ASYMPTOTIC DISTRIBUTION FOR CENTERED HIGHER-ORDER MOMENTS USING
CRAMER’S METHOD

1 Notation and asymptotic distribution of p,

Let z be a p-dimensional vector variable with finite higher order moments
vp = E(x — )% (a®* =a®...®a is a kronecker product with k terms). Note
that v; = 0.

Let x1,...,z, be an iid sample of z and
1 n
pe=—> (z;— ) k>1

ni4

By the Law of Large numbers,
Pk £> Vi, (1)

and by the Central Limit theorem,
Vlpr — vi) 2 N0, cov((; — p1)®*)), (2)

since the (z; — p)®* are iid with variance matrix cov((z; — u)®¥), assumed to be
finite. This implies that the asymptotic variance matrix

acov(py) = cov((x; — p)®%) can be estimated consistenly by the sample variance
matrix scov((x; — u)®*) of the (z; — p)®*’s.

Let us now define ¢; = Z and

n

S —3)%F k> 2 (3)

1
Qk = —
ni=
We will show that like pg, g is an asymptotically normal vector with the same
asymptotic limit vy as py (when k # 1 ) but with an asymptotic variance matrix
that may differ from the one of p, when k > 2. We also derive an expression for a

consistent estimator of acov(q) when ¢ is an stacked vector of gys.

2 Consistent estimation of I', = acov(p)

Let
P

Pm



Note that

b1 — 1 T — U — 1
A D D
Pm — Vm (i —

By the central limit theorem the asymptotic covariance matrix for p is

)®m —VUnm
T — pu

I') = cov :

(z — p)®m

This consists of sub-matrics of the form

Ly = scov((z—p)®", (x—p)?) = E((x—p)*" ) ((x=p)**) = E((x—p)*") (E(x—p)**)

It follows that

vee (Tys) = B(x—p)*" )~ E((x—p)*") @ B(2—1)** = vrps =1, @05 £ Grps— 4G5

This provides a consistent estimator for I',; and these provide a consistent
estimator for I'. With a bit of work, we can show that this consistent estimator
of T, is the sample covariance matrix scov (¢;"), where

Ty — X
= (i — 2)*?
;=
(IZ‘ - i’)®k

Unfortunately, what we need is not a consistent estimator of I', but a consistent
estimator of I';. This estimator is to be developed below.

3 Representation of g, as a function of p; and p;,

Replacing in (3) x; — z by (x; — pu) — (z — p), and expanding the kronecker
power! yields

(00 = D) = (@ = )™ = 3o = V@ (7 = ) @ (i — )P4 s ()

j=1

!Note that the binomial theorem can not be used here since kronecker power is not commu-
tative in general; e.g., (a + b)®% # a®? + 2a ® b + b®?, for general vectors a and b



where it is understood that a®° = 1. In formula (4), ry; is a kronecker product of
k terms which can be shown to have the term (z; — p) repeated twice or more.

For developments to follow, we need the commutation matrix K,,, (see Magnus
and Neudecker, 1986) defined by

Knvec(A) = vec(A'),
for any m x n matrix A. It is known that
Kn = ij Zn:(Hij ® Hj,)
i=1j=1
where H;; is an m x n matrix with a 1 in the ijth position and zeros elsewhere.
If a and b are columns vectors of length n and m then
Kpn(a®b) =b®a (5)
The property (5) permits writing (4) as
(i — )" = (2 — 1) = Cp(a; — )"V @ (T — 1) + 11, (6)
where -
Cy = Z Kpipe—i + Iy k> 2 (7)
j=1
To achieve this result we used that for j =1,... .k —1
(2 = ) V @ (2 = p) ® (2 — p)* ¢
(@i =WV @ (@ - )] @ (2 - p)®*)
e (2= 1)** @ (@i = )*0 0 @ (2 — p)])
pees (2= p)*6 D @ (@ = )0 @ (2 — )

= Ko (i = )"0 @ (2 )

in virtue of the associative property of the Kronecker product and (5). Clearly,
for j =k

(2 = )V @ (2 — p) ® (2 — p)**7
= (2 —p)* " V@ (- p)

Averaging (6) across i and using the definition of the p;’s, we obtain
G = pr — Ck (Pk—1 @ p1) + 1 (8)
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where L
Tk = n ; T'ki
Substracting v, in both sides of (8) and multiplying by /n, yields

V(g — ve) = Vn(pr — vk) — Gy (pk—1 ® \/ﬁp1) + Vg, k> 2; (9)

thus,

Vilg =) = ( =Crlpr1® 1) Ly )v/n ( ;’; - 2 ) + A, k>2 (10
since v; = 0 and
Ck (]%-1 ® v/n(pr — V1)) = (Cjvec (\/ﬁ(pl - Vl)p;g_l) = Cr(pr—1®@ L,)V/n(pr —v1).
We now need proving that
Ve 50, k> 2 (11)
that is, \/nry = 0,(1). This is equivalent to proving

%Zm 50 (12)

For this we need a little more precise definition of r4;. Let r; be the sum of all
the kth order Kronecker products containing terms of the form (z; — u) or
(z — p) with at least two of these being (Z — ). Each of these is a permutation of

(7 = @) @ (w; — )"
for some 7 > 2. It follows that
1 . . 1 ,
NP @ (- ) = Ve - ) © > (- @) B
N n <
and (11) follows from this.
Combining (1), (8) and (11), we obtain
@ v, k> 1 (13)
That is, p and ¢ have the same asymptotic limit when k& > 1; when k£ = 1, then
q1£>,uandp1£>1/1:0.
By setting k = 2 in (9) and using (11) and p; = 0, we obtain
V(g — va) = Vn(ps — 1a) + 0,(1). (14)
When k£ = 1 then, clearly,
V(g — 1) = vn(pr — 1) (15)

The results (10), (14) and (15) will be exploited in the next section to derive the
asymptotic distribution of a stacked vector of ¢’s.
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4  Consistent estimation of [,

For simplicity of exposition, consider ¢ = (¢1, g2, g3, q1)’, i.e. we consider the case
of k =4 (larger values for & would be handled by analogy). By stacking
equations (15) and (14), and (10) with & = 3,4, and denoting v = (v, va, V3, 1)’

N . P P .
and 7 = (1, v9, V3, 1), since p = v and ¢ — Uy, we obtain

q1 — M1 ]p 0 0 0 p1—
o — V9 0 Ip2 0 0 P2 — Uy
n = n 4+ 0,(1);
v q3 — V3 —Ci(p2®1,) 0 Is 0 Vi D3 — V3 p(1)
Qs — Vs —Cr(ps®@1I,) 0 0 Ip D4 — Vy
(16)
which, by direct application of Slutsky’s Theorem, proves that v/n(q — ) is
asymptotically normal with variance matrix
r, = UFpU', (17)
where
I, 0O 0 O
U 0 I, 0 0
—Ok(l/g X Ip) 0 Ip3 0
—Ck(l/g ® ]p) 0 0 ]p4
Since
I, 0O 0 0
[ — 0 L, 0 0

—Cr(qa ® ]p) 0 Is O
—Ck(q?, ® ]p) 0 0 ]p4

is a consistent estimator of U (we used (13)), a consistent estimate of I, is
I, = Ulscov(t)]U" = scov(Ut})

That is, fq can be written as the sample variance matrix of the pseudo-values

I 0 0 0 zi— 7
. 0 I 0 0 (2 — 7)®2
v _ P i
=l —oipern) 0 Ls 0 || (-2 (18)

—Crlgs®1,) 0 0 Ip (v; —7)®*

With a bit of work it can be seen that scov(f;") coincides with the accelerated
version of the IJK estimator of variance proposed in our paper, the
“accelerating” matrix C} being now expressed in terms of the commutation
matrices K,,,. Using the K,,,’s can be less efficient (computationally) than using
the matrix C}, defined in the Appendix of the paper.



