
Supplementary Material to “The Sufficient and
Necessary Condition for the Identifiability and

Estimability of the DINA Model”

A1: Derivation of Equation (8) in Example 2

In Example 2, we claimed that, given the Q-matrix in the following form where there are J0

items with q-vectors being (0, 0) and J − 2− J0 items with q-vectors being (1, 1),

Q =



I2
0 0
...

...
0 0
1 1
...

...
1 1


J×2

,

to construct (s̄, ḡ, p̄) 6= (s, g,p) satisfying Equation (2) where s̄ = s, ḡj = gj for all j =

3, . . . , J , and p̄(1,1) = p(1,1), it suffices to ensure the Equations (8) hold. Now we prove this

argument. Following the proof of the necessity of Conditions C1 and C2 in the Appendix, we

can obtain the following equations in (S.1) from Equations (18) in the main text by replacing

(α1, α2,α
∗) in (18) with (α1, α2) here, since in this case there are only two attributes. And

similarly we have the conclusion that Equation (2) holds as long as Equations (S.1) hold,
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

p(0,0) + p(1,0) + p(0,1) = p̄(0,0) + p̄(1,0) + p̄(0,1);

g1[p(0,0) + p(0,1)] + (1− s1)p(1,0) = ḡ1[p̄(0,0) + p̄(0,1)] + (1− s1)p̄(1,0);

g2[p(0,0) + p(1,0)] + (1− s2)p(0,1) = ḡ2[p̄(0,0) + p̄(1,0)] + (1− s2)p̄(0,1);

g1g2p(0,0) + (1− s1)g2p(1,0) + g1(1− s2)p(0,1)

= ḡ1ḡ2p̄(0,0) + (1− s1)ḡ2p̄(1,0) + ḡ1(1− s2)p̄(0,1).

(S.1)

Adding p(1,1) to both hand sides of the first equation in (S.1), adding (1 − s1)p(1,1) to the

second equation, adding (1− s2)p(1,1) to the third equation and adding (1− s1)(1− s2)p(1,1)

to the last equation, we exactly obtain (8) in Example 2.

A2: Proof of Corollary 1

When the identifiability conditions are satisfied, the maximum likelihood estimators of ŝ, ĝ,

and p̂ are consistent as the sample size N →∞. Specifically, we introduce a 2J -dimensional

empirical response vector

γ =

{
1, N−1

N∑
i=1

I(ri � e1), · · · , N−1
N∑
i=1

I(ri � eJ),

N−1
N∑
i=1

I(ri � e1 + e2), · · · , N−1
N∑
i=1

I(ri � 1)

}>
,

where elements of γ are indexed by response vectors arranged in the same order as the rows

of the T -matrix. From the definition of the T -matrix and the law of large numbers, we

know γ → T (s, g)p almost surely as N →∞. On the other hand, the maximum likelihood

estimators ŝ, ĝ, and p̂ satisfy ‖γ − T (ŝ, ĝ)p̂‖ → 0, where ‖ · ‖ is the L2 norm. Therefore,

‖T (s, g)p− T (ŝ, ĝ)p̂‖ → 0
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almost surely. Then from the proof of Theorem 1, we can obtain the consistency result that

(ŝ, ĝ, p̂)→ (s, g,p) almost surely as N →∞. �

A3: Proof of Proposition 2

Consider a Q-matrix of size J ×K in the form

Q =

Q′
0

 , (S.2)

where Q′ is of size J ′×K and contains those nonzero q-vectors of Q. Recall from the model

setup in Section 2 of the main text, for any item j ∈ {J ′ + 1, . . . , J} which has qj = 0, the

guessing parameter is not needed by the DINA model and for notational convenience, we set

gj ≡ ḡj ≡ 0, so the slipping parameter sj is the only unknown item parameter associated

with such j. Taking the response pattern r = ej for any item j ∈ {J ′+1, . . . , J} in Equation

(12) gives

Tej ,·(s, g)p = (1− sj)
∑

α∈{0,1}K
pα = (1− s̄j)

∑
α∈{0,1}K

p̄α = Tej ,·(s̄, ḡ)p̄,

then since
∑
α∈{0,1}K pα =

∑
α∈{0,1}K p̄α = 1, we have sj = s̄j for any j ∈ {J ′ + 1, . . . , J}.

Now denote s′ = (s1, . . . , sJ ′), g
′ = (g1, . . . , gJ ′) and similarly denote s̄′, ḡ′. De-

note the 2J
′ × 2K T -matrix associated with matrix Q′ by T ′(s′, g′). For any response

pattern r = (r1, . . . , rJ ′ , rJ ′+1, . . . , rJ) ∈ {0, 1}J , denote r′ = (r1, . . . , rJ ′) and (r′,0) =
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(r1, . . . , rJ ′ , 0, . . . , 0) of length J ; then we have

Tr,·(s, g)p =
{
T(r′,0),·(s, g)p

} ∏
j>J ′

(1− sj)rj =
{
T ′r′,·(s′, g′)p

} ∏
j>J ′

(1− sj)rj ,

Tr,·(s̄, ḡ)p̄ =
{
T(r′,0),·(s̄, ḡ)p̄

} ∏
j>J ′

(1− sj)rj =
{
T ′r′,·(s̄′, ḡ′)p

} ∏
j>J ′

(1− sj)rj .

Using the above equalities, by Proposition 1, we have the following equivalent arguments,

(s, g,p) associated with Q are identifiable,

⇐⇒ ∀(s̄, ḡ, p̄) 6= (s, g,p), ∃r ∈ {0, 1}J such that Tr,·(s, g)p 6= Tr,·(s̄, ḡ)p̄,

⇐⇒ ∀(s̄, ḡ, p̄) 6= (s, g,p), ∃r′ ∈ {0, 1}J ′ such that T ′r′,·(s′, g′)p 6= T ′r′,·(s̄′, ḡ′)p̄,
⇐⇒ (s′, g′,p) associated with Q′ are identifiable.

Therefore we have shown identifiability of DINA associated with Q in the form of (S.2)

is equivalent to that of DINA associated with submatrix Q′ in (S.2) and the proof of the

proposition is complete.

A4: Proof of Lemma 1

To facilitate the proof of the lemma, we introduce the following proposition, which is from

Proposition 3 in Xu (2017). We first generalize the definition of the T -matrix. For any

x = (x1, . . . , xJ)> ∈ RJ and y = (y1, . . . , yJ)> ∈ RJ , we still define the T -matrix T (x,y) to

be a 2J × 2K matrix, where the entries are indexed by row index r ∈ {0, 1}J and column

index α. For any row indexed by ej with j = 1, . . . , J , we let tej ,α(x,y) = (1−xj)ξj,αy
1−ξj,α
j ;

for any r 6= 0, let the rth row vector of T (x,y) be Tr,·(x,y) =
⊙

j:rj=1 Tej ,·(x,y).

Proposition S.1 If T (s, g)p = T (s̄, ḡ)p̄, then for any θ ∈ RJ , T (s + θ, g − θ)p = T (s̄ +

θ, ḡ − θ)p̄.
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Let G be the set of items whose guessing parameters have been identified in the sense

that gj = ḡj, for any j ∈ G. Let Gc := {1, . . . , J}\G be the complement of G. Note that

{K + 1, . . . , J} ∪ S−k ∪ S
+
k ⊆ G. Define

θ =
∑
j∈Gc

(1− sj)ej +
∑
j∈G

gjej. (S.3)

Denote T := T (s = 0, g = 0) and denote the (r,α)-entry of T by tr,α, then by definition,

tr,α =
∏
j: rj=1

1I(α�qj)01−I(α�qj) = I(α � qj ∀j s.t. rj = 1), (S.4)

where I(·) denotes the indicator function. Proposition S.1 implies that Tr,·(s+ θ, g − θ) =

Tr,·(s + θ, ḡ − θ)p̄ for θ defined in (S.3). We use θj,α to denote the positive response

probability of attribute profile α to item j, i.e., θj,α = 1 − sj for α such that α � qj, and

θj,α = gj for α such that α � qj. For any response pattern r such that rj = 0 for all j ∈ Gc,

Tr,·(s+ θ, g − θ)p =
∑

α∈{0,1}K
pα
∏
j∈G

[θj,α − gj]rj
∏
j∈Gc

[θj,α − (1− sj)]rj

=
∑

α∈{0,1}K
pα
∏
j∈G

(θj,α − gj)rj ,
(S.5)

where in the above summation over α ∈ {0, 1}K , one can see that the product term∏
j∈G(θj,α − gj)rj is nonzero only for those α such that θj,α = 1 − sj > gj for all j where

rj = 1; and when the product term is nonzero, it equals
∏

j∈G(1− sj − gj)rj . Further exam-

ining those α that make the product term nonzero in (S.5), one can find it is exactly those

α such that tr,α = 1 according to (S.4). Noting that tr,α can either be 1 or 0, (S.5) can be
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further written as

Tr,·(s+ θ, g − θ)p =
∑

α: tr,α=1

pα
∏
j∈G

(1− sj − gj)rj

=
∑

α∈{0,1}K
tr,αpα

∏
j∈G

(1− sj − gj)rj .
(S.6)

Following the same argument, we also have

Tr,·(s+ θ, ḡ − θ)p̄ =
∑

α∈{0,1}K
tr,αp̄α

∏
j∈G

(1− sj − gj)rj ,

then Proposition S.1 implies

∑
α∈{0,1}K

tr,αpα =
∑

α∈{0,1}K
tr,αp̄α, for any r such that rj = 0 for all j ∈ Gc. (S.7)

We then define a response vector r∗ = (r∗1, . . . , r
∗
J)> to be r∗ =

∑
j∈G(1 − qj,k)ej, that is,

r∗ has correct responses to and only to those items among the set G that do not require

the kth attribute. Let Sr∗ denote the set of items that r∗ has correct responses to, i.e.,

Sr∗ = {j : r∗j = 1}. Since S−k ⊆ G and qj,k = 0 for any j ∈ S−k , we know Sr∗ is nonempty.

Now consider the row vector in the transformed T -matrix T (s+ θ, g − θ) corresponding to

response vector r∗ + ek, then we have that Tr∗+ek,α(s+ θ, g − θ) 6= 0 if and only if

α � qj for any item j ∈ Sr∗ , and αk = 0.

In other words, Tr∗+ek,α(s+θ, g−θ) 6= 0 if and only if α satisfies tr∗,α = 1 and tr∗+ek,α = 0.

6



This implies that

Tr∗+ek,·(s+ θ, g − θ)p

= (gk + sk − 1)
∏
j∈Sr∗

(1− sj − gj)
∑

α∈{0,1}K
(tr∗,α − tr∗+ek,α)pα

(S.8)

and

Tr∗+ek,·(Q, s+ θ, ḡ − θ) · p̄

= (ḡk + sk − 1)
∏
j∈Sr∗

(1− sj − gj)
∑

α∈{0,1}K
(tr∗,α − tr∗+ek,α)p̄α.

(S.9)

Note that (S.8) = (S.9) by Proposition 2.

We next show that the summation terms in (S.8) and (S.9) satisfy

∑
α∈{0,1}K

(tr∗,α − tr∗+ek,α)pα =
∑

α∈{0,1}K
(tr∗,α − tr∗+ek,α)p̄α 6= 0. (S.10)

Note r∗ satisfies the condition in (S.7) that r∗j = 0 for all j ∈ Gc. Therefore,

∑
α∈{0,1}K

tr∗,αpα =
∑

α∈{0,1}K
tr∗,αp̄α. (S.11)

We further consider the response vector r∗ + ek. Under the conditions of Lemma 1, there

exists some item h ∈ G such that

qh,k = 1 and {l : qh,l = 1, l 6= k} ⊆
⋃
j∈Sr∗

{l : qj,l = 1}.

That is, the item h requires the kth attribute and h’s any other required attribute is also

required by some item in the set Sr∗ . Therefore we have Tr∗+ek,· = Tr∗∨r#,·, where r# :=∑
h∈S+

j \S
−
j
eh; in addition, since the response vector r∗ ∨ r# satisfies the condition in (S.7)
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that its jth element (r∗ ∨ r#)j = 0 for any j ∈ Gc, we have

∑
α∈{0,1}K

tr∗+ek,α · pα =
∑

α∈{0,1}K
tr∗∨r#,α · pα

=
∑

α∈{0,1}K
tr∗∨r#,α · p̄α =

∑
α∈{0,1}K

tr∗+ek,α · p̄α.
(S.12)

The first equation in (S.10) then follows from (S.11) and (S.12). The inequality in (S.10)

also holds since tr∗,α ≥ tr∗+ek,α for any α and tr∗,α > tr∗+ek,α for those α with αk = 0 and

α � qj for any item j ∈ Sr∗ .

With the results in (S.10), we have gk = ḡk from the equality of (S.8) and (S.9). This

completes the proof. �
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