌦ to Rd, and equip Rd

with the Borel �-field B. Recall that mappings Z : ⌦ 7! Rd are called random vectors (or random

variables if d = 1) if Z�1(U) := {! 2 ⌦ : Z(!) 2 U} 2 F for any U 2 B. Also, a random variable Z is

said to be measurable with respect to a �-field H ✓ F if Z�1(U) 2 H for any U 2 B. Here, measurable

can be understood in terms of having information about the events in ! 2 ⌦ that result in specific

outcomes of Z(!). Therefore, if these events are known, the values of Z are known, which is why all

statements are made about subsets of ⌦.

Modern development of conditional expectations are based on conditioning with respect to a �-

field H. Let X be a random variable. Suppose X is integrable, which means that E|X| < 1. The

conditional expectation E[X|H] of X given H is a random variable that fulfills the following two

properties (Billingsley, 1995, Section 34).

(1) E[X|H] is H-measurable and integrable.

(2) For all G 2 H, we have
R
G
E[X|H] dP =

R
G
X dP .

That such a variables always exists is proved in Billingsley (1995, Section 34). While the two require-

ments placed on E[X|H] do not uniquely construct it, all random variables that fulfill these properties

are with probability one equal (Billingsley, 1995). We will follow standard convention and talk about

E[X|H] in the singular, despite this lack of uniqueness.

The �-field generated by Z is �(Z), the smallest �-field for which Z is measurable. It is given

concretely by �(Z) = {Z
�1(B) : B 2 B} = {{! 2 ⌦ : Z(!) 2 B} : B 2 B} (Billingsley, 1995, Section

33, p. 433).

A Borel function ' is a function such that if B 2 B, we have that '�1(B) = {z : '(z) 2 B} 2 B.

Notice that if Y = '(Z) is a Borel function of Z, then for any U 2 �(Z) we have that

Y
�1(U) = {! 2 ⌦ : Y (!) 2 U} = {! 2 ⌦ : '(Z(!)) 2 U} = {! 2 ⌦ : Z(!) 2 '

�1(U)}

Since ' is a Borel function, '�1(U) 2 B. Since �(Z) consists of all sets of the form {! 2 ⌦ : Z(!) 2 B}

for B 2 B, we get that Y �1(U) 2 �(Z), and therefore Y is �(Z) measurable.

Also the converse holds:

Theorem 1 (Remark 5, p. 175 in Shiryaev (2016)). Let Z be a random vector. If a random

variable X is �(Z)-measurable, there exists a Borel function ' such that X = '(Z).

By the definition of E[X|�(Z)], it is �(Z) measurable. By Theorem 1, that means that E[X|�(Z)] is

a function of Z. We usually write E[X|Z] instead of E[X|�(Z)]. That is, there is a function ' so that

'(Z) = E[X|Z].

Now for Z = (Y 0
1 , Y

0
2 )

0 where Y1, Y2 are random vectors, we sometimes write E[X|Y1, Y2], which means

E[X|Z]. As in the case of expectations of random vectors, if X is a random vector X = (X1, . . . , Xn)

then we define

E[X|Z] = (E[X1|Z], . . . ,E[Xn|Z])0.

Since E[X|Z] is a function of Z, there is a function ' such that E[X|Z] = '(Z). This function is

sometimes denoted by '(z) = E[X|Z = z], although it is not the case that the conditional expectation
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is the expectation with respect to the probability measure conditioned on the event Z = z (though in

the discrete case the function does correspond to this when P (Z = z) > 0).

While the above description is very abstract, the function ' fulfills a property which connects

conditional expectations with non-parametric regression: For random a random vector X and a random

variable Y , let '(x) = E[Y |X = x]. Then ' minimizes the squared distance to Y for given x:

E
⇥
(Y � '(x))2

⇤
,

i.e., '(x) is the least squares estimate for Y at X = x (see e.g. Hayashi, 2011, Proposition 2.7).

Using a linear function for ' results in the definition of the linear regression least squares estimator,

while modeling ' non-parametrically highlights the connection of the conditional expectation to non-

parametric regression analysis: The non-parametric regression estimate approximates the conditional

expectation.

We now review the most important properties of conditional expectations that are used in this

paper.

Theorem 2 (Theorem 34.2 in Billingsley (1995)). Suppose X,Y are integrable (i.e., E|X| <

1,E|Y | < 1).

(1) If X = a with probability 1, then E[X|Z] = a.

(2) For constants a, b, we have E[aX + bY |Z] = aE[X|Z] + bE[Y |Z].

(3) If X  Y with probability 1, then E[X|Z]  E[Y |Z].

(4) |E[X|Z]|  E[|X||Z].

Theorem 3 (Theorem 34.3 in Billingsley (1995)). If X is measurable with regard to a �-field H,

and if Y and XY are integrable, then

E[XY |H] = XE[Y |H], with probability 1.

From this combined with Theorem 1, it follows that E[Z|Z] = Z and E['(Z)|Z] = '(Z), for an

integrable function '.

Theorem 4 (Law of Iterated Expectations, Theorem 34.4 in Billingsley (1995)). If X is integrable

and the �-field G1 and G2 satisfy G1 ✓ G2 then

E [E[X|G2]|G1] = E [X|G1] .

This can be used e.g. when G1 = �(Z1) ✓ �(Z1, Z2) = G2 (see the upcoming Section K.1), in which

case we have E[E[X|Z1, Z2]|Z1] = E[X|Z1].

Theorem 5 (Tower Property, see the discussion following Theorem 34.4 in Billingsley (1995)). If

X is integrable then

E [E[X|Z]] = E [X] .

From e.g. Problem 34.2 in (Billingsley, 1995, p. 455), we have that when X,Y are continuous

random variables with a joint density f and Y is integrable, then

(26) E[Y |X = x] =

R1
�1 yf(x, y) dy
R1
�1 f(x, y) dy

.
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From e.g. Problem 34.3 in (Billingsley, 1995, p. 455) we have that if X,Y are independent

(27) E[Y |X] = E[Y ].

Lemma 7. For a random variables X and a random vector Y we have that

E[X|X,Y ] = X.

Proof of Lemma 7. Since X = '(X,Y ) where '(x, y) = x is a Borel function, we have that X is

�(X,Y ) measurable (see the comment just before Theorem 1). Therefore, from Theorem 3, we have

E[X|X,Y ] = XE[1|X,Y ] = X. ⇤

Lemma 7 implies e.g. that E[X|X,U, V ] = X for Y = (U, V ).

Lemma 8. (1) For two bivariately normal variables A,B, we have that

E[A|B] = µA +Cov (A,B)Var (B)�1(B � µB)

and

(28) Var [A|B] = Var (A)� Cov (A,B)2 Var (B)�1

(2) For a jointly normal random vector (Y,X) with mean vector and covariance matrix

µ =

 
µX

µY

!
, ⌃ =

 
KX,X KX,Y

KY,X KY,Y

!

we have that

Y |X ⇠ N(µY |X ,KY |X)

where

µY |X = µY +KY XK
�1

XX
(X � µX)

and

KY |X = KY,Y �KY,XK
�1

X,X
KX,Y .

Proof. See (Mardia et al., 1979, Theorem 3.2.4). ⇤

We conclude this section by showing the property of ⇠ and ⇣ mentioned in the introduction.

Lemma 9. If E[⇣|⇠] = 0 then E⇣ = 0 and Cov ('(⇠), ⇣) = 0 for any ' such that '(⇠) is integrable.

Proof. We have E⇣ = EE[⇣|⇠] = E0 = 0.

Therefore, Cov ('(⇠), ⇣) = E['(⇠)⇣]� [E'(⇠)][E⇣] = E
⇥
E['(⇠)⇣|⇠]

⇤
= E

⇥
'(⇠)E[⇣|⇠]

⇤
= 0. ⇤

K.1. Some stability results of �-fields generated by random vectors. We here gather two

results we use in the paper, for which we did not find a reference. Especially the first property is

well-known.

Let B(Rd) be the Borel �-field for the d-dimensional Euclidean space. Recall that Chapter 2.2.3 (p.

176) in Shiryaev (2016) that for two �-fields F1,F2, the product �-field F = F1 ⌦ F2 is the smallest

�-field containing all sets of the form B1 ⇥B2 where B1 2 F1, B2 2 F2.

It is the case that

B(Rd1)⌦ B(Rd2) = B(Rd1+d2),

as shown in e.g. Chapter 2.2.3 (p. 176) in Shiryaev (2016).
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Lemma 10. For two d1, d2 dimensional random vectors Z1, Z2, we have �(Z1) ✓ �(Z1, Z2).

Proof. As mentioned just before Theorem 1, we have

�(Z1) = {Z
�1

1 (B1) : B1 2 B(Rd1)}

= {{! 2 ⌦ : Z1(!) 2 B1} : B1 2 B(Rd1)}.

We also have

�(Z1, Z2) = {(Z1, Z2)
�1(B) : B 2 B(Rd1+d2)}

= {{! 2 ⌦ : (Z1(!), Z2(!)) 2 B} : B 2 B(Rd1+d2)}

Since B(Rd1+d2) = B(Rd1) ⌦ B(Rd2), we have that for all B1 2 B(Rd1), B2 2 B(Rd2) it is the case

that B1 ⇥B2 2 B(Rd1+d2).

Using this and that B(Rd2) is a �-field so that Rd2 2 B(Rd2), shows that for any B1 2 B(Rd1) we

have that B1 ⇥ Rd2 2 B(Rd1+d2).

Therefore,

�(Z1) = {{! 2 ⌦ : Z1(!) 2 B1} : B1 2 B(Rd1)}

= {{! 2 ⌦ : Z1(!) 2 B1, Z2(!) 2 Rd2
} : B1 2 B(Rd1)}

= {{! 2 ⌦ : Z1(!) 2 B1, Z2(!) 2 Rd2
} : B1 ⇥ Rd2

2 B(Rd1+d2)}

✓ {{! 2 ⌦ : (Z1(!), Z2(!)) 2 B} : B 2 B(Rd1+d2)}

= �(Z1, Z2).

⇤

For the next lemma, we recall Jacod and Protter (2004, Theorem 8.1), stated below. Before we

state it we recall the following more general general concept from measure theory.

Let (E, E) and (F,F) be two measurable spaces. A function X : E 7! F is measurable relative to E

and F if X�1(⌅) 2 E for all ⌅ 2 F .

Theorem 6 (Theorem 8.1 in Jacod and Protter (2004)). Let C be a class of subsets of ⌦ such

that �(C) = F . Then X : E 7! F is measurable (relative to E and F) if and only if X�1(C) 2 E for all

C 2 C.

Lemma 11. Let X be a d1 dimensional random variable and ' : Rd1 7! Rd2 a Borel function.

Then �(X) = �(X,'(X)).

Proof of Lemma 11. Since ' is a Borel function, '(X) is a random variable. We first show �(X) ✓

�(X,'(X)) and then that �(X,'(X)) ✓ �(X), which implies that �(X) = �(X,'(X)).

First, Lemma 10 implies that �(X) ✓ �(X,'(X)).

Second, we show that �(X,'(X)) ✓ �(X). We do this by showing that (X,'(X)) is �(X) mea-

surable. Since �(X,'(X)) is the smallest �-field such that (X,'(X)) is measurable with respect to it,

and �(X) is a �-field.

To do this, we use Theorem 6. We have that (X,'(X)) : ⌦ ! Rd1+d2 , where Rd1+d2 is equipped

with the Borel �-field B(Rd1+d2) = B(Rd1)⌦B(Rd2) which as mentioned at the start of this sub-section

is generated by the product sets of the form B1 ⇥ B2 where B1 2 B(Rd1), B2 2 B(Rd2). Let C =
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{B1 ⇥B2 : B1 2 B(Rd1), B2 2 B(Rd2)}. By Theorem 6, we need to show that (X,'(X))�1(C) 2 �(X)

for all C 2 C. Let C 2 C so that C = B1 ⇥B2. We have

(X,'(X))�1(C) = {! 2 ⌦ : (X(!),'(X(!))) 2 B1 ⇥B2}

= {! 2 ⌦ : X(!) 2 B1,'(X(!)) 2 B2}

= {! 2 ⌦ : X(!) 2 B1} \ {! 2 ⌦ : '(X(!)) 2 B2}

= {! 2 ⌦ : X(!) 2 B1} \ {! 2 ⌦ : X(!) 2 '
�1(B2)}

For the last step, recall that '�1(B2) = {z : '(z) 2 B2}. Therefore, '(X(!)) 2 B2 is equivalent to

X(!) 2 '
�1(B2).

Since ' is a Borel function, '�1(B2) 2 B(Rd1). Therefore, the sets that are intersected are both of

the form {! 2 ⌦ : X(!) 2 B} = X
�1(B) for a set B 2 B(Rd1), all of which are in

�(X) = {X
�1(B) : B 2 B(Rd1)}.

Since �-fields are stable under finite intersections, (X,'(X))�1(C) 2 �(X). ⇤

Appendix L. Miscellanea

Let M be a square and symmetric matrix. It is a positive semidefinite matrix if its quadratic form

is non-negative. If M is positive definite, it is also positive semidefinite.

Lemma 12. For a m ⇥ m matrix M with elements (mi,j)ij that is symmetric and positive

semidefinite, we have that max1i,jm |mi,j |  �max(M).

Proof. Since M is a square symmetric positive semidefinite matrix, Theorem 4.2.8 in Golub and

Van Loan (2013) shows that

max
1i,jm

|mi,j | = max
1im

mi,i.

Recall that �max(M) = maxkxk2=1 x
0
Mx where kxk2 =

pP
m

i=1
x
2

i
. Choose x = ej be the j’th unit vec-

tor ej = (0, 0, . . . , 0, 1, 0, . . . , 0)0, which is such that kxk2 =
pP

m

i=1
x
2

i
= 1 and x

0
Mx = mi,i. Therefore,

for each 1  i  m we have mi,i  maxkxk2=1 x
0
Mx = �max(M), and therefore max1i,jm |mi,j | =

max1im mi,i  �max(M). ⇤

The following lemma is well known in the literature, and is used e.g. in Rosseel and Loh (2022).

While the result is given in Johnson and Wichern (2002, Exercise 9.6, p. 531) in the case when �

is the identity matrix, and can therefore be considered standard, we have not found a reference with

explicit statement and proof of the full result, and we for completeness include a proof for it using our

Assumption 1.

Lemma 13. Suppose given Assumption 1. Then the Thurstone matrix T := �⇤0⌃�1 used to

derive the regression factor score is equivalent to T2 :=
�
��1 + ⇤0 �1⇤

��1

⇤0 �1.

Proof of Lemma 13. We begin with T and notice that there are several alternative notations for the

population covariance matrix ⌃z := ⇤�⇤0 +  . Let L := ⇤(�
1
2 )0, where �

1
2 is part of the Cholesky

decomposition (see, e.g., Horn & Johnson, 2013, p. 441, Corollary 7.2.9) of � = (�
1
2 )0�

1
2 . Here, �

1
2

is an upper triangular matrix. Further, we note that for the Cholesky decomposition the following

identity holds: ��1 =
⇣
(�

1
2 )0�

1
2

⌘�1

= �� 1
2 (�� 1

2 )0, where �� 1
2 is the inverse of �

1
2 . For the proof,
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we make use of three matrix properties which are sequentially proven. These are based on exercises in

(Johnson & Wichern, 2002, see Exercise 9.6, p. 531):

(a) (Idf + L
0 �1

L)�1
L

0 �1
L = Idf � (Idf + L

0 �1
L)�1

(b) (LL0 + )�1 =  �1
� �1

L
�
Idf + L

0 �1
L
��1

L
0 �1

(c) L
0 (LL0 + )�1 =

�
Idf + L

0 �1
L
��1

L
0 �1

Proof of (a). We proof (a) by premultiplying both sides of (a) by Idf + L
0 �1

L:

⇥
Idf + L

0 �1
L
⇤
(Idf + L

0 �1
L)�1

L
0 �1

L =
⇥
Idf + L

0 �1
L
⇤ �

Idf � (Idf + L
0 �1

L)�1
�

() L
0 �1

L =
⇥
Idf + L

0 �1
L
⇤
� Idf

() L
0 �1

L = L
0 �1

L.

⇤

Proof of (b). We provide proof for (b) by postmultiplying both sides of (b) by LL
0 + :

�
LL

0 + 
��1

⇥
LL

0 + 
⇤
=
⇣
 �1

� �1
L
�
Idf + L

0 �1
L
��1

L
0 �1

⌘ ⇥
LL

0 + 
⇤

() Idz =  �1
⇥
LL

0 + 
⇤
� �1

L
�
Idf + L

0 �1
L
��1

L
0 �1

⇥
LL

0 + 
⇤

() Idz =  �1
LL

0 + Idz � �1
L
�
Idf + L

0 �1
L
��1

L
0 �1

LL
0
�

 �1
L
�
Idf + L

0 �1
L
��1

L
0 �1 

(a)

() Idz =  �1
LL

0 + Idz � �1
L
⇥
Idf � (Idf + L

0 �1
L)�1

⇤
L

0
�

 �1
L
�
Idf + L

0 �1
L
��1

L
0

() Idz =  �1
LL

0 + Idz � �1
LL

0 + �1
L(Idf + L

0 �1
L)�1

L
0
�

 �1
L
�
Idf + L

0 �1
L
��1

L
0

() Idz = Idz .

⇤

Proof of (c). We provide proof for (c) and begin by postmultiplying (b) with L:

�
LL

0 + 
��1

L =
⇣
 �1

� �1
L
�
Idf + L

0 �1
L
��1

L
0 �1

⌘
L

()
�
LL

0 + 
��1

L =  �1
L� �1

L
�
Idf + L

0 �1
L
��1

L
0 �1

L

(a)

()
�
LL

0 + 
��1

L =  �1
L� �1

L
⇥
Idf � (Idf + L

0 �1
L)�1

⇤

()
�
LL

0 + 
��1

L =  �1
L� �1

L+ �1
L(Idf + L

0 �1
L)�1

()
�
LL

0 + 
��1

L =  �1
L(Idf + L

0 �1
L)�1

.

Now, we transpose both sides and use that  �1, (LL0 + )�1 and (Idf + L
0 �1

L)�1 are symmetric

and we have

L
0 �
LL

0 + 
��1

=
�
Idf + L

0 �1
L
��1

L
0 �1

.

⇤
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Now, resubstitute L := ⇤(�
1
2 )0 in L

0 (LL0 + )�1 =
�
Idf + L

0 �1
L
��1

L
0 �1 and we have:

L
0 �
LL

0 + 
��1

=
�
Idf + L

0 �1
L
��1

L
0 �1

() (⇤(�
1
2 )0)0

⇣
⇤(�

1
2 )0(⇤(�

1
2 )0)0 + 

⌘�1

=
⇣
Idf + (⇤(�

1
2 )0)0 �1⇤(�

1
2 )0
⌘�1

(⇤(�
1
2 )0)0 �1

() �
1
2⇤0

⇣
⇤(�

1
2 )0�

1
2⇤0 + 

⌘�1

=
⇣
Idf + �

1
2⇤0 �1⇤(�

1
2 )0
⌘�1

�
1
2⇤0 �1

�=(�

1
2 )

0
�

1
2

() �
1
2⇤0 �⇤�⇤0 + 

��1

=
⇣
�

1
2

h
�� 1

2 Idf (�
� 1

2 )0 + ⇤0 �1⇤
i
(�

1
2 )0
⌘�1

�
1
2⇤0 �1

�
�1

=�
� 1

2 (�
� 1

2 )
0

() �
1
2⇤0 �⇤�⇤0 + 

��1

= (�� 1
2 )0
�
��1 + ⇤0 �1⇤

��1

�� 1
2�

1
2⇤0 �1

() �
1
2⇤0 �⇤�⇤0 + 

��1

= (�� 1
2 )0
�
��1 + ⇤0 �1⇤

��1

⇤0 �1
.

Premultiplying both sides with (�
1
2 )0 results in

(�
1
2 )0�

1
2⇤0 �⇤�⇤0 + 

��1

= (�
1
2 )0(�� 1

2 )0
�
��1 + ⇤0 �1⇤

��1

⇤0 �1

() �⇤0 �⇤�⇤0 + 
��1

=
�
��1 + ⇤0 �1⇤

��1

⇤0 �1

() �⇤0⌃�1

z =
�
��1 + ⇤0 �1⇤

��1

⇤0 �1

() T = T2.

⇤
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