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Average Effects Based on Regressions with a Logarithmic Link Function: A New Approach

with Stochastic Covariates

Simulation details

In this section we provide additional information on the simulation study. First, a

detailed description of the data generation process is given. Second, we state the explicit

moment-based estimators for each unconditional distribution of Z used in the simulation.

Third, we provide the listings for the data generation procedure as well as for the

estimators.

Data simulation

As the population model, we choose a regression with log link according to Equation

(9) and conditional NB distributions for Y . The model includes a dichotomous treatment

variable X, a covariate Z and their interaction XZ.

In order to generate scenarios that are comparable across different distributions of Z,

we computed the regression coefficients β00, β01, β11 from their standardized versions

β∗
00, β

∗
01, β

∗
11 (i.e., with regard to a z-transformed covariate Z∗ = (Z − E(Z))/

√
Var(Z) ).

These are derived as follows:

log[E(Y |X,Z∗)] = β∗
00 + β∗

10X + β01Z
∗ + β∗

11XZ
∗

=β∗
00 + β∗

10X + β01

Z − E(Z)√
V ar(Z)

 + β∗
11X

Z − E(Z)√
V ar(Z)


=

β∗
00 −

β∗
01√

V ar(Z)
E(Z)

 +
β∗

10 −
β∗

11√
V ar(Z)

E(Z)
X

+
 β∗

01√
V ar(Z)

Z +
 β∗

11√
V ar(Z)

XZ

Starting from the regression on X and the standardized Z∗, we derived the
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corresponding regression coefficients for the unstandardized Z, which are

β00 = β∗
00 −

β∗
01√

Var(Z)
E(Z), (1)

β01 = β∗
01√

Var(Z)
, (2)

β11 = β∗
11√

Var(Z)
(3)

The standardized regression coefficients are divided by the standard deviation of Z, because

the covariates are on a different scale depending on their distribution in the simulation. We

manipulated the effect size of the ATE, and thus the remaining regression coefficient β10

was not a free parameter but determined by

β10 = log
∆ ·

√
Var(Y |X = 0) +MZ(β01) exp(β00)

exp(β00)MZ(β01 + β11)



The standardized regression coefficients were chosen β∗
00 = 0 and β∗

01 = 0.5 to

simulate a moderate covariate effect in the control group X = 0. The standardized

interaction parameter was varied from no interaction (β∗
11 = 0) to strong interaction

(β∗
11 = 1) with a step width of 0.25. As the derivations above suggest, the difference

between the fixed-covariate and stochastic-covariate-based standard errors should increase

with the strength of the interaction parameter. The population distributions of Z were

chosen to resemble distinct distributional shapes: a standard normal distribution N (0, 1)

for a symmetric shape with zero skewness and kurtosis, a Poisson distribution P(1) for a

positively skewed shape, and a uniform distribution U(−
√

3,
√

3) for a flat shape with

negative kurtosis. The parameters of N (0, 1) and U(−
√

3,
√

3) represent standardized

variables, that is, E(Z) = 0, Var(Z) = 1. For the Poisson distribution, however, the

parameter λ = 1 was chosen to create a moderate skew. We further varied the effect size ∆

(Glass, 1976) of the ATE and the sample size N . In total, we evaluated 225 experimental
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scenarios (see Table 3 for more details on the design parameters).

The simulation consisted of three steps, which were carried out using the statistical

software R (R Core Team, 2018). In the first step, N covariate values zi were generated by

drawing from the populational distribution of Z. In the second step, the values of the

dichotomous treatment xi were drawn from a Binomial distribution B(1, p) where

p = P (X|Z∗) = 1− 1
1 + exp(Z∗) (4)

which was generated as a logistic function with standardized Z∗ (i.e., the higher the value

of Z, the higher the probability of getting into the treatment group). This means that we

simulated a quasi-experimental setting, where treatment assignment is not random but

depending on Z. As mentioned above, ATE and UTE are not equivalent in this case, and

consideration of the covariate Z is necessary to estimate the average (causal) effect. In the

third step, the conditional expectations E(Y |X = xi, Z = zi) were computed and the

observed yi were drawn from a negative binomial distribution. The overdispersion

parameter was α = 1. Each experimental condition was replicated R = 5, 000 times. For

more details and the corresponding R code, see the supplementary material.

Moment-based estimators by distribution

For normal distributed Z ∼ N (µ̂, σ̂) with µ̂ = z̄ and σ̂ = σ̂z

ÂTEMOM(β̂, θ̂) = exp(β̂00 + β̂10) exp
µ̂(β̂01 + β̂11) + σ̂2(β̂01 + β̂11)2

2

− exp(β̂00) exp
µ̂β̂01 + σ̂2β̂2

01
2


(5)

For Poisson distributed Z ∼ P(λ̂) where λ̂ = z̄

ÂTEMOM(β̂, θ̂) = exp(β̂00 + β̂10) exp(λ̂(exp(β̂01 + β̂11)− 1))− exp(β̂00) exp(λ̂(exp(β̂01)− 1))

(6)
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For Uniform distributed Z ∼ U(â, b̂) where â = z̄ −
√

3σ̂z and b̂ = z̄ +
√

3σ̂z

ÂTEMOM(β̂, θ̂) = exp(β̂00 + β̂10)e
(β̂01+β̂11)b̂ − e(β̂01+β̂11)â

(β̂01 + β̂11)(b̂− â)
− exp(β̂00)e

β̂01b̂ − eβ̂01â

β̂01(b̂− â)
(7)

Estimation of sample moments for moment-based approach

In our simulation, we used a two-step procedure for obtaining sample moment

estimates and their covariance. The first step was based on a decomposition of the

unconditional expectation and variance of Z with respect to the treatment groups:

E(Z) =E(Z|X = 1) · P(X = 1) + E(Z|X = 0) · P(X = 0) (8)

Var(Z) =Var(Z|X = 1) · P(X = 1) + Var(Z|X = 0) · P(X = 0) (9)

+ (E(Z|X = 1)− E(Z))2 · P(X = 1) + (E(Z|X = 0)− E(Z))2 · P(X = 0) (10)

We used a multigroup structural equation model with stochastic group sizes to

estimate the X = x-conditional expectations and variances, and the probabilities P(X = 0)

and P(X = 1).

z̄0 = Ê(Z|X = 0) (11)

z̄1 = Ê(Z|X = 1) (12)

s2
0 = V̂ar(Z|X = 0) (13)

s2
1 = V̂ar(Z|X = 1) (14)

p0 = P̂(X = 0) (15)

p1 = P̂(X = 1) (16)
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The sample mean z̄ and variance s2 were then obtained by

z̄ = z̄0 · p0 + z̄1 · p1 (17)

s2 = s2
0 · p0 + s2

1 · p1 + (z̄0 − z̄)2 · p0 + (z̄1 − z̄)2 · p1 (18)

This approach allows us to model the group sizes as random variables. Thus, variability in

sample moment estimates due to different group weights are accounted for. For more

information on the underlying model and assumptions, see Mayer, Dietzfelbinger, Rosseel,

and Steyer (2016, p. 4).

In the second step, we used the estimated sample moments z̄ and s2 to compute the

estimated parameters of the distribution. Depending on the distribution this was
Normal N (µ, σ): µ̂ = z̄, σ̂2 = s2

Poisson P(λ): λ̂ = z̄

Uniform U(a, b) â = z̄ −
√

3s2, b̂ = z̄ +
√

3s2

For the three distributions in our simulation study, this procedure provided unbiased

and efficient estimates for the parameters of the distribution. We especially compared the

two-step procedure to conventional maximum likelihood estimates. For the uniformly

distributed Z, the MLE provided biased estimates in small samples, while the two

step-procedure was unbiased. For normally or Poisson distributed Z, point estimates from

MLE and the two-step procedure were identical, however, the MLE was a little less efficient.
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Data generation function

1 data.sim <− function(N, cohensd, b101, distribution){
2 # Standardized Regression Coefficients in Control Group
3 b000 <− 0 # Intercept
4 b001 <− 0.5 # Slope
5
6 # Remaining parameters are set depending on the covariate’s distribution
7 if ( distribution == "normal"){
8 muZ <− 0 # Mean of Z
9 sigmaZ <− 1 # Variance of Z
10 a000 <− b000−b001∗muZ/sqrt(sigmaZ) # Unstandardized Intercept in Control Group
11 a001 <− b001/sqrt(sigmaZ) # Unstandardized Slope in Control Group
12 a101 <− b101/sqrt(sigmaZ) # Unstandardized Interaction Coefficient
13 varY0 <− 1.089 # Var(Y|X=0)
14 a100 <− log(sqrt(varY0)∗cohensd + exp(.5∗b001^2)) − .5∗(b001 + b101)^2 # Unstandardized

Coefficient of Treatment Variable
15 z <− rnorm(N, muZ, sigmaZ) # Z from a Standard Normal Distribution
16 } else if ( distribution == "poisson"){
17 lambdaZ = 1 # Mean and Variance of Z
18 varY0 <− 1.06 # Var(Y|X=0)
19 a000 <− b000−b001∗lambdaZ/sqrt(lambdaZ) # Unstandardized Intercept in Control Group
20 a001 <− b001/sqrt(lambdaZ) # Unstandardized Slope in Control Group
21 a101 <− b101/sqrt(lambdaZ) # Unstandardized Interaction Coefficient
22 a100 <− log(sqrt(varY0)∗cohensd + exp(a000)∗exp(lambdaZ∗(exp(a001) − 1))) −

log(exp(a000)∗exp(lambdaZ∗(exp(a001+a101)−1))) # Unstandardized Coefficient of
Treatment Variable

23 z <− rpois(N, lambdaZ) # Z from a Poisson distribution
24 } else if ( distribution == "uniform"){
25 aZ <− −sqrt(3) # lower limit of Z
26 bZ <− sqrt(3) # upper limit of Z
27 muZ <− (sqrt(3)−sqrt(3))/2 # Mean of Z
28 sigmaZ <− sqrt((sqrt(3)+sqrt(3))^2/12) # Variance of Z
29 a000 <− b000−b001∗muZ/sqrt(sigmaZ) # Unstandardized Intercept in Control Group
30 a001 <− b001/sqrt(sigmaZ) # Unstandardized Slope in Control Group
31 a101 <− b101/sqrt(sigmaZ) # Unstandardized Interaction Coefficient
32 varY0 <− 1.09 # Var(Y|X=0)
33 a100 <− log(sqrt(varY0)∗cohensd + exp(b000)∗(exp(b001∗bZ) −

exp(b001∗aZ))/(b001∗(bZ−aZ))) −
34 log(exp(b000)∗(exp((b001+b101)∗bZ)−exp((b001+b101)∗aZ))/((b001+b101)∗(bZ−aZ))) #

Unstandardized Coefficient of Treatment Variable
35 z <− runif(N, aZ, bZ) # Z from a Uniform distribution
36 }
37 zS <− scale(z) # z−transformation of Z for generation of X
38 x <− rbinom(N, 1, plogis(zS)) # Treatment with treatment probability as logistic function of Z
39 muY <− exp(a000 + a001∗z + a100∗x + a101∗x∗z) # Conditional Expectation of Y depending on Z

and X
40 y <− rnbinom(N, mu = muY, size =1) # Y from negative binomial distribution
41
42 d <− data.frame(y,x,z)
43 return(d)
44 }
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Estimator functions

1 library(lavaan)
2 library(car)
3
4 ######## function estimating TEMZ #########
5 computeTemz <− function(m1, d){
6 # Get regression coefficients
7 coefs <− coef(m1)
8 b00 <− coefs[1]
9 b10 <− coefs[2]
10 b01 <− coefs[3]
11 b11 <− coefs[4]
12
13 # Get mean of covariate z
14 zM <− mean(d$z)
15
16 # Compute and return TEMZ
17 temz <− exp(b00+b10+b01∗zM+b11∗zM) − exp(b00 + b01∗zM)
18 return(temz)
19 }
20
21
22 ####### function estimating ATE (empirical approach, fixed covariate) #############
23 computeAveEmp <− function(m1, d){
24
25 # Compute all conditional effects
26 newdata0 <− newdata1 <− d
27 newdata0$x <− 0
28 newdata1$x <− 1
29
30 tau0 <− predict(m1, newdata=newdata0, type="response") ## tau0 is almost constant
31 tau1 <− predict(m1, newdata=newdata1, type="response") ## more variation in tau1
32 delta10 <− tau1 − tau0
33
34 # Compute VCOV of all conditional effects
35 vcovs <− vcov(m1)
36 mat <− cbind(delta10, tau1, d$z∗delta10, d$z∗tau1)
37 vcov_delta10 <− mat %∗% vcovs %∗% t(mat)
38
39 # Compute standard error for ATE
40 mat <− rbind(1/nrow(d),
41 as.numeric(d$x==0)/sum(d$x==0),
42 as.numeric(d$x==1)/sum(d$x))
43 vcov_eff <− mat %∗% vcov_delta10 %∗% t(mat)
44 se_Ave <− sqrt(vcov_eff[1,1])
45
46 # Return results
47 res <− list(Ave=mean(delta10),
48 se_Ave=se_Ave)
49
50 return(res)
51 }
52
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53 ####### function estimating ATE (moment−based approach) #############
54 computeAveMom <− function(m1, d, distribution, se = "stochastic"){
55 # Get regression coefficients and there covariance
56 coefs <− coef(m1)
57 vcovs <− vcov(m1)
58
59 pnames <− c("g000", "g100", "g001", "g101")
60 names(coefs) <− row.names(vcovs) <− colnames(vcovs) <− pnames
61
62 # lavaan model for joint estimation of sample moments
63 modelz <− ’
64 z ~ c(meanz001,meanz101)∗1
65 z ~~ c(varz001,varz101)∗z
66 group % c(groupw0,groupw1)∗w
67 gw0 := groupw0
68 gw1 := groupw1
69 mz001 := meanz001
70 mz101 := meanz101
71 vz001 := varz001
72 vz101 := varz101
73 N := exp(gw0) + exp(gw1)
74 relfreq0 := exp(gw0)/N
75 relfreq1 := exp(gw1)/N
76 Ez1 := mz001∗relfreq0 + mz101∗relfreq1
77 Vz1 := vz001∗relfreq0 + vz101∗relfreq1 + relfreq0∗(mz001−Ez1)^2 + relfreq1∗(mz101−Ez1)^2
78 Px0 := relfreq0
79 Px1 := relfreq1
80 Pk0gx0 := relfreq0/Px0
81 Pk0gx1 := relfreq1/Px1
82 Ez1gx0 := mz001∗Pk0gx0
83 Ez1gx1 := mz101∗Pk0gx1
84 Vz1gx0 := vz001∗Pk0gx0
85 Vz1gx1 := vz101∗Pk0gx1
86 ’
87 mz <− sem(modelz, data=d, group="x", group.label=c(0,1), group.w.free=TRUE)
88
89 ## augment coefs and vcovs
90 acoefs <− c(coefs, coef(mz, type="user")[−c(1:6)])
91
92 if (se == "stochastic"){
93 # for stochastic covariate
94 avcovs <− lav_matrix_bdiag(vcovs, lavInspect(mz, "vcov.def", add.class = FALSE))
95 } else if (se == "fixed"){
96 # for fixed covariate : covariance of distribution parameters fixed to zero
97 avcovs <− lav_matrix_bdiag(vcovs, lavInspect(mz, "vcov.def", add.class = FALSE)∗0)
98 }
99
100 row.names(avcovs) <− colnames(avcovs) <− names(acoefs)
101
102 if ( distribution == "normal"){
103 Eg1 <− deltaMethod(acoefs,

"exp(g000+g100)∗exp((g001+g101)∗Ez1+((g001+g101)^2∗Vz1/2))−exp(g000)∗exp(g001∗Ez1+(g001^2∗Vz1/2))",
avcovs, func="Eg1")

104 } else if ( distribution == "uniform"){
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105 Eg1 <− deltaMethod(acoefs,
106 "exp(g000+g100)∗(exp((g001+g101)∗(Ez1+sqrt(3∗Vz1)))−exp((g001+g101)∗(Ez1−sqrt(3∗Vz1))))/((g001+g101)∗(2∗sqrt(3∗Vz1)))−exp(g000)∗(exp(g001∗(Ez1+sqrt(3∗Vz1)))−exp(g001∗(Ez1−sqrt(3∗Vz1))))/(g001∗(2∗sqrt(3∗Vz1)))",
107 avcovs, func="Eg1")
108 } else if ( distribution == "poisson"){
109 Eg1 <− deltaMethod(acoefs,

"exp(g000+g100)∗exp(Ez1∗(exp(g001+g101)−1))−exp(g000)∗exp(Ez1∗(exp(g001)−1))", avcovs,
func="Eg1")

110 } else if ( distribution == "chisquare"){
111 Eg1 <− deltaMethod(acoefs,

"(exp(g000+g100)/(1−2∗(g001+g101))^(Ez1/2))−(exp(g000)/(1−2∗g001)^(Ez1/2))", avcovs,
func="Eg1")

112 }
113
114 res <− list(Ave=Eg1$Estimate,
115 se_Ave=Eg1$SE)
116
117 return(res)
118
119 }
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Simulation procedure

1 library(doParallel)
2 library(foreach)
3 library(MASS)
4 source("dataSimulation.R")
5 source("estimators.R")
6
7 # Set design parameters
8 sampleN <− c(50, 100, 250, 500, 1000)
9 interact <− c(0, 0.25, 0.5, 0.75, 1)
10 cohensd <− c(−.5, 0, .5)
11 distribution <− c("normal", "poisson", "uniform")
12 reps <− 5000
13 conditions <− expand.grid(sampleN, interact, cohensd, distribution)
14 colnames(conditions) <− c("sampleN", "interact", "cohensd", "distribution")
15
16 ### Simulation procedure
17 #setup parallel backend to use 4 processors
18 cluster<−makeCluster(4, outfile = "debug.txt")
19 registerDoParallel ( cluster )
20 results <− list()
21 for ( i in 1:nrow(conditions)){
22 # Parallel replications within each scenario
23 res <− foreach::foreach(icount(reps), .combine = rbind, .packages = c("car", "lavaan","MASS"),

.errorhandling = "remove") %dopar% {
24 # Generate data set
25 d <− data.sim(conditions$sampleN[i],
26 conditions$cohensd[i ],
27 conditions$interact [ i ],
28 conditions$distribution [ i ])
29 # Estimate NB−GLM
30 m1 <− glm.nb(y ~ x∗z, data=d)
31 # Get results from ATE estimators
32 tmp <− c(unlist(computeAveEmp(m1, d, se = "fixed")),
33 unlist(computeAveAnaStoch(m1, d, distribution = conditions$distribution[i])),
34 unlist(computeAveAnaFixed(m1, d, distribution = conditions$distribution[i])),
35 unlist(computeAveAnaStoch(m1, d, distribution = "normal")),
36 computeTemz(m1, d),
37 m1$converged)
38 tmp
39 }
40 # Combine and save results
41 results <− data.frame(res,
42 conditions$sampleN[i],
43 conditions$cohensd[i ],
44 conditions$interact [ i ],
45 conditions$distribution [ i ])
46 names(results) <− c("aveEmpFixed", "seEmpFixed",
47 "aveAnaStochastic", "seAnaStochastic",
48 "aveAnaFixed", "seAnaFixed",
49 "aveStochNorm", "seStochNorm",
50 "TEMZ",
51 "conv", "N", "cohensd", " interact " , " distribution ")
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52 saveRDS(results, file = paste0("simulation/res_",
53 conditions$sampleN[i],"_",
54 conditions$cohensd[i ], "_",
55 conditions$interact [ i ], "_",
56 conditions$distribution [ i ],
57 " .rds"))
58 }
59 stopCluster(cluster )
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CountEffects package

As a supplement to this article, we provide an R package (R Core Team, 2018) called

CountEffects, which comprises the functions related to the moment-based approach

presented in this article.
It is available from GitHub and can be installed as follows:

1 library(devtools)
2 install_github(’chkiefer/CountEffects’)
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