Supplementary Material for "Joint Latent Space Model for Social
Networks with High-dimensional Multivariate Attributes".

1 Simulation to evaluate the recovery of the true dimen-
sion of the network using the cross-validation approach

We perform a small simulation study to evaluate the recovery of the true dimension of the
latent space using the cross-validation approach. We generate data with a true dimension
between 1 to 4. Then we fit the proposed model to data with the number of latent dimensions
ranging between 1 and 5, perform 5-fold cross-validation and compare the out-of-sample AUC
values for the different dimensions. If the out-of-sample AUC value is the highest when the
fitted model has the number of dimensions the same as the true data generation process,
we can conclude that we are able to recover the true number of dimensions using cross-
validation. For each number of dimension between 1 to 4, we generate 10 sets of data. To
maintain consistency across conditions, we generate data following the model equation with
N = 100, M = 100, ag = a1 = 0, and A\g = Ay = 1. For each data, we perform the
cross-validation and report the average out-of-sample AUC values.

The results are shown in Table 1. The highest out-of-sample AUC values for each condi-
tion are highlighted in red. The model failed to converge when the number of true dimension
is 1 and the dimension specified in the fitted model is 5. The results show that the out-of-
sample AUC value is the highest when the fitted model has the number of dimensions the
same as the true data generation process. This provides evidence supporting the validity of
using cross-validation to recover the true number of dimensions in the proposed model. We

have added the simulation to the supplementary material.



Table 1: Out-of-sample AUC values

Dimension Specified in the Fitted Model

True Dimension 1 2 3 4 5

1 0.755 0.748 0.734 0.528

2 0.745 0.829 0.814 0.785 0.509
3 0.717 0.785 0.810 0.794 0.566
4 0.637 0.689 0.698 0.700 0.689

2 Latent Space Model for Bipartite Networks

The development of the latent space model for bipartite networks includes a bipartite
version of the latent cluster random effects model in the latentnet package (Krivitsky and
Handcock 2008). In addition, the latent space model for a dynamic bipartite network was
introduced by Friel et al. (2016) to study the interlocking directorates in Irish companies.
In the rest of this section, we introduce a Variational Bayesian EM algorithm for fitting a
latent space model to binary bipartite networks (BLSM).

Let Y denote the N x M bipartite network, whose (7, a) th element y;, is 1 if person 7 has
attribute a, for i = {1,2,..., N} and a = {1,2,..., M}. Let V be a M x D matrix of latent
attribute positions, each row of which is a D dimensional vector v, = (Va1, Va2, - - -, VaD)
indicating the latent position of attribute a in the Euclidean space.

The latent distance model for the bipartite network Y can be written as:

_ L 2
Yio|(U,V,ay) ~ Bernoulli(g(¢ia)), 9(ia) = exp(a; — [u; — v,|%)

1 +exp(ar — |u; —vg|?)’

We assume wu; u N0, \1p), v, u N(0,\1p), and ay, \g and \; to be unknown parameters.

The parameter «; accounts for the density of the bipartite network. The probability of a
positive response increases as the Euclidean distance between the attribute node and the

person node decreases.



2.1 Variational Bayesian EM for the Bipartite Network

We are interested in the posterior inference of the latent variables u; and v, following the
distance model conditioning on the observed bipartite network. The (conditional) posterior
distribution is the ratio of the joint distribution of the observed data and unobserved latent

variables to the observed data likelihood

P(Y|U,V)P(U,V)

PU,V|Y) = 5%

We can characterize the distribution of latent positions and thus obtain the point and inter-
val estimates by computing this posterior distribution. However, to compute this conditional
posterior, we need to evaluate the normalizing constant in the denominator above, which
involves integration over the latent variables. This posterior distribution is therefore in-
tractable. To estimate the posterior distribution and obtain both the its mean and variance,
we propose a variational inference approach (Blei et al. 2017). The variational inference
algorithm is commonly used to estimate latent variables whose posterior distribution is in-
tractable (Beal et al. 2003; Attias 1999; Beal et al. 2006; Blei et al. 2017). In network
analysis, the variational approach has been proposed for the stochastic blockmodel (Daudin
et al. 2008; Celisse et al. 2012), the mixed-membership stochastic blockmodel (Airoldi et al.
2008), the multi-layer stochastic blockmodel (Xu et al. 2014; Paul and Chen 2016), the
dynamic stochastic blockmodel (Matias and Miele 2016), the latent position cluster model
(Salter-Townshend and Murphy 2013) and the multiple network latent space model (Gollini
and Murphy 2016). Here, we propose a Variational Bayesian Expectation Maximization
(VBEM) algorithm to approximate the posterior of the person and the attribute latent po-
sitions using the bipartite network. We propose a class of suitable variational posterior
distributions for the conditional distribution of (U, V|Y') and obtain a distribution from
the class that minimizes the Kulback Leibler (KL) divergence from the true but intractable

posterior.



We assign the following variational posterior distributions: ¢(u;) = N(Q;, Ag) and ¢(v,) =

N (¥4, M) and set the joint distribution as

(U, V[Y) = HQ(W)HQ(%), (2.1)

where 1;, Ay, Vo, A; are the parameters of the variational distribution, known as variational
parameters.

We can estimate the variational parameters by minimizing the Kullback-Leiber (KL)
divergence between the variational posterior ¢(U, V|Y') and the true posterior f(U,V|Y).
Minimizing the KL divergence is equivalent to maximizing the following Evidence Lower
Bound (ELBO) function (Blei et al. 2017), (see detailed derivations in the Supplementary

Materials)

logq(U,V,a1Y
ELBO = ~Eyu.vav) { 8l ! ﬂ

lng(U, Va Y’al
q<U7 V7 CY1’Y>
f(U V> 061’Y>

U v Hi\[l‘J(uz) Hg/il q(va) dU. V.o,
/Hq l Hq ) fY|\g,v al)Hij\il f(u;) Hc]:/il f(va) O,V )
= —Z/q(u@) log

glus) o) o %) 4
L ;/« o) log 2o,

T / (U, V., Y ) log f(Y[U,V,a)d(U, V, )

= —/Q(U,V,CX1|Y) log d(U’ V,Oll)

— —ZKL (w;)| f (w;)] ZKL (V)| f (Wa)] + Egu v aajyy [log f(Y U, V, )]
a=1

B _%<DN log()\g) - Nlog(det(j\o))> - Ntl“(j\o) — val '&zT'&z

2\2 o2z
_1 (DMI (A2) — M log(det(A ))) Mu(A) Y BB LMD+ ND)
2 o8\ Bdet A2 A2 2
+ Eyw viy)llog f(Y|U, V)] (2.2)

After applying Jensen’s inequality (Jensen 1906), a lower-bound on Ey@ vvy[log f(Y|U, V)]
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is given by,

Equ,viy)log f(Y|U,V, a1)]

>3 i [al — tr(Ag) — tr(Ay) — (G — Ba)" (@i — faa)]

i=1 a=1

N M _
exp(a ) _ o7 X i v-lim =
— log | 1+ - ——exp | — (u; — 0g)" (I+2A0 4+ 2A U; — Vg .
22 g( det(I+ 280 + 2A,)3 p< ( A o+ 2817 ))>

i=1 a=1

We use the Variational Expectation-Maximization algorithm (Jordan et al. 1999; Baum et al.
1970; Dempster et al. 1977) to maximize the ELBO function. Following the variational EM
algorithm, we replace the E step of the celebrated EM algorithm, where we compute the ex-
pectation of the complete likelihood with respect to the conditional distribution f(U,V|Y),
with a VE step, where we compute the expectation with respect to the best variational
distribution (obtained by optimizing the ELBO function) at that iteration.

The detailed procedures are as follows. We start with the initial parameter, ©©) = &§°),
and ﬁgo), /NX(()O), v, ]\g"), and then we iterate the following VE (Variational expectation) and
M (maximization) steps. During the VE step, we maximize the ELBO(¢q(U),q(V),®)
with respect to the variational parameters w;, ¥q, Mo and A given the other model param-
eters and obtain ELBO(¢*(U),q*(V),®). During the M step, we fix @;, Bq, Ao and A,
and maximize the ELBO(¢(U),q(V), ®) with respect to a; . To do this, we differentiate
ELBO(¢q(U),q(V),®) with respect to each variational parameter. We obtain closed form
update rules by setting the partial derivatives to zero while introducing the first- and second-
order Taylor series expansion approximation of the log functions in ELBO(¢(U),q(V) ,0)
(see detailed derivations in supplementary material). The Taylor series expansions are com-
monly used in the variational approaches. For example, three first-order Taylor expansions
were used by Salter-Townshend and Murphy (2013) to simplify the Euclidean distance in

the latent position cluster model, and first- and second-order Taylor expansions were used

by Gollini and Murphy (2016) to simplify the squared Euclidean distance in LSM. Following



the previous publications using Taylor expansions, we approximate the three log functions
in our ELBO(¢q(U), q(V), ®) function to find closed form update rules for the variational

parameters. Define the function

op() s — Ba) (L4 20 + 2R)) (@ — ©
FA;;I%< (I+2]\0+2A1)56Xp(_(u’ a) (L 2o + 207 (3 “))>'

The closed form update rules of the (¢ + 1)th iteration are as follows

VE-step: Estimate @; Y, 5,0, /N\étﬂ) and [\?*” by minimizing ELBO(¢(U),q(V), ®)

-1
_(t+1) 1 L a® @ 1 NONTONEE. ~ (t)
u; [(2)\2 +Zyla I+ 2HA( )] [Zymv + 2H ( ) u; " — §GA(uz )
- 1 - -
,vl(lt+1) [(2)\2 +Zyw>1_ §HA( (t))] [Zyw ® = (”c(f))]
-1

AtHD _ N [ e

Y EF + Z Zyza +Ga(AY)

i=1 a=1

(7? + Z > yw) I+Ga(AY)

-1

- M
AP = = : (2.3)

i=1 a=1

where G A(ﬁi(t))and G A('Ea(t)) are the partial derivatives (gradients) of F4 with respect to
u; and v,, evaluated at ﬂi(t) and f)a(t), respectively. In G A('&,i(t) ), the subscript A indi-
cates that the gradient is of function F4, and the subscript ¢ in ;" indicates that the
gradient is with respect to @;, evaluated at @;". Similarly, H A(ﬂi(t)) and H A(f)a(t)) are
the second-order partial derivatives of F'4 with respect to u; and v,, evaluated at @;? and

ﬁa(t), respectively.



M-step: Estimate &gtﬂ) with the following closed form solution,

N M ~(t ~(t ~(t
&(t+1) _Zizl za:1 Yia — QA(Oég )) + O‘§ )hA(ag ))
1 - - )
ha(@y”)

(2.4)
where g A(&@) is the partial derivative (gradient) of F4 with respect to a; , evaluated at &?)
;and h A(&gt)) is the second-order partial derivative of F'4 with respect to &; , evaluated at

att).

3 Excerpt from ‘Instagram Popularity and Topical Inter-

ests Study’

Ferrara et al. (2014) collected data for a study of online popularity and topical inter-
ests through Instagram during Jan-Feb 2014. The dataset was collected from photographic
contests run through Instagram’s official blog. Each contest was expressed by a unique
(hash)tag prefixed with #whp. This dataset includes a directed social network between the
followers’ and the followees’ Instagram accounts, and the users’ participation in the #whp
contests. We use the tags adopted by each user to label visual images as attributes and users’
follower-followee relationships as friendship links. We focus on an excerpt of 1862 users that
participate in at least one of the #whp contests and are also present in the social network. A
total of 486 unique #whp tags were identified in the data'. A social network and a bipartite
network are formed of 128,413 and 17, 024 edges and have densities of 0.037 and 0.019. Their
degree distributions are shown in Figure 3. We note that the degree distribution for tags is
extreme skewed indicating that only a few tags are extremely popular.

We fit the JLSM model to Instagram users’ social network and their participation in the
#whp contest. The estimated ag = —1.7570 and oy = —1.5459. The receiver operating

characteristic curves (ROCs) and the AUC values for in-sample predictions of social network

! This dataset was downloaded from https://people.dimes.unical.it/andreatagarelli/data/
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Figure 1: The degree distributions for the Instagram social network and users’ participation
in #whp contests.

and photo tags are shown in Figure 2, respectively. The average AUCs in the cross-validated
samples are 0.67 and 0.79 for social network and photo tags. For the task of predicting
missing tag information, we obtain an average AUC value of 0.80 in 10 fold cross-validation.

In comparison, we also fit BLSM to the Instagram users’ participation in the #whp
contest. The estimated a; = —2.3192. The estimated latent positions for users u; and
tags ¥, are shown in Figure 2. The in-sample and cross-validated AUCs are 0.87 and 0.78,
indicating good fit of the proposed BLSM.

In the bipartite latent space, the popular Instagram tags are found at the center and
differentiated from the less popular tags in the peripheral of the space. Along the y axis,
the popular tags and the individual nodes follow a vertical line, which shows that they are
differentiated along this dimension. Along the x axis, we observe the less popular tags being
differentiated at the left and the right latent space. In the joint latent space, the popular
tags remain at the center of the space and differentiated from the less popular tags. There
seem to be more variations of the person nodes with the added follower-followee network
with further distances between nodes observed. It appears that in the right most plot, the
latent space captures little structure as the model has already accounted for the attributes.
Figure 8 appears to show a core-periphery structure but this is probably down to the lack

of accounting for heavily skewed degrees / sociality in the model.
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4 French financial elite dataset

We analyse a dataset containing a symmetric social network between 28 French financial
elites and the multidimensional attribute covariates. The data were collected through in-
terviews for people who held leading positions in major financial institutions and frequently
appeared in financial section press reports. The friendship information was collected by ask-
ing the interviewees to name their friends in the social context. Kadushin and de Quillacqi
then identified an inner circle of 28 elites from the initial sample based on their influence
and their perceived eliteness by other participants. The resulting friendship network is a
symmetric adjacency matrix.

The data also contains additional background information, including age, a complex set of
post-secondary education experiences, place of birth, political and cabinet careers, political
party preference, religion, current residence, and club memberships. Two aspects of the
elites’ "prestige" include whether the person is named in the social register and whether
the person has a particle ("de") in front of either his (no woman was in the inner circle),
his wife’s, his mother’s, or his children’s names. Having "de" in the name is associated
with nobility. Father’s occupation is one of the variables used to reflect an elite’s social
class. Fathers’ occupation is considered “high” if the father is in higher management, a

professional, an industrialist, or an investor. Unfortunately, upon communications with the



original author, we found that the coding procedures regarding some variables have been
lost, including Finance Ministry information, religion, etc. Kadushin (1995) found that
elites” political affiliations, education, career trajectory and class are interrelated with their
social circles. In this paper, we use 13 binary variables including information on education
(“Science Po”, “Polytechniqu”, “University” and “Ecole Nationale d’Administration”), career
(“Inspection General de Finance” and “Cabinet”), class (“Social Register”, “Father Status”,
“Particule”), politics (“Socialist”, “Capitalist” and “Centrist”) and “Age” after excluding the
lost or the unrelated information, i.e., mason and location, which are not associated with
the social network based on Kadushin (1995) (location is not considered to be related to the
social network after adjusting for multiple comparisons). “Age” was converted into a binary
variable following Kadushin (1995), where a group of elites was considered of older age with
an average birth year of 1938. We will use ENA as an abbreviation for Ecole Nationale
d’Administration.

The Science Po or the Institut d’Etudes Politiques de Paris prepares students for the
entrance exam of the ENA. An alternative of the Science Po is the (Ecole) Polytechnique,
a French military school whose graduates often enter one of the technical ministries. These
elites with Polytechnique degrees enter one of the technical ministries. Both the Science
Po and the Polytechnique are called Grandes Ecoles. A Grandes Ecoles education is highly
respected in France as it leads to membership in the ENA, where the grands corps, which
are the French civil service elites, including the Inspection General de Finance, etc-recruit
its members (Kadushin 1995).

The authors in Kadushin (1995) first used multidimensional scaling to draw the friendship
network’s sociogram. Then they applied Quadratic Assignment Procedure regressions and
correlations to test each background variable’s association with the social network. Based
on the social network, two clusters were identified, which the authors called the left and the
right moieties. The dependence between the social network and background information was

understood through comparisons of the elites between the left and the right moiety. The
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elites in the right moiety were found to have a higher social class (upper-class parentage
with high social standing), to be older (average birth year of 1929), and to have fewer
appointments in public offices. The left moiety elites were more likely to be ENA graduates,
grand corps members, cabinet members, treasury service members, socialists, and younger
(average birth year of 1938).

Using the JLSM, we will construct a joint latent space which will allow us to jointly model
elites” friendship connections and their background information. Using the JLSM, we will
also replicate Kadushin (1995)’s left and the right moiety, adding simultaneous interpretation
for the division in the elite circle. Furthermore, we observe an additional division within the

left moiety using JLSM, which provides opportunities for new hypotheses.

4.1 Visualization of the French Elite Network

4.2 5-fold Cross-Validation

5 The Estimation Procedure for JLSM

5.1 Derivation of KL Divergence

We set the variational parameter as © = dg, & and @, Ao, U, A1, where q(u;) =

N(a;, Ao), and q(ve) = N (U, /N\l). We set the variational posterior as:

U, VIX,Y) = ][ atw) [ T a(va)

The Kullback-Leiber divergence between the variational posterior and the true posterior is:

KL[q(U,V,ap, 01| X, Y)|f(U,V,ap,a1|X,Y)]

Q(U, V, Qp, O[1|X, Y)
f(U, V, Qp, O[llX, Y)

_ / (U, V, 09,01 X, Y ) log (U, V, a0,01)
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Figure 3: The visualization of the French Elite Network. Each circle represents a french elite,
and the edge between two circles represents the presence of a mutual friendship between two
elites.
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Figure 4: Out-of-sample AUC values for 5-fold cross-validation the French Elite dataset
under different numbers of dimensions, D € 1,2, 3.
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where each of the components are calculated as follows:

N

Z KLg(ws)[| f (wi)]
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The last 2 expectations of the log functions can be simplified using Jensen’s inequality and

Eq(U,VIX,Y) [log f(X, Y|U, V)] 1S NOW:

Equvixyllog f(X,Y|U, V)]
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Recall u;, u; are D x 1 column vectors. Define u = u; — u;. Then we have, u; — u; i
N(u,2A), where uis a D x 1 vector and Ag is an D x D positive semidefinite matrix. Further
define Z = (2A¢)~/?(u; —u; — (@4 —1;)). Then clearly Z follows D dimensional multivariate

standard normal distribution and its density function is given by fz(z) = \/%7 exp(—%sz).

Consequently, we have u; — u; = 2]\[1)/ ’7 +u.

Therefore, we can reparameterize

Eyw.vix,v)lexp(—(u; — ui)" (u; — uy))]

= Eyuvixy)|exp ( — (ZT(2J\0)1/ 2+ UT) ((2/10)1/ 7+ u))

= Eq(U,V|X7Y) exp ( — ZT(QA())Z — QZT(2A0)1/211 — uTu))]
- L /exp — Z" (2R + 1I)z — 22" (2A)"*u —u"u | dZ
Ve 2
Now define Q = u(2Ag + 2I)7!(2A¢)"/2. Then the above integral becomes
L /eXp —(Z - Q)" (2A¢ + 1I)(z — Q) —ulu+u’(2A, + 1I)*l(zfxo)u dZ
V2 2 2
-1 . .

— exp ( —uTu+ul (2R + 51)—1(2A0)u) det(I + 4A,) "3

= exp (—u” (T (2R + %1)1(2]\0))@ det(I + 4R,) 3

= exp < —u’(4A, + I)_1u> det(I + 4]\0)_% :

The last line follows since for any two invertible matrices A and B, if A+ B is also invertible,

then by Henderson and Searle (1981)

(A+B) ' =A"1—A'B(I+A7'B)'AT.
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Letting B = 4A, and A = I gives:

N[

By vix v [oxp(— (s —1)7 (wi—13))] = exp ( (i) (L 4R0) ™ (i) ) det(1+4R0) "

Recall u;, v, are D x 1 column vectors. Define u = u; — v,. Then we have, u; —

Ve 2 N(u,Ag 4+ Ay), where u is a D x 1 vector and Ay is an D x D positive semidefinite
matrix. Further define Z = (Ag 4+ Ay)™2(u; — vq — (@; — B,)). Then clearly Z follows D
dimensional multivariate standard normal distribution and its density function is given by
fz(2) = \/%7 exp(—12"z). Consequently, we have u; — vq = (Ao + A)?Z + u.

Therefore, we can reparameterize

Eq(U,V|X,Y) [eXp(—(Ui - Ua)T(Ui - ’Ua))]

=Equvix,y) | exp < - (ZT(]\O + ]\1)1/2 + uT> ((]\0 + /~\1)1/QZ + u>)

= Eq(U,V|X,Y) exp ( — ZT(]\O + f\l)Z — 2ZT(/~\0 + ]\1)1/211 — uTu))]
1 ~ ~ 1 ~ ~
=—— [exp| —Z" (Ao + Ay + SI)Z — 2Z7 (A + Ay)*u —u"u | dZ
o / p ( ( 0 1 2 ) ( 0 1)
Now define @ = u(Ag + Ay + 2I)7(Ag + Ay)Y/2. Then the above integral becomes

\/127r /eXp ( —(Z=Q)" (Ao + Ay + %I)(Z — Q) —u"u+u"(Ag+ A+ %I)l(fxo + Al)u) dZ
= exp ( —wTu+ul(Ag+ A, + %1)—1(]\0 + Jxl)u> det(I+ 2Ry + 2A;) "2
- - 1 5 B ~ ~ )

= exp ( — uT(I —+ 2]\0 —+ 2/~\1)_1u> det(I —+ 2]\0 —+ 2]\1)_% .

The last line follows since for any two invertible matrices A and B, if A+ B is also invertible,
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then by Henderson and Searle (1981)
(A+B)'=A1'—A'B(I+A'B)'ATL.
Letting A = I and B = 2Ao + 2, gives:
E,w vix.y)[exp(—(u;—va)" (u;—v,))] = exp (—(ﬁi—ﬁa)T(I+2/~\0+2/~\1)_1('&i—'ﬁa)> det(I+2/~\0+2/~X1)_%

Finally, the Kullback-Leiber divergence between the variational posterior and the true

posterior is

KL[g(U, VX, Y)[[f(U,V|X,Y)]

1 A Ntr(A ]\i ﬂzTﬁz 1

2§<DNlog()\g) - Nlog(det(Ao))> n 2A(2 0) Zl_év b
0 0

1 < Mtr(A M 5. 5, 1

+§<DMlog(A§) - Mlog(det(/\1))> + QA(Q ) Z“—év - 5MD
1 1

N M ~ R
- Z Z Yia [541 — tr(Ao) — tr(Ay) — (@5 — Do) " (s — f;a)]

i=1 a=1

N M -
exp(a1) ~ ~ \T i X \—1/~ ~
+ log | 1+ = ——exp | — (u; — Vq)” (I 4+ 2Ag + 2A U; — Vg
22 g( det(L + 2Ao + 24,)3 p< ( ) 0+ 28)7( )>)

N ~
eXP(OéU) (= =T K o\-lim _
+Z Z 'log (1 + det(I 1 4[\0)1/2 exp ( (u; —aj) (I+4N)  (u; u3)>> + Consti;

5.2 Derivations of EM algorithms

E-step: Estimate @;, ¥4, Ao and A; by minimizing the KL divergence.
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Zi\i1 '&iT'&i
Y
- Z Z Yia [@1 —tr(Ag) — tr(Ay) — (@1 — D) (@1; — raa)]

i=1 a=1

_ Z Z Tij [&0 — 2tr(/~Xo) — (’&z - ﬂg)T(’&z - ﬂ])]

i=1 j=1,j#i

N M -
exp(ay ) - T < 1~ o~
+E E log | 1+ = ——exp | — (u; — Vq)” (I 4+ 2Ag + 2A U; — Vg
g( det(I+2A0 + 2A,)3 (= )L 2o+ 20)7 )>)

=1 a=1

N N )
eXP(Oéo) - - \T NP B 3
+ E E log [ 1+ = exp | — (u; —ay;) (I+4A U; — U + Constii;

o T g( det(I + 4A)1/2 p (= (@ — )" (T4 ko) ﬁ))

To find the closed form updates of u;, we use second-order Taylor-expansions of

Fa= Z:Zlog (1 + o p(&) e (= (@ = Ba)"(T+ 2 + 240) 7 (@1 — m))

i=1 a=1 I+ 2]\0 + 2]\1
(5.1)
D S D] Rl R (= (@ — )" (1+ 4Ro) (@ — &) | (5.2)
i=1 j=1,j#i det(I — 4/\0)1/2

The gradients of F; and F;, with respect to u; are

N - ~1
N _ . det (I + 4A¢)/? - S
) = — 1 a1 i — ) (I + 40" Ya; — @,
Gi(u;) 2(I+4A,) jgj:#(uz ;) [ + exp(dayp) P <('u, a;)" (I+400)" (@ u3)>
3 3 M
Ga(;) = —2(T+ 200 +2A) 1) (11; — Dg)
a=1

det(T + Ao + Ap)/?

1+ =
exp(day)

exp ((u — B) (I + 28 + 2R,) " (a1 — i’;a))] _

The second-order partial derivatives (Hessian matrices) of Fr, F4 with respect to u; are
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) N o Ag)L/2 o R L -
H1<ﬂ,z) = —2(1 + 4A0)_1 Z [1 + d t(:X_g(z/;)) exp ((’U,z — ’U,j)T(I + 4A0)_1(’U,i — ’ll,j))]
j=1,j#i

I 2(t; — i) (@; — ;)" (T + 480)~"
1+ #ﬁ%lm exp < — (’l‘:l,z — {L]>T(I + 4]\0)_1(111' — {L]>>

Ha(@;) = —2(T+2Ag +2A,)7!

M ~ ~ -1
det (I + 2A + 2A,)1/2 - ~ A DU
1 1~ VYa I 2A 2A 1~ VYa
; [ + exp(a1) exp ((u Vo) (I+2Ag+2A)) (u; — 0 ))
- 2@y — Ba)(@; — Do) (T + 2A + 2A,) "
1 + exp(dl)

det(I+2Ao+2A1)1/2 exp ( o ('az - 'Ba)T(I + 2]\0 + 2]\1)71(711' - 611))

M N
_ 1 - 1 -\~
Kl = @' (535 + > Yiat Y (wy +yp) + Hil@s) + s Ha(w))a,
0 i=a j=1g#

— 2111-(Zymﬁa + Z (Iij + yji)ﬁj — GI('&Z) — %GA('IIZ) —+ (HI(’a/l) + %HA(ﬂz))ﬁz)

J=15#i
With the Taylor-expansions of the log functions, we can obtain the closed form update

rule of u; by setting the partial derivative of KL equal to 0. Finally, we have

2
J=Lj# a=1

u; = [(2—1\% + | Z (ZBU +yji) + Zyia)I + Hy(a;) + 1I{A(’az)]

2
j=1,#i a=1

[ Z (w35 + i) U5 + Z YiaVa — Gr(1;) + (HI('ai> + 1HA(ﬂz))ﬂz - %GA(ﬂi)]

Similarly, we can obtain the closed form update rule for v, by taking the second order
Taylor-expansion of Fj, (see Equation 5.1) The gradient and Hessian matrix of Fj, with

respect to v, are
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Ga(Da) = 214 2Ag + 2A,) 1

i+
=
Q

1 4 det(I + /~\0~+ ]\1)1/2
exp(d)

exp ((a,- — D) (T + 280 + 28,) " (4 — ﬁa)>] _

HA(Dg) = —2(1+ 270 + 2A,) 7!

(@) exp <(’&i — 0g) T (I +2Ag + 2A)) Y (a; — f;a))]

2(Bg — ;) (Bg — ;)T (I + 200 + 2A;) !

o) exp ( (s — Ba)T(I + 2R + 2R, (a1 — aa))

i det(I + 24, + 24,)1/2

N M
KLs, = 8,7 w 3 e A0 = 2503 s - LNCA)E

=1 i=a =1 1=a

With the Taylor-expansions of the log functions, we can obtain the closed form update

rule of v, by setting the partial derivative of KL equal to 0. Then, we have

To find the closed form updates of Ay and A; we used the first-order Taylor-expansions of

F; and F;,. The gradients of F; and F;, with respect to /~\0 are:

3 N o ~0 1/2 _ o o _ -1
GI(AO):ZZ [1+dt(1+4~A) exp <(ui_uj) (I+4A0) (Ui—uj)>]

exp(dp)
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4T+ 4Ao)7" ((ai — ;) (s — ;)T (T+4Ao) " — %I)

. N det(I + 2Ag + 2A,)1/2
Z 1+ .
exp(ay)

exp <(u — D) (T + 280 + 28,) " (@ — faa))] _

2(I+ 2Ag + 2A,)7! ((ai — Do) (1t — g) T (T + 20 + 2A,) 71 — %I)

The gradients of F, and F;, with respect to /~X1 are:

. N M o ~0 ~11/2 _ - ~ o _ -1
Ga(l) = Z Z [1 N det(I —i—ei/;(&—ll—)QA ) exp <(uz —Va) (IT+2A0+2A) (u; — ’va)>]

2(T 4 2A + 2A,) 7! ((u — D) (s — Ba) (T + 280 +2A,) 7" — %I)

KLAO = Ao 2)\2 + Z Z Yia T 2 Z Z l’w — — log det(Ao)) + GI(AO)]\O -+ GA</~X0)./~\0
i=1 a=1 =1 j=1
KLA1 = 2)\2 + ;;yza - — lOg det(Al)) + GA(A1>A1

With the Taylor-expansions of the log functions, we can obtain the closed form update

rule of Ay A; by setting the partial derivative of KL equal to 0. Then, we have

-1

/~X0:g[<5ﬁ+222x”+22ym>I+G1 Ao) + G a(Ay)

=1 j=1 i=1 a=1
—1
~ M
A1: [(?)\2 ;;yza>I+GA )

M-step: Estimate &g, a; and &y by minimizing the KL divergence. To find the closed

form updates of &g, @; and @y, we used second-order Taylor-expansions of the log functions
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and set the partial derivatives of KL with respects to ag, @; and ay as zeros. Then we have

N N - - .
i _Zi:l > jtije1 Tij — gr(do) + dohr(do)

T ha(do)
y :Zij\il Z(Zz\/il Yia — gA(dQ) + dzhA(dQ)
hia(dQ)
where
N N T ~ .
I+ 4A,)Y2 ~
i=1 j=1,j#i L eXp(ao) |
NN T X o\1/2 ) 71-1
=3 |1+ det (I + 4~A0) exp ((ﬂi )T (1 + dRo) (it — aj))
i=1 j=1,j%#i L eXp(ao) ]
-1
exp(dp) _ o S )
1+ x e —(u; —uy)” (I+4A U; — U,
det(I + 4A0)1/2 *P < ( J) ( o) ( J))]
[ A A 1-1
1/2 ) i
— Z Z 14 det(I+ 2Ao~+ 2A1) exp ((ﬂz - ’6a)T(I 4 2R, + 2A1)_1(’&i _ 6(1))
i=1 a=1 L eXp(al)

N M T ~ ~
det(T + 2A¢ + 2A)Y/2
=zzl+e<+ o< 24,

i=1 a=1 exp(¢u)

exp ((ﬁ,z — ) (T4 2Ag + 2A1) Y (@; — 5a)>

exp(ay)

1+ = =
det(I + 2A0 + 2A1)1/2

exp ( (s — D) T (I + 280 + 2A,) "} (@ — ﬁa)>] _
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