Asymptotic distribution for centered higher-order moments using Cramer's method

1 Notation and asymptotic distribution of p_k

Let x be a p -dimensional vector variable with finite higher order moments $\nu_k = E(x - \mu)^{\otimes k}$ ($a^{\otimes k} = a \otimes \ldots \otimes a$ is a kronecker product with k terms). Note that $\nu_1 = 0$.

Let x_1, \ldots, x_n be an iid sample of x and

$$
p_k = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^{\otimes k}, \, k \ge 1
$$

By the Law of Large numbers,

$$
p_k \stackrel{P}{\to} \nu_k,\tag{1}
$$

and by the Central Limit theorem,

$$
\sqrt{n}(p_k - \nu_k) \stackrel{D}{\to} \mathcal{N}(0, \text{cov}((x_i - \mu)^{\otimes k})), \tag{2}
$$

since the $(x_i - \mu)^{\otimes k}$ are iid with variance matrix cov $((x_i - \mu)^{\otimes k})$, assumed to be finite. This implies that the asymptotic variance matrix $a\text{cov}(p_k) = \text{cov}((x_i - \mu)^{\otimes k})$ can be estimated consistenly by the sample variance matrix scov $((x_i - \mu)^{\otimes k})$ of the $(x_i - \mu)^{\otimes k}$'s. Let us now define $q_1 = \bar{x}$ and

$$
q_k = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^{\otimes k}, \, k \ge 2
$$
 (3)

We will show that like p_k , q_k is an asymptotically normal vector with the same asymptotic limit ν_k as p_k (when $k \neq 1$) but with an asymptotic variance matrix that may differ from the one of p_k when $k > 2$. We also derive an expression for a consistent estimator of acov (q) when q is an stacked vector of q_k s.

2 Consistent estimation of $\Gamma_p = \mathbf{acov}(p)$

Let

$$
p = \left(\begin{array}{c} p_1 \\ \vdots \\ p_m \end{array}\right)
$$

Note that

$$
\sqrt{n}\begin{pmatrix}p_1-\nu_1\\ \vdots\\ p_m-\nu_m\end{pmatrix}=\frac{1}{\sqrt{n}}\sum_i\begin{pmatrix}x_i-\mu-\nu_1\\ \vdots\\ (x_i-\mu)^{\otimes m}-\nu_m\end{pmatrix}
$$

By the central limit theorem the asymptotic covariance matrix for p is

$$
\Gamma_p = \text{cov}\begin{pmatrix} x - \mu \\ \vdots \\ (x - \mu)^{\otimes m} \end{pmatrix}
$$

This consists of sub-matrics of the form

$$
\Gamma_{rs} = \text{scov}((x-\mu)^{\otimes r}, (x-\mu)^{\otimes s}) = E((x-\mu)^{\otimes r})((x-\mu)^{\otimes s})' - E((x-\mu)^{\otimes r})(E(x-\mu)^{\otimes s})'
$$

It follows that

vec
$$
(\Gamma_{rs}) = E(x-\mu)^{\otimes (r+s)} - E((x-\mu)^{\otimes r}) \otimes E(x-\mu)^{\otimes s} = \nu_{r+s} - \nu_r \otimes \nu_s \stackrel{a}{=} q_{r+s} - q_r \otimes q_s
$$

This provides a consistent estimator for Γ_{rs} and these provide a consistent estimator for Γ. With a bit of work, we can show that this consistent estimator of Γ_p is the sample covariance matrix scov (t_i^+) , where

$$
t_i^+ = \begin{pmatrix} x_i - \bar{x} \\ (x_i - \bar{x})^{\otimes 2} \\ \vdots \\ (x_i - \bar{x})^{\otimes k} \end{pmatrix}
$$

Unfortunately, what we need is not a consistent estimator of Γ_p but a consistent estimator of Γ_q . This estimator is to be developed below.

3 Representation of q_k as a function of p_1 and p_k

Replacing in (3) $x_i - \bar{x}$ by $(x_i - \mu) - (\bar{x} - \mu)$, and expanding the kronecker $power¹$ yields

$$
(x_i - \bar{x})^{\otimes k} = (x_i - \mu)^{\otimes k} - \sum_{j=1}^k (x_i - \mu)^{\otimes (j-1)} \otimes (\bar{x} - \mu) \otimes (x_i - \mu)^{\otimes (k-j)} + r_{ki} \quad (4)
$$

¹Note that the binomial theorem can not be used here since kronecker power is not commutative in general; e.g., $(a + b)^{\otimes 2} \neq a^{\otimes 2} + 2a \otimes b + b^{\otimes 2}$, for general vectors a and b

where it is understood that $a^{\otimes 0} = 1$. In formula (4), r_{ki} is a kronecker product of k terms which can be shown to have the term $(x_i - \mu)$ repeated twice or more. For developments to follow, we need the commutation matrix K_{mn} (see Magnus and Neudecker, 1986) defined by

$$
K_{mn}\text{vec}(A) = \text{vec}(A'),
$$

for any $m \times n$ matrix A. It is known that

$$
K_{mn} = \sum_{i=1}^{m} \sum_{j=1}^{n} (H_{ij} \otimes H'_{ji})
$$

where H_{ij} is an $m \times n$ matrix with a 1 in the *ij*th position and zeros elsewhere. If a and b are columns vectors of length n and m then

$$
K_{mn}(a\otimes b) = b\otimes a \tag{5}
$$

The property (5) permits writing (4) as

$$
(x_i - \bar{x})^{\otimes k} = (x_i - \mu)^{\otimes k} - C_k (x_i - \mu)^{\otimes (k-1)} \otimes (\bar{x} - \mu) + r_{ki},
$$
 (6)

where

$$
C_k = \sum_{j=1}^{k-1} K_{p^j p^{k-j}} + I_{p^k}, k \ge 2
$$
 (7)

To achieve this result we used that for $j = 1, \ldots, k - 1$

$$
(x_i - \mu)^{\otimes (j-1)} \otimes (\bar{x} - \mu) \otimes (x_i - \mu)^{\otimes (k-j)}
$$

=
$$
[(x_i - \mu)^{\otimes (j-1)} \otimes (\bar{x} - \mu)] \otimes (x_i - \mu)^{\otimes (k-j)}
$$

=
$$
K_{p^j p^{k-j}} ((x_i - \mu)^{\otimes (k-j)} \otimes [(x_i - \mu)^{\otimes (j-1)} \otimes (\bar{x} - \mu)])
$$

=
$$
K_{p^j p^{k-j}} ((x_i - \mu)^{\otimes (k-j)} \otimes (x_i - \mu)^{\otimes (j-1)} \otimes (\bar{x} - \mu))
$$

=
$$
K_{p^j p^{k-j}} ((x_i - \mu)^{\otimes (k-1)} \otimes (\bar{x} - \mu))
$$

in virtue of the associative property of the Kronecker product and (5). Clearly, for $j = k$

$$
(x_i - \mu)^{\otimes (j-1)} \otimes (\bar{x} - \mu) \otimes (x_i - \mu)^{\otimes (k-j)}
$$

$$
= (x_i - \mu)^{\otimes (k-1)} \otimes (\bar{x} - \mu)
$$

Averaging (6) across i and using the definition of the p_k 's, we obtain

$$
q_k = p_k - C_k (p_{k-1} \otimes p_1) + r_k
$$
 (8)

where

$$
r_k = \frac{1}{n} \sum_{i=1}^n r_{ki}
$$

Substracting ν_k in both sides of (8) and multiplying by \sqrt{n} , yields

$$
\sqrt{n}(q_k - \nu_k) = \sqrt{n}(p_k - \nu_k) - C_k \left(p_{k-1} \otimes \sqrt{n} p_1\right) + \sqrt{n} r_k, k \ge 2; \tag{9}
$$

thus,

$$
\sqrt{n}(q_k - \nu_k) = \begin{pmatrix} -C_k(p_{k-1} \otimes I_p) & I_{p^k} \end{pmatrix} \sqrt{n} \begin{pmatrix} p_1 - \nu_1 \\ p_k - \nu_k \end{pmatrix} + \sqrt{n}r_k, k \ge 2 \qquad (10)
$$

since $\nu_1 = 0$ and

$$
C_k\left(p_{k-1}\otimes\sqrt{n}(p_1-\nu_1)\right)=C_k\text{vec}\left(\sqrt{n}(p_1-\nu_1)p_{k-1}'\right)=C_k(p_{k-1}\otimes I_p)\sqrt{n}(p_1-\nu_1).
$$

We now need proving that

$$
\sqrt{n}r_k \stackrel{P}{\to} 0, \, k \ge 2; \tag{11}
$$

that is, $\sqrt{n}r_k = o_p(1)$. This is equivalent to proving

$$
\frac{1}{\sqrt{n}}\sum r_{ki} \xrightarrow{p} 0 \tag{12}
$$

For this we need a little more precise definition of r_{ki} . Let r_{ki} be the sum of all the kth order Kronecker products containing terms of the form $(x_i - \mu)$ or $(\bar{x} - \mu)$ with at least two of these being $(\bar{x} - \mu)$. Each of these is a permutation of

$$
(\bar{x} - \mu)^{\otimes j} \otimes (x_i - \mu)^{\otimes (k - j)}
$$

for some $j \geq 2$. It follows that

$$
\frac{1}{\sqrt{n}}\sum_{i}(\bar{x}-\mu)^{\otimes j}\otimes(x_{i}-\mu)^{\otimes(k-j)}=\sqrt{n}(\bar{x}-\mu)^{\otimes j}\otimes\frac{1}{n}\sum_{i}(x_{i}-\mu)^{\otimes(k-j)}\stackrel{P}{\to}0
$$

and (11) follows from this.

Combining (1) , (8) and (11) , we obtain

$$
q_k \stackrel{P}{\to} \nu_k, \quad k > 1 \tag{13}
$$

That is, p_k and q_k have the same asymptotic limit when $k > 1$; when $k = 1$, then $q_1 \stackrel{P}{\rightarrow} \mu$ and $p_1 \stackrel{P}{\rightarrow} \nu_1 = 0$.

By setting $k = 2$ in (9) and using (11) and $p_1 \stackrel{P}{\rightarrow} 0$, we obtain

$$
\sqrt{n}(q_2 - \nu_2) = \sqrt{n}(p_2 - \nu_2) + o_p(1). \tag{14}
$$

When $k = 1$ then, clearly,

$$
\sqrt{n}(q_1 - \mu_1) = \sqrt{n}(p_1 - \nu_1)
$$
\n(15)

The results (10), (14) and (15) will be exploited in the next section to derive the asymptotic distribution of a stacked vector of q_k 's.

4 Consistent estimation of Γ_q

For simplicity of exposition, consider $q = (q_1, q_2, q_3, q_4)'$, i.e. we consider the case of $k = 4$ (larger values for k would be handled by analogy). By stacking equations (15) and (14), and (10) with $k = 3, 4$, and denoting $\nu = (\nu_1, \nu_2, \nu_3, \nu_k)'$ and $\tilde{\nu} = (\mu_1, \nu_2, \nu_3, \nu_k)'$, since $p \stackrel{P}{\to} \nu_k$ and $q \stackrel{P}{\to} \tilde{\nu_k}$, we obtain

$$
\sqrt{n}\begin{pmatrix} q_1 - \mu_1 \\ q_2 - \nu_2 \\ q_3 - \nu_3 \\ q_4 - \nu_4 \end{pmatrix} = \begin{pmatrix} I_p & 0 & 0 & 0 \\ 0 & I_{p^2} & 0 & 0 \\ -C_k(p_2 \otimes I_p) & 0 & I_{p^3} & 0 \\ -C_k(p_3 \otimes I_p) & 0 & 0 & I_{p^4} \end{pmatrix} \sqrt{n}\begin{pmatrix} p_1 - \nu_1 \\ p_2 - \nu_2 \\ p_3 - \nu_3 \\ p_4 - \nu_4 \end{pmatrix} + o_p(1); \tag{16}
$$

which, by direct application of Slutsky's Theorem, proves that $\sqrt{n}(q - \tilde{\nu})$ is asymptotically normal with variance matrix

$$
\Gamma_q = U \Gamma_p U',\tag{17}
$$

where

$$
U = \begin{pmatrix} I_p & 0 & 0 & 0 \\ 0 & I_{p^2} & 0 & 0 \\ -C_k(\nu_2 \otimes I_p) & 0 & I_{p^3} & 0 \\ -C_k(\nu_3 \otimes I_p) & 0 & 0 & I_{p^4} \end{pmatrix}
$$

Since

$$
\hat{U} = \begin{pmatrix}\nI_p & 0 & 0 & 0 \\
0 & I_{p^2} & 0 & 0 \\
-C_k(q_2 \otimes I_p) & 0 & I_{p^3} & 0 \\
-C_k(q_3 \otimes I_p) & 0 & 0 & I_{p^4}\n\end{pmatrix}
$$

is a consistent estimator of U (we used (13)), a consistent estimate of Γ_q is

$$
\hat{\Gamma}_q = \hat{U}[\text{scov}(t_i^+)]\hat{U}' = \text{scov}(\hat{U}t_i^+)
$$

That is, $\hat{\Gamma}_q$ can be written as the sample variance matrix of the pseudo-values

$$
\tilde{t}_i^+ = \begin{pmatrix}\nI_p & 0 & 0 & 0 \\
0 & I_{p^2} & 0 & 0 \\
-C_k(q_2 \otimes I_p) & 0 & I_{p^3} & 0 \\
-C_k(q_3 \otimes I_p) & 0 & 0 & I_{p^4}\n\end{pmatrix}\n\begin{pmatrix}\nx_i - \bar{x} \\
(x_i - \bar{x})^{\otimes 2} \\
(x_i - \bar{x})^{\otimes 3} \\
(x_i - \bar{x})^{\otimes 4}\n\end{pmatrix}
$$
\n(18)

With a bit of work it can be seen that $\text{scov}(\tilde{t}_i^+)$ coincides with the accelerated version of the IJK estimator of variance proposed in our paper, the "accelerating" matrix C_k being now expressed in terms of the commutation matrices K_{mn} . Using the K_{mn} 's can be less efficient (computationally) than using the matrix C_k defined in the Appendix of the paper.