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Supplementary Material

Extended definitions, theorems, and proofs

The Supplementary Material provide a more formal and rigorous treatment of the main

article’s results. The mathematical proficiency needed to understand the appendices are

introductory level linear algebra and calculus, as well as a familiarity with tensor

products. For an introduction to the first, we refer to Lang (1987). A comprehensive

introduction to matrices can be found in Horn and Johnson (2013). For basic properties

of tensor products on vector spaces we used Horn and Johnson (1991) and for a more

advanced and abstract algebraic treatment of them we refer to Bourbaki (1989).

Setting

Before introducing notation as well as formalizing the concepts of primary and

composed models, we elucidate some connections between the concept of identification

and linear algebra. Recall that a model is identified if, for the model-implied covariance

matrix Σ and any arbitrary parameter vectors θ1 and θ2, it holds that Σ(θ1) ̸= Σ(θ2)

whenever θ1 ̸= θ2 (Bollen, 1989; Jöreskog, 1978). On the one hand, this means that the

model parameters can be expressed as a function of the observed variables (Bollen,

1989).

On the other hand this condition equivalently states that a model is identified if

its model-implied covariance matrix is an injective map of the parameters. A basic

result of linear algebra states that, for linear maps, the injective property can be

equivalently expressed in terms of their kernel. Recall that the kernel of a linear map

A : U → V , denoted ker A ⊂ U , is the space of all vectors in U that is mapped to the

zero vector in V under A. A basic result of linear algebra then is that a linear map A is

injective if and only if its kernel is the trivial subspace consisting only of the zero vector

in U , i.e. ker A = {0}. Our proof makes use of the fact that this relation permits to

check injectivity of a map via its kernel and therefore determine model identification

without the need to explicitly state the function relating the observed variables to the

model parameters.

To introduce some notation, consider a CFA model relating (multivariate
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real-valued) data y ∈ Rm to a (multivariate) random variable η and errors ε, taking

values in Rn and Rm, respectively. With α ∈ Rm, a constant real vector, and Λ ∈ Rm×n,

the loading matrix, the structural equation constituting the model is

y = α + Λη + ε. (S.1)

As is common practice for CFA models (Bollen, 1989), we assume that η and ε

are uncorrelated and that they have zero means as well as finite variance. With the

notation

Φ := Var[η], (S.2a)

Ψ := Var[ε], (S.2b)

Σ := Var[y], (S.2c)

it follows that

E[y] = α (S.3)

and

Σ = ΛΦΛT + Ψ. (S.4)

The covariance matrices Φ and Ψ each contain n and m variances as well as

p ∈ {0, . . . , n(n − 1)/2} and q ∈ {0, . . . , m(m − 1)/2} non-zero covariances, respectively.

The loading matrix Λ contains some number r ∈ {0, . . . , mn} of free loadings, while the

other mn − r entries in Λ are set to some constant real value such as 0 or 1.

We can collect the free loadings in Λ, variances and covariances of η, and

variances and covariances of ε in respective vectors

θΦ ∈ Rn
>0 × Rp, (S.5a)

θΨ ∈ Rm
>0 × Rq, (S.5b)

θΛ ∈ Rr. (S.5c)
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This notation permits to consider the matrices Φ, Ψ, and Λ as functions of their

respective entries.

Φ : Rn
>0 × Rp → Rn×n, (S.6a)

Ψ : Rm
>0 × Rq → Rm×m, (S.6b)

Λ : Rr → Rm×n. (S.6c)

We drop the respective matrices’ dependence on parameters whenever it facilitates

readability.

Let

A := Rr × Rn
>0 × Rp × Rm

>0 × Rq, (S.7)

the set of all free parameters in the model. We denote A the CFA model’s associated

parameter space. This permits to collect θΦ, θΨ, and θΛ in a vector θ := (θΛ, θΦ, θΨ) ∈ A

and consider Σ as a map from the parameter space A to the space of m × m matrices,

that is,

Σ : A → Rm×m (S.8)

(θΛ, θΦ, θΨ) 7→ Λ(θΛ)Φ(θΦ)Λ(θΛ)T + Ψ(θΨ).

The notation just introduced allows us to reformulate the definition of model

identification given above. Following Bekker and ten Berge (1997), we further

distinguish a weaker form of global identification, which is generic global identification.

This notion of identification considers that there might be parameter sets of measure

zero where the model is not identified, which is commonly referred to as theoretical

identification, or simply identification.

If population parameters are close to this set or the characteristics of the data

cause parameter estimates to lie in its vicinity, a model may be empirically

underidentified in a specific application (Kenny & Milan, 2012). This is the case for the

example of a two-indicator, two-factor model given in the main body of the text, when
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the covariance between factors is close to zero (Bollen, 1989).

Definition S.1. Consider a CFA model with model-implied covariance matrix Σ and

parameter space A. If Σ = Σ(θ), as defined in Eq. (S.8), is an injective map [almost]

everywhere on A, we say that the model is [generically] globally identified.

By saying that some property holds everywhere respectively almost everywhere

we mean that this property holds for all elements of the parameter space respectively

that the set on which this property does not hold is a set of Lebesgue-measure zero.

Thus, a model that is globally identified is also generically globally identified, but the

converse must not hold.

In the present framework, we assume two CFA models, M1 and M2, which we

call the primary models. The primary models have associated data yi ∈ Rmi as well as

latent variables ηi and errors εi taking values in Rni and Rmi , i ∈ {1, 2}, respectively.

The loading, latent variable covariance, and error covariance matrices are given by

Λi ∈ Rmi×ni , (S.9a)

Φi := Var[ηi] ∈ Rni×ni , (S.9b)

Ψi := Var[εi] ∈ Rmi×mi (S.9c)

for i ∈ {1, 2}.

Further denoting the Mi’s parameter vectors and parameter spaces as well as

mean vectors, data, and model-implied covariance matrices as θi, Ai as well as αi, yi,

and Σi for i ∈ {1, 2}, respectively, we get E[yi] = αi and Σi(θi) = ΛiΦiΛT
i + Ψi for

i ∈ {1, 2} [cf. Eqs. (S.3) and (S.4)].

We now combine M1 and M2 into a more comprehensive model Mc, which we

refer to as the composed model. To this end, we concatenate the data, mean vectors,
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and latent variables into

yc := (y1, y2) ∈ Rm1 × Rm2 , (S.10a)

αc := (α1, α2) ∈ Rm1 × Rm2 , (S.10b)

ηc := (η1, η2) ∈ Rn1 × Rn2 , (S.10c)

εc := (ε1, ε2) ∈ Rm1 × Rm2 . (S.10d)

As before, assume that the cross-covariance between ηc and εc is zero.

Furthermore, define the new loading matrix Λ2 as

Λc :=

 Λ1 Λ12

Λ21 Λ2

 ∈ R(m1+m2)×(n1+n2). (S.11)

The structural equation defining the new model Mc is given by

yc = αc + Λcηc + εc. (S.12)

The latent variable and error covariance matrices are denoted by

Φc := Var[ηc] (S.13a)

=

 Φ1 ΦT
21

Φ21 Φ2

 (S.13b)

and

Ψc := Var[εc] (S.14a)

=

 Ψ1 ΨT
21

Ψ21 Ψ2

 . (S.14b)

To distinguish a composed model from any other model with arbitrary

block-diagonal structure, we require that the data of both primary models only relate
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via the cross-model covariances of the latent variables contained in Φ21. In other words,

we assume

Λ21 = Λ12 = 0 (⋆)

and

Ψ21 = 0. (⋆⋆)

This implies that Φ21 ∈ Rn2×n1 is the only submatrix introducing new

parameters in the composed model. Nevertheless, the covariances contained in Φ21 may

be subject to certain constraints. To highlight this fact, we collect these covariances in a

parameter vector θc∗ ∈ P ⊂ Rn2n1 in a column-major fashion, that is,

θc∗ = ((Φ21)11, . . . , (Φ21)n21, . . . , (Φ21)1n1 , . . . , (Φ21)n2n1) , (S.15)

and consider Φ21 as a function of these parameters (note that Φ21 defined in this way is

an injection),

Φ21 : P → Rn2×n1 (S.16)

θc∗ 7→ Φ21(θc∗).

Moreover, we assume that P is a subspace of Rn2n1 , which implies that we only

allow structure-preserving constraints, such as, for example, zero or proportionality

constraints. This also implies that no new parameters are introduced in the constraints

on the cross-model covariances.

For Mc, we define the parameter vector θc := (θ1, θ2, θc∗) ∈ Ac with

Ac := A1 × A2 × P , that is, a collection of the primary models’ parameter vectors as

well as θc∗ . To be able to refer to the parameter vectors of Mc belonging to the different

matrices individually, we also define θΛc
:= (θΛ1 , θΛ2), θΦc

:= (θΦ1 , θΦ2 , θc∗), and

θΨc
:= (θΨ1 , θΨ2).

With these definitions, we can again consider Σc as a function of the model’s
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parameters θc and write

Σc(θc) = ΛcΦcΛT
c + Ψc. (S.17)

Theorem and Proof

Theorem S.3 is stated in terms of the Kronecker product of matrices. For two

matrices A ∈ Rp×q and B ∈ Rr×s it is defined as

A ⊗ B :=


a11B . . . a1qB

... . . . ...

ap1B . . . apqB

 ∈ Rpr×qs. (S.18)

For a concise introduction to the Kronecker product, see Horn and Johnson (1991).

However, the Kronecker product of matrices acting on vector spaces can be

considered a special case of the tensor product, a more abstract operation defined on

modules. This abstraction allows for the use of more powerful theorems to derive

properties of the Kronecker product. For details we refer to Bourbaki (1989).

As a preliminary to the subsequent considerations, we extend the notation of the

Kronecker product to vector spaces in the following way.

Proposition S.2. Let U ⊂ Rp and V ⊂ Rq be vector spaces. Then

U ⊗ V := {u ⊗ v ∈ Rpq : u ∈ U, v ∈ V } (S.19)

is a vector space.

Proof. Omitted, see Bourbaki (1989) for details. ■

The preceding remarks allow us to state the central result of the present article

as follows.

Theorem S.3. Consider a composed model as previously defined and let the primary

models be [generically] globally identified. Then the composed model is [generically]

globally identified if and only if

ker (Λ1(θΛ1) ⊗ Λ2(θΛ2)) ∩ P = {0} (S.20)
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for [almost] all (θΛ1 , θΛ2).

Proof. We first show that the composed model being generically globally

identified implies that the primary models are generically globally identified as well.

Then, assuming generic global identification of the primary models, we show that the

composed model’s generic global identification is equivalent to Eq. (S.20). The property

of the composed model being globally identified everywhere is proved analogously.

For all subsequent remarks it is crucial to consider the following block structure

of Σc(θc) implied by Eqs. (S.13) and (S.14) as well as assumptions (⋆) and (⋆⋆):

Σc(θc) =

 Λ1Φ1ΛT
1 + Ψ1 Λ1ΦT

21ΛT
2

Λ2Φ21ΛT
1 Λ2Φ2ΛT

2 + Ψ2

 (S.21a)

=

 Σ1(θ1) Λ1ΦT
21ΛT

2

Λ2Φ21ΛT
1 Σ2(θ2)

 . (S.21b)

Let the composed model be generically globally identified and let

θi = (θΛi
, θΦi

, θΨi
) ∈ Ai as well as θ̃i = (θ̃Λi

, θ̃Φi
, θ̃Ψi

) ∈ Ai such that Σi(θi) = Σi(θ̃i) for

i ∈ {1, 2}. For notational brevity, we write Λ̃i := Λi(θ̃Λi
), Φ̃i := Φi(θ̃Φi

), and

Ψ̃i := Ψi(θ̃Ψi
).

Now pick θc∗ , θ̃c∗ ∈ P such that Λ2Φ21(θc∗)ΛT
1 = Λ̃2Φ21(θ̃c∗)Λ̃T

1 . Note that such

θc∗ , θ̃c∗ exist since P is a subspace and we can pick θc∗ , θ̃c∗ := 0 ∈ P . Then Φ21(0) = 0

and therefore Λ2Φ21(0)ΛT
1 = Λ̃2Φ21(0)Λ̃T

1 .

But then we have θc := (θ1, θ2, θc∗) as well as θ̃c := (θ̃1, θ̃2, θ̃c∗) such that, by

Eq. (S.21b), Σc(θc) = Σc(θ̃c). By assumption, it follows that θc = θ̃c for almost all such

θc, θ̃c and therefore θi = θ̃i for i ∈ {1, 2} almost everywhere. Thus, the primary models

are generically globally identified.

Conversely, assume that the primary models are generically globally identified

and pick θc and θ̃c such that Σc(θc) = Σc(θ̃c). In the following, we use the same notation

as before as well as Φ̃21 := Φ21(θ̃c∗).

Then, comparing the diagonal submatrices of Σc(θc) and Σc(θ̃c), we find that

Σi(θi) = Σi(θ̃i) for i ∈ {1, 2}. By assumption, it follows that Λi = Λ̃i, Φi = Φ̃i, and
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Ψi = Ψ̃i and therefore θi = θ̃i for i ∈ {1, 2} almost everywhere. Hence, it only remains

to be shown that Eq. (S.20) holds if and only if θc∗ = θ̃c∗ or, equivalently, Φ21 = Φ̃21

almost everywhere.

To that end define the linear map

Ω(Φ21) := Λ2Φ21ΛT
1 . (S.22)

Comparison of the off-diagonal block matrices of Σc(θc) and Σc(θ̃c) provides

Ω(Φ21) = Λ2Φ21ΛT
1 (S.23a)

= Λ̃2Φ̃21Λ̃T
1 (S.23b)

= Λ2Φ̃21ΛT
1 (S.23c)

= Ω(Φ̃21). (S.23d)

With the isomorphism vecr,s(a1| . . . |as) = (a1, . . . , as)T ∈ Rrs stacking the

columns of a matrix into a vector, it follows that (Lemma 4.3.1 in Horn & Johnson,

1991) (Λ1 ⊗ Λ2) vec(Φ21) = vec(Ω(Φ21)) and therefore Ω = vec−1 ◦(Λ1 ⊗ Λ2) ◦ vec.

Further note that vec(Φ21(θc∗)) = θc∗ ∈ P . Consequently,

vec(Ω(Φ21)) = (Λ1 ⊗ Λ2) vec(Φ21) (S.24a)

= (Λ1 ⊗ Λ2) vec(Φ21(θc∗)) (S.24b)

= (Λ1 ⊗ Λ2)θc∗ . (S.24c)

By Eq. (S.23d), we have that (Λ1 ⊗ Λ2)θc∗ = (Λ1 ⊗ Λ2)θ̃c∗ if and only if

(Λ1 ⊗ Λ2)(θc∗ − θ̃c∗) = 0 or, equivalently, θc∗ − θ̃c∗ ∈ ker(Λ1 ⊗ Λ2). Thus, we can

conclude that θc∗ = θ̃c∗ , with θc∗ , θ̃c∗ ∈ P , if and only if Λ1 ⊗ Λ2 = Λ1(θΛ1) ⊗ Λ2(θΛ2) is

injective on P . This condition, however, is equivalent to Eq. (S.20).

In summary, if the composed model is identified for almost all parameters, that

is, we can conclude θc∗ = θ̃c∗ for almost all parameters, then Eq. (S.20) must hold for

almost all (θΛ1 , θΛ2). Conversely, if Eq. (S.20) holds for almost all (θΛ1 , θΛ2), then
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θc∗ = θ̃c∗ for almost all parameters if injectivity holds for the primary models’

submatrices for almost all parameters.

However, even if Eq. (S.20) holds for all parameters, if the primary models are

only generically globally identified, there are still measure zero sets for which the

primary models and thus the composed model is not identified. Therefore, for the

composed model to be globally identified everywhere, in addition to Eq. (S.20) being

true for all parameter values, the primary models must be globally identified everywhere

as well. ■

Remark S.4. If the primary models are globally identified, the composed model is

generically globally identified if and only if Eq. (S.20) holds almost everywhere.

Proof. The primary models being globally identified implies that they are

generically globally identified as well. Then by Theorem S.3, for the composed model to

be generically globally identified, it suffices that Eq. (S.20) holds almost everywhere. ■

Stating the identification conditions in Theorem S.3 in terms of a kernel is rather

technical, but it permits to directly relate rank information of the primary model’s

loading matrices to the composed model’s status of identification. This relation will be

proved in the subsequent Corollaries.

Conceptually, however, Eq. (S.20) can best be understood in terms of the final

remarks of the proof. With the isomorphism vec, Λ1 ⊗ Λ2 can be seen as a linear map

acting on matrices from the space P . Considering the relation between injectivity and

the kernel of a map, Eq. (S.20) just expresses the condition that Φ21 can be

reconstructed from the product Λ2Φ21ΛT
1 .

Corollary S.5. In the setting of Theorem S.3, suppose that the primary models are

[generically] globally identified and that Λ1 as well as Λ2 are of full column rank for

[almost] all parameters. Then the composed model is [generically] globally identified.

Proof. If both Λ1 and Λ2 are of full column rank for [almost] all parameters,

then ker Λ1 = ker Λ2 = {0} and therefore Eq. (S.20) holds for [almost] all parameters.

By Theorem S.3, if the primary models are [generically] globally identified, then the

composed model is [generically] globally identified as well. ■
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Corollary S.6. In the setting of Theorem S.3, suppose that the primary models are

[generically] globally identified and further suppose that Φ21 is saturated, that is,

P = Rn2n1 . (S.25)

Then the composed model is [generically] globally identified if and only if both Λ1

and Λ2 are of full column rank for [almost] all parameters.

Proof. For sufficiency, see Corollary S.5. For necessity, we use the fact that

rank Λ1 ⊗ Λ2 = rank Λ1 rank Λ2 (Theorem 4.2.15 in Horn & Johnson, 1991). Thus if any

one of Λ1 and Λ2 has insufficient column rank for a parameter set of positive measure

[respectively for a non-empty set of at least measure zero], then so does Λ1 ⊗ Λ2. But

then Λ1 ⊗ Λ2 has a nontrivial kernel and therefore

{0} ≠ ker(Λ1 ⊗ Λ2) (S.26a)

= ker(Λ1 ⊗ Λ2) ∩ Rn2n1 (S.26b)

= ker(Λ1 ⊗ Λ2) ∩ P . (S.26c)

Therefore, by Theorem S.3, the composed model is not [generically] globally identified.

■

In the case that any one or both of Λ1 and Λ2 have nontrivial kernels, in order to

pick a suitable P we must gain insight into the structure of ker(Λ1 ⊗ Λ2). For this

purpose, Proposition S.8 gives a decomposition into separate spaces involving the

kernels of Λ1 and Λ2.

In order to proof Proposition S.8, however, we need the following lemma.

Lemma S.7. Let A ∈ Rp×q and B ∈ Rr×s be matrices. Then

ker(A ⊗ B) = Rp×q ⊗ (ker B) + (ker A) ⊗ Rr×s. (S.27)

Proof. In Proposition 6, Chapter II.3 in Bourbaki (1989) this is proved for

homomorphisms on flat modules. Since matrices are vector space homomorphisms and
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vector spaces are free modules and therefore flat (Bourbaki, 1989), the claim follows.

Regardless, we give an additional proof in terms of the Kronecker product that does not

require abstract algebra.

Let V := Rq, W := Rp, V ′ := Rr, and W ′ := Rs and define

K := V ⊗ (ker B) + (ker A) ⊗ V ′. (S.28)

Furthermore, pick U as a complement to ker A and U ′ as a complement to ker B.

We now show that

V ⊗ V ′ = (U ⊗ U ′) ⊕ K. (S.29)

Take k ∈ V ⊗ V ′. Since V = U ⊕ ker A and V ′ = U ′ ⊕ ker B, there exist x ∈ U

and p ∈ ker A as well as y ∈ U ′ and q ∈ ker B such that

k = (x + p) ⊗ (y + q) (S.30a)

= x ⊗ y + (x + p) ⊗ q + p ⊗ y (S.30b)

by the bilinearity of the Kronecker product (4.2.7 and 4.2.8 in Horn & Johnson, 1991).

Since x ⊗ y ∈ U ⊗ U ′ and (x + p) ⊗ q + p ⊗ y ∈ K, it follows that

V ⊗ V ′ = (U ⊗ U ′) + K. (S.31)

If k ∈ K, then there exist v ∈ V and q ∈ ker B as well as v′ ∈ V ′ and p ∈ ker A

such that k = v ⊗ q + p ⊗ v′. Then, using Lemma 4.2.10 by Horn and Johnson (1991),

(A ⊗ B)k = (A ⊗ B)(v ⊗ q + p ⊗ v′) (S.32a)

= (A ⊗ B)(v ⊗ q) + (A ⊗ B)(p ⊗ v′) (S.32b)

= (Av) ⊗ (Bq) + (Ap) ⊗ (Bv′) (S.32c)

= (Av) ⊗ 0 + 0 ⊗ (Bv′) (S.32d)

= 0. (S.32e)
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On the other hand, if u ∈ U ⊗ U ′, then there exist x ∈ U and y ∈ U ′ such that

u = x ⊗ y. Moreover, Ax = 0 if and only if x = 0 and, similarly, By = 0 if and only if

y = 0 by construction of U and U ′. Therefore,

(A ⊗ B)u = (A ⊗ B)(x ⊗ y) (S.33a)

= (Ax) ⊗ (By) (S.33b)

= 0 (S.33c)

if and only if either x = 0 or y = 0 (p. 244 in Horn & Johnson, 1991) and thus u = 0.

It follows that (U ⊗ U ′) ∩ K = 0, which proves the claim.

Moreover, the last remark shows that A ⊗ B is split, vanishing only on K. It

follows that K = ker(A ⊗ B), which proves the lemma. ■

Proposition S.8. As in Eq. (S.22), define Ω(Φ21) := Λ2Φ21ΛT
1 . Then

ker Ω = (ker Λ1)T ⊗ Rn2 + (Rn1)T ⊗ (ker Λ2). (S.34)

Proof. Lemma S.7 implies ker(Λ1 ⊗ Λ2) = (ker Λ1) ⊗ Rn2 + Rn1 ⊗ (ker Λ2) and

therefore

ker Ω = ker
(
vec−1 ◦(Λ1 ⊗ Λ2) ◦ vec

)
(S.35a)

= vec−1
(
(Λ1 ⊗ Λ2)−1

(
ker vec−1

))
(S.35b)

= vec−1 (ker(Λ1 ⊗ Λ2)) (S.35c)

= vec−1 (ker Λ1 ⊗ Rn2 + Rn1 ⊗ ker Λ2) (S.35d)

= (ker Λ1)T ⊗ Rn2 + (Rn1)T ⊗ ker Λ2 (S.35e)

as claimed. ■

In the previous case and if P is chosen such that P ⊊ Rn2n1 , Eq. (S.20) can be

checked by calculating the dimensions of the subspaces involved. For this purpose, pick

a generating set G = {g1, . . . , gp} for ker(Λ1 ⊗ Λ2) and a generating set D = {d1, . . . , dq}
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for P and assemble both G and D column-wise in respective matrices

Γ :=
(

g1 . . . gp

)
(S.36)

and

∆ :=
(

d1 . . . dp

)
. (S.37)

Corollary S.9. The composed model is [generically] globally identified if and only if the

primary models are [generically] globally identified and

rank
(

∆ Γ
)

= rank ∆ + rank Γ (S.38a)

= rank ∆ + n1n2 − rank Λ1 rank Λ2 (S.38b)

holds [almost] everywhere.

Proof. It holds that rank Γ = dim (ker(Λ1 ⊗ Λ2)). Thus, by the definition of a

rank, Eq. (S.38a) holding almost everywhere, respectively everywhere, is equivalent to

dim(P + ker(Λ1 ⊗ Λ2)) = dim P + dim ker(Λ1 ⊗ Λ2) (S.39)

if and only if dim(ker(Λ1 ⊗ Λ2) ∩ P) = 0 almost everywhere, respectively everywhere.

This, in turn, is equivalent to Eq. (S.20) holding almost everywhere, respectively

everywhere.

For Eq. (S.38b), we again use the fact that rank Λ1 ⊗ Λ2 = rank Λ1 rank Λ2.

(Theorem 4.2.15 in Horn & Johnson, 1991). Hence,

n1n2 = dimRn1n2 (S.40a)

= dim Im(Λ1 ⊗ Λ2) + dim ker(Λ1 ⊗ Λ2) (S.40b)

= rank Λ1 ⊗ Λ2 + rank Γ (S.40c)

= rank Λ1 rank Λ2 + rank Γ, (S.40d)
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which proves Eq. (S.38b) and thus the corollary. ■

Reduced models

In the following, we formalize the notion of reduced models given in the article.

Recall that we call a model reduced if its loading matrix is structured in a way that

there is the hypothetical possibility of sequentially removing factors with items of factor

complexity one. To be more explicit, given a loading matrix Λ ∈ Rm×n, we say that an

item is of factor complexity one with respect to Λ if it has nonzero loading for exactly

one factor in Λ. To arrive at a formal definition, we show how such a sequence can be

construed for illustrative example from the main article.

The starting point is the redefined loading matrix of the first primary model

depicted in Fig. 5 in the main article,

Λ̃X :=



0 0 1

0 0 1

1 0 γ2

1 0 γ2

0 1 γ3

0 1 γ3



. (S.41)

To define the sequence, take the column indices as its members. There is three factors

and thus there is three sequence members k1, k2, and k3. Since the general factor

corresponds to the third column in Λ̃X , we need to set k1 := 3.

The general factor is associated with an item of factor complexity one and is

therefore equipped with a reference item and we exclude it from the following choices of

sequence members. The definition requires iterating through the remaining columns

until there are no factors left to be assigned with reference items. To implement this

idea, we define a sequence of submatrices Λ̃(k)
X of Λ̃X , k ∈ {1, 2, 3}, alongside the

sequence of column indices. This sequence starts with the full matrix from which we

choose the general factor to be assigned with reference items, that is, Λ̃(1)
X = Λ̃X .

Excluding the general factor then means defining the next submatrix in the
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sequence as missing the column corresponding to the general factor. In the present

example, it follows that the next sequence member Λ̃(2)
X should only contain the first

and second column of Λ̃X , which we express by the notation

Λ̃(2)
X := Λ̃X |{1,2} =



0 0

0 0

1 0

1 0

0 1

0 1



. (S.42)

Here, Λ̃X |{1,2} designates the submatrix of Λ̃X that consists of only the columns with

column indices 1 and 2.

Possible choices for the next member of the sequence of column indices are

k2, k3 ∈ {1, 2}. Because both factors contain items of factor complexity one, we are free

to chose the column index corresponding to any of the two as the next sequence

member. Pick k2 := 1. Then k3 = 2 and

Λ(3)
X := Λ̃X |{2} =



0

0

0

0

1

1



, (S.43)

even though we might have well picked k3 = 1 and hence Λ(3)
X := Λ̃X |{1}.

In short, to determine that the model with loading matrix Λ̃X is a reduced

model, we have found a sequence of column indices of length three assigning reference

items to each factor and disregarding them in the next step by considering a smaller

submatrix. The following definition is a generalization of this iterative process that

takes the distinction of generically and every identified composed models into account.
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Definition S.10 (Conditionally and unconditionally reduced models). Let

Λ = (λk)k∈{1,...,n} ∈ Rm×n be the loading matrix of a CFA model with λk ∈ Rm×1 for

k ∈ {1, . . . , n}, the columns of Λ. Denote the submatrix of Λ containing only the

columns with column indices in the set K ⊆ {1, . . . , n} as Λ|K := (λk)k∈K ∈ Rm×|K|.

If there exists a sequence of n distinct column indices k1, . . . , kn ∈ {1, . . . , n},

and a sequence of submatrices Λ(j) := Λ|{kj ,...,kn} ∈ Rm×(n−j+1), j ∈ {1, . . . , n}, such that

the factor corresponding to the kjth column is associated with at least one item of factor

complexity one with respect to Λ(j) for j ∈ {1, . . . , n}, we say that the CFA model is

reduced.

If there exists such a sequence and if the loadings of all items of factor

complexity one w.r.t. Λ(j) that load on the factor corresponding to the kjth column for

j ∈ {1, . . . , n} are parameters, then we say that the model is conditionally reduced.

If there exists such a sequence and if there exists an item of factor complexity

one w.r.t. Λ(j) that has unit loading on the factor corresponding to the kjth column for

j ∈ {1, . . . , n}, then we say that the model is unconditionally reduced.

Definition S.10 is fulfilled if the loading matrix of a model is structured in a way

that there is the hypothetical possibility of sequentially removing factors with items of

factor complexity one. As we showed for the introductory example, the definition is

easily verified by scanning a loading matrix for items of factor complexity one,

disregarding the corresponding factors and repeating this process until all columns have

been checked.

We return to the running example from the main body of the text to illustrate

the distinction between conditionally and unconditionally reduced models. Consider ΛX

as defined in Eq. (7). As was shown, this model is not reduced and ΛX is rank-deficient.

Although imposing a τ -congeneric loading structure (i.e., setting the loadings of

every first item on every factor to unity and freeing up the other loadings) results in a

full-rank loading matrix, this only holds for almost all parameter values. This is

because all loadings that have been freed up in the τ -congeneric loading structure could

still potentially assume the value one. Then an essentially τ -equivalent loading
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structure holds and the loading matrix is rank-deficient again. As discussed before, this

means that there can be data for which the model is empirically underidentified.

This is in contrast to Λ̃X as defined in Eq. (11) in the main article. Here, even if

we assume a τ -congeneric loading structure, then the new model would still be an

unconditionally reduced model and the new loading matrix would still have full rank for

all parameter values. The following lemma specifies this property for both types of

reduced models as defined in Definition S.10.

Lemma S.11. Let Λ ∈ Rm×n be the loading matrix of a reduced CFA model. Then Λ

has full rank for almost all parameter values. Specifically,

(a) if the model is conditionally reduced, then there is a set of parameter values for

which Λ does not have full rank

and

(b) if the model is unconditionally reduced, Λ has full rank for all parameter values.

Proof. We prove this by induction over n, the number of columns in Λ. For

n = 1, Definition S.10 states that there is a column index k1 = 1 such that

Λ(1) := Λ|{k1} = Λ possesses at least one item of factor complexity one. For n = 1 this

implies that there is at least one nonzero loading in the single-column matrix Λ. If all

nonzero loadings are parameters, then if all parameters are equal to zero, Λ has rank

zero. If there is a unit loading, then rank Λ = 1 always. This proves the base case.

Now let n ∈ N and Λ ∈ Rm×(n+1). By assumption, Λ ∈ Rm×(n+1) is the loading

matrix of a reduced model. Thus, by the definition of a reduced model, there exists a

sequence of n + 1 distinct column indices k1, . . . , kn+1 ∈ {1, . . . , n + 1}, and a sequence

of submatrices Λ(j) := Λ|{kj ,...,kn+1}, j ∈ {1, . . . , n + 1}, such that the factor

corresponding to the kjth column possesses at least one item of factor complexity one

w.r.t. Λ(j) for j ∈ {1, . . . , n + 1}.

In particular, the factor corresponding to the k1th column possesses at least one

item of factor complexity one w.r.t. Λ(1) = Λ|{k1,...,kn+1} = Λ. By definition, any such

item has nonzero loading on the factor indicated by the k1th column λk1 and zero
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loadings on the remaining factors, that is, the row it corresponds to has zero entries in

all but λk1 . If the loadings of all such items are parameters, then λk1 is linearly

independent of all other columns in Λ for at least almost all parameter values. On the

other hand, if there is one item with unit loading, then λk1 is linearly independent of all

other columns in Λ for all parameter values.

Remove the k1th column by defining Λ̃ := Λ|{k2,...,kn+1} ∈ Rm×n. Then the

sequence

lm :=


km+1 ∈ {1, . . . , k1 − 1} km+1 < k1

km+1 − 1 ∈ {k1, . . . , n} km+1 > k1

(S.44)

is a sequence of n distinct column indices, such that the factor corresponding to the

lmth column possesses at least one item of factor complexity one w.r.t.

Λ̃(m) = Λ̃|{lm,...,ln} = Λ|{km+1,...,kn+1} = Λ(m+1) for m ∈ {1, . . . , n}.

Therefore, Λ̃ ∈ Rm×n is the loading matrix of a reduced model with n columns.

If Λ is the loading matrix of a conditionally respectively unconditionally reduced model,

then the same holds true for Λ̃ as well.

By the induction hypothesis, Λ̃ has full rank for all but a null set of parameter

values if it is the loading matrix of a conditionally reduced model and Λ̃ has full rank

for all parameter values if it is the loading matrix of an unconditionally reduced model.

It follows that rank Λ = rank Λ̃ + rank λk1 = n + 1 for almost all but a null set of

parameter values if the model is conditionally reduced and all parameter values if the

model is unconditionally reduced, which concludes the induction step. ■

The subsequent corollary specifies the relation between unconditionally vs.

conditionally reduced models and global identification vs. generic global identification.

Corollary S.12. In the setting of Theorem S.3, a composed model with linear

constraints on the cross-model factor covariances and generically globally identified

reduced primary models is generically globally identified.

Moreover, if the primary models are unconditionally reduced models and globally

identified everywhere, then the composed model is globally identified everywhere.
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Proof. From Lemma S.11 it follows that the primary models have full rank for

at least almost all parameter values. Thus, the composed model is generically globally

identified.

By Lemma S.11, if the primary models are unconditionally reduced primary

models, then their loading matrices have full rank for all parameter values. Thus, if the

primary models are globally identified everywhere, then the composed is globally

identified everywhere. ■
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