The impact of including W in addition to Z for adjustment in the cases $2a$ and $2b$

In the case 2a, we compare the bias $|B^{ZW}|$ and $|B^Z|$ within an example, where we keep the bias of ξ constant at a plausible value i.e., bias $\alpha_{\xi} \beta_{\xi} = 0.16$. We consider three different patterns for this bias which vary the amplification potential of ξ : (1) amplification is small (i.e., $\alpha_{\xi}\beta_{\xi} = 0.2 \cdot 0.8 = 0.16$), (2) amplification is medium (i.e., $\alpha_{\xi}\beta_{\xi} = 0.4 \cdot 0.4 = 0.16$), (3) amplification is large (i.e., $\alpha_{\xi} \beta_{\xi} = 0.8 \cdot 0.2 = 0.16$). We vary the magnitude of the bias of W in relation to the bias of ξ (i.e., $\alpha_W \beta_W = \frac{1}{4}$ $\frac{1}{4} \alpha_{\xi} \beta_{\xi}, \frac{1}{2}$ $\frac{1}{2} \alpha_{\xi} \beta_{\xi}$, $\alpha_{\xi} \beta_{\xi}$) and the amplification potential of W (i.e., $\alpha_W = 0.2, 0.4, 0.8$ and $-0.2, -0.4, -0.8$). In addition we allow that $Rel(Z)$ varies. We illustrate $|B^Z|$ with dashed lines and $|B^{ZW}|$ with solid lines for all parameter constellations. Note that $|B^Z|$ does not vary related to α_W (see Table 2), thus all dashed lines are at the same points. Figure B1 shows the case $sign(\alpha_W \beta_W)$ = $sign(\alpha_{\xi}\beta_{\xi})$ and Figure B2 the case $sign(\alpha_W\beta_W) \neq sign(\alpha_{\xi}\beta_{\xi})$. When the covariates induce bias in the same direction, then mainly $|B^{ZW}| < |B^Z|$. Only when the amplification potential of W is large $|B^{ZW}| > |B^Z|$ can be observed. This is especially the case when W induces a small bias (i.e., is a near instrument) and/ or when $Rel(Z)$ is small (i.e., in this case more bias can be amplified). When the covariates induce bias in opposite directions, then much more likely $|B^{ZW}| > |B^Z|$ can be observed. When $Rel(Z)$ is close to 1, then (nearly) the complete bias is reduced with Z and W . However, as soon as $Rel(Z)$ decreases a substantial bias can remain when adjusting for Z and W , depending on $Rel(Z)$ and the amplification potential of both covariates. Instead when W is not included for adjustment, then the bias of omitting *W* and the remaining bias of ξ can (partly) off-set each other. The bias off-setting effect increases as $Rel(Z)$ decreases, but is limited by the magnitude of the bias of W . As such the bias is more likely smaller when W is not included for adjustment; especially when $Rel(Z)$ decreases.

Figure B1. Bias when adjusting only for Z (|B^Z| dashed line) or for Z and W (|B^{ZW}| solid lines) in 2a with $sign(\alpha_{\xi}\beta_{\xi}) = sign(\alpha_W\beta_W)$. Note |B^Z| does not vary for different values α_W (see Table 2).

Figure B2. Bias when adjusting only for Z (|B^Z| dashed line) or for Z and W (|B^{ZW}| solid lines) in 2a with $sign(\alpha_{\xi}\beta_{\xi}) \neq sign(\alpha_W\beta_W)$. Note |B^Z| does not vary for different values α_W (see Table 2)

In the case 2b, we consider the same example as above, but include the correlation of the covariates with varying sign and magnitude $\rho_{\xi W} = [0.3], [0.6]$. The correlation of the covariates increases the complexity immense. Different constellations for the direction of the biases (i.e., $sign(\alpha_{\varepsilon} \beta_{\varepsilon})$, $sign(\alpha_w \beta_w)$, $sign(\alpha_{\varepsilon} \rho_{\varepsilon w} \beta_w)$, $sign(\alpha_w \rho_{\varepsilon w} \beta_{\varepsilon})$) are possible. Figure B3 shows the results when all biases are in the same direction

$$
(\alpha_{\xi}\beta_{\xi}) = sign(\alpha_{W}\beta_{W}) = sign(\alpha_{\xi}\rho_{\xi W}\beta_{W}) = sign(\alpha_{W}\rho_{\xi W}\beta_{\xi}).
$$
 Figure B4 shows the case
\n
$$
(sign(\alpha_{\xi}\beta_{\xi}) = sign(\alpha_{W}\beta_{W})) \neq (sign(\alpha_{\xi}\rho_{\xi W}\beta_{W}) = sign(\alpha_{W}\rho_{\xi W}\beta_{\xi})).
$$
 Figure B5 the case
\n
$$
(sign(\alpha_{\xi}\beta_{\xi}) = sign(\alpha_{W}\rho_{\xi W}\beta_{\xi})) \neq (sign(\alpha_{W}\beta_{W}) = sign(\alpha_{\xi}\rho_{\xi W}\beta_{W}))
$$
, and
\nFigure B6 the case $(sign(\alpha_{\xi}\beta_{\xi}) = sign(\alpha_{\xi}\rho_{\xi W}\beta_{W})) \neq (sign(\alpha_{W}\beta_{W}) =$
\n
$$
sign(\alpha_{W}\rho_{\xi W}\beta_{\xi})).
$$

When all biases are in the same direction, then mainly $|B^{ZW}| < |B^Z|$ can be observed, because including W for adjustment can reduce a large amount of bias. Only when W induces a small bias and its amplification potential is large, then including W can result in cases in which $|B^{ZW}| > |B^Z|$. A large amplification potential can increase the bias extremely due to including *W* even when $Rel(Z)$ is high (0.9).

When
$$
(sign(\alpha_{\xi}\beta_{\xi}) = sign(\alpha_W\beta_W)) \neq (sign(\alpha_{\xi}\rho_{\xi W}\beta_W) = sign(\alpha_W\rho_{\xi W}\beta_{\xi}))
$$
, see

Figure B4, then the correlation reduces the amount of bias in B^Z , thus less bias can be reduced when including W for adjustment. Again $|B^{ZW}| > |B^Z|$ occurs especially when the amplification potential of W is large. However, the difference between $|B^{ZW}|$ and $|B^{Z}|$ is rather small and only for low $Rel(Z)$ the bias can increases substantially due to a large amplification.

The bias of the covariates is in opposite directions in Figure B5
$$
(sign(\alpha_{\xi}\beta_{\xi}) =
$$

\n $sign(\alpha_W \rho_{\xi W} \beta_{\xi})) \neq (sign(\alpha_W \beta_W) = sign(\alpha_{\xi} \rho_{\xi W} \beta_W))$ and Figure B6 $(sign(\alpha_{\xi} \beta_{\xi}) =$

 $sign(\alpha_{\xi}\rho_{\xi W}\beta_W)) \neq (sign(\alpha_W\beta_W) = sign(\alpha_W\rho_{\xi W}\beta_{\xi}))$. Not including W would allow that the biases can (partly) off-set each other, when $Rel(Z)$ decreases. Thus $|B^{ZW}| > |B^Z|$ occurs more often and not only when the amplification potential of W is large. A large amplification potential can increase the bias extremely due to including W even when $Rel(Z)$ is high in $(sign(\alpha_{\xi}\beta_{\xi}) = sign(\alpha_{W}\rho_{\xi W}\beta_{\xi})) \neq (sign(\alpha_{W}\beta_{W}) = sign(\alpha_{\xi}\rho_{\xi W}\beta_{W}))$. The difference between $|B^Z|$ and $|B^{ZW}|$ is rather small in $\left(sign(\alpha_{\xi}\beta_{\xi}) = sign(\alpha_{\xi}\rho_{\xi W}\beta_W)\right) \neq 0$

 $(sign(\alpha_W\beta_W)=sign(\alpha_W\rho_{\xi W}\beta_{\xi})).$

Figure continues on the next page

6

Figure B3. Bias when adjusting only for Z (|B^Z| dashed lines) or for Z and W (|B^{ZW}| solid lines) in 2b when $sign(\alpha_{\xi}\beta_{\xi}) = sign(\alpha_W\beta_W) =$ $sign(\alpha_{\xi}\rho_{\xi W}\beta_W) = sign(\alpha_W\rho_{\xi W}\beta_{\xi}).$

Figure continues on the next page

Figure B4. Bias when adjusting only for Z (|B^Z| dashed lines) or for Z and W (|B^{ZW}| solid lines) in 2b when $\left(sign(\alpha_{\xi}\beta_{\xi}) = sign(\alpha_{W}\beta_{W}) \right) \neq 0$ $(sign(\alpha_{\xi}\rho_{\xi W}\beta_W) = sign(\alpha_W\rho_{\xi W}\beta_{\xi}))$.

Figure continues on the next page

Figure B5. Bias when adjusting only for Z (|B^z| dashed lines) or for Z and W (|B^{zW}| solid lines) in 2b when $\left(sign(\alpha_{\xi}\beta_{\xi}) = sign(\alpha_{W}\rho_{\xi W}\beta_{\xi})\right) \neq 0$ $\left(\text{sign}(\alpha_W\beta_W)=\text{sign}(\alpha_{\xi}\rho_{\xi W}\beta_W)\right)$

Figure continues on the next page

12

Figure B6. Bias when adjusting only for Z (|B^z| dashed lines) or for Z and W (|B^{ZW}| solid lines) in 2b when $\left(sign(\alpha_{\xi}\beta_{\xi}) = sign(\alpha_{\xi}\rho_{\xi W}\beta_W)\right) \neq 0$ $\left(\text{sign}(\alpha_W\beta_W)=\text{sign}(\alpha_W\rho_{\xi W}\beta_{\xi})\right)$