
Asymptotic distribution for centered higher-order moments using

Cramer’s method

1 Notation and asymptotic distribution of pk

Let x be a p-dimensional vector variable with finite higher order moments
νk = E(x− µ)⊗k ( a⊗k = a⊗ . . .⊗ a is a kronecker product with k terms). Note
that ν1 = 0.
Let x1, . . . , xn be an iid sample of x and

pk =
1

n

n
∑

i=1

(xi − µ)⊗k, k ≥ 1

By the Law of Large numbers,

pk
P→ νk, (1)

and by the Central Limit theorem,

√
n(pk − νk)

D→ N (0, cov((xi − µ)⊗k)), (2)

since the (xi − µ)⊗k are iid with variance matrix cov((xi − µ)⊗k), assumed to be
finite. This implies that the asymptotic variance matrix
acov(pk) = cov((xi − µ)⊗k) can be estimated consistenly by the sample variance
matrix scov((xi − µ)⊗k) of the (xi − µ)⊗k’s.
Let us now define q1 = x̄ and

qk =
1

n

n
∑

i=1

(xi − x̄)⊗k, k ≥ 2 (3)

We will show that like pk, qk is an asymptotically normal vector with the same
asymptotic limit νk as pk (when k 6= 1 ) but with an asymptotic variance matrix
that may differ from the one of pk when k > 2. We also derive an expression for a
consistent estimator of acov(q) when q is an stacked vector of qks.

2 Consistent estimation of Γp = acov(p)

Let

p =









p1
...
pm
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Note that

√
n









p1 − ν1
...

pm − νm









=
1√
n

∑

i









xi − µ− ν1
...

(xi − µ)⊗m − νm









By the central limit theorem the asymptotic covariance matrix for p is

Γp = cov









x− µ
...

(x− µ)⊗m









This consists of sub-matrics of the form

Γrs = scov((x−µ)⊗r, (x−µ)⊗s) = E((x−µ)⊗r)((x−µ)⊗s)′−E((x−µ)⊗r)(E(x−µ)⊗s)′

It follows that

vec (Γrs) = E(x−µ)⊗(r+s)−E((x−µ)⊗r)⊗E(x−µ)⊗s = νr+s−νr⊗νs a
= qr+s−qr⊗qs

This provides a consistent estimator for Γrs and these provide a consistent
estimator for Γ. With a bit of work, we can show that this consistent estimator
of Γp is the sample covariance matrix scov (t

+
i ), where

t+i =













xi − x̄

(xi − x̄)⊗2

...
(xi − x̄)⊗k













Unfortunately, what we need is not a consistent estimator of Γp but a consistent
estimator of Γq. This estimator is to be developed below.

3 Representation of qk as a function of p1 and pk

Replacing in (3) xi − x̄ by (xi − µ)− (x̄− µ), and expanding the kronecker
power1 yields

(xi − x̄)⊗k = (xi − µ)⊗k −
k
∑

j=1

(xi − µ)⊗(j−1) ⊗ (x̄− µ)⊗ (xi − µ)⊗(k−j) + rki (4)

1Note that the binomial theorem can not be used here since kronecker power is not commu-
tative in general; e.g., (a+ b)⊗2 6= a

⊗2 + 2a⊗ b + b
⊗2, for general vectors a and b
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where it is understood that a⊗0 = 1. In formula (4), rki is a kronecker product of
k terms which can be shown to have the term (xi − µ) repeated twice or more.
For developments to follow, we need the commutation matrix Kmn (see Magnus
and Neudecker, 1986) defined by

Kmnvec(A) = vec(A′),

for any m× n matrix A. It is known that

Kmn =
m
∑

i=1

n
∑

j=1

(Hij ⊗H ′

ji)

where Hij is an m× n matrix with a 1 in the ijth position and zeros elsewhere.
If a and b are columns vectors of length n and m then

Kmn(a⊗ b) = b⊗ a (5)

The property (5) permits writing (4) as

(xi − x̄)⊗k = (xi − µ)⊗k − Ck(xi − µ)⊗(k−1) ⊗ (x̄− µ) + rki, (6)

where

Ck =
k−1
∑

j=1

Kpjpk−j + Ipk , k ≥ 2 (7)

To achieve this result we used that for j = 1, . . . , k − 1

(xi − µ)⊗(j−1) ⊗ (x̄− µ)⊗ (xi − µ)⊗(k−j)

=
[

(xi − µ)⊗(j−1) ⊗ (x̄− µ)
]

⊗ (xi − µ)⊗(k−j)

= Kpjpk−j

(

(xi − µ)⊗(k−j) ⊗
[

(xi − µ)⊗(j−1) ⊗ (x̄− µ)
])

= Kpjpk−j

(

(xi − µ)⊗(k−j) ⊗ (xi − µ)⊗(j−1) ⊗ (x̄− µ)
)

= Kpjpk−j

(

(xi − µ)⊗(k−1) ⊗ (x̄− µ)
)

in virtue of the associative property of the Kronecker product and (5). Clearly,
for j = k

(xi − µ)⊗(j−1) ⊗ (x̄− µ)⊗ (xi − µ)⊗(k−j)

= (xi − µ)⊗(k−1) ⊗ (x̄− µ)

Averaging (6) across i and using the definition of the pk’s, we obtain

qk = pk − Ck (pk−1 ⊗ p1) + rk (8)
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where

rk =
1

n

n
∑

i=1

rki

Substracting νk in both sides of (8) and multiplying by
√
n, yields

√
n(qk − νk) =

√
n(pk − νk)− Ck

(

pk−1 ⊗
√
np1

)

+
√
nrk , k ≥ 2; (9)

thus,

√
n(qk − νk) =

(

−Ck(pk−1 ⊗ Ip) Ipk
)√

n

(

p1 − ν1
pk − νk

)

+
√
nrk , k ≥ 2 (10)

since ν1 = 0 and

Ck

(

pk−1 ⊗
√
n(p1 − ν1)

)

= Ckvec
(√

n(p1 − ν1)p
′

k−1

)

= Ck(pk−1⊗ Ip)
√
n(p1− ν1).

We now need proving that √
nrk

P→ 0, k ≥ 2; (11)

that is,
√
nrk = op(1). This is equivalent to proving

1√
n

∑

rki
p→ 0 (12)

For this we need a little more precise definition of rki. Let rki be the sum of all
the kth order Kronecker products containing terms of the form (xi − µ) or
(x̄−µ) with at least two of these being (x̄−µ). Each of these is a permutation of

(x̄− µ)⊗j ⊗ (xi − µ)⊗(k−j)

for some j ≥ 2. It follows that

1√
n

∑

i

(x̄− µ)⊗j ⊗ (xi − µ)⊗(k−j) =
√
n(x̄− µ)⊗j ⊗ 1

n

∑

i

(xi − µ)⊗(k−j)
P→ 0

and (11) follows from this.
Combining (1), (8) and (11), we obtain

qk
P→ νk, k > 1 (13)

That is, pk and qk have the same asymptotic limit when k > 1; when k = 1, then

q1
P→ µ and p1

P→ ν1 = 0.

By setting k = 2 in (9) and using (11) and p1
P→ 0, we obtain

√
n(q2 − ν2) =

√
n(p2 − ν2) + op(1). (14)

When k = 1 then, clearly,
√
n(q1 − µ1) =

√
n(p1 − ν1) (15)

The results (10), (14) and (15) will be exploited in the next section to derive the
asymptotic distribution of a stacked vector of qk’s.
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4 Consistent estimation of Γq

For simplicity of exposition, consider q = (q1, q2, q3, q4)
′, i.e. we consider the case

of k = 4 (larger values for k would be handled by analogy). By stacking
equations (15) and (14), and (10) with k = 3, 4, and denoting ν = (ν1, ν2, ν3, νk)

′

and ν̃ = (µ1, ν2, ν3, νk)
′, since p

P→ νk and q
P→ ν̃k, we obtain

√
n











q1 − µ1

q2 − ν2
q3 − ν3
q4 − ν4











=











Ip 0 0 0
0 Ip2 0 0

−Ck(p2 ⊗ Ip) 0 Ip3 0
−Ck(p3 ⊗ Ip) 0 0 Ip4











√
n











p1 − ν1
p2 − ν2
p3 − ν3
p4 − ν4











+ op(1);

(16)
which, by direct application of Slutsky’s Theorem, proves that

√
n(q − ν̃) is

asymptotically normal with variance matrix

Γq = UΓpU
′, (17)

where

U =











Ip 0 0 0
0 Ip2 0 0

−Ck(ν2 ⊗ Ip) 0 Ip3 0
−Ck(ν3 ⊗ Ip) 0 0 Ip4











Since

Û =











Ip 0 0 0
0 Ip2 0 0

−Ck(q2 ⊗ Ip) 0 Ip3 0
−Ck(q3 ⊗ Ip) 0 0 Ip4











is a consistent estimator of U (we used (13)), a consistent estimate of Γq is

Γ̂q = Û [scov(t+i )]Û
′ = scov(Û t+i )

That is, Γ̂q can be written as the sample variance matrix of the pseudo-values

t̃+i =











Ip 0 0 0
0 Ip2 0 0

−Ck(q2 ⊗ Ip) 0 Ip3 0
−Ck(q3 ⊗ Ip) 0 0 Ip4





















xi − x̄

(xi − x̄)⊗2

(xi − x̄)⊗3

(xi − x̄)⊗4











(18)

With a bit of work it can be seen that scov(t̃+i ) coincides with the accelerated
version of the IJK estimator of variance proposed in our paper, the
“accelerating” matrix Ck being now expressed in terms of the commutation
matrices Kmn. Using the Kmn’s can be less efficient (computationally) than using
the matrix Ck defined in the Appendix of the paper.
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