
Supplementary Materials for “DIF Statistical Inference

without Knowing Anchoring Items”

This file contains additional proofs of all the proposition and theorems in Section 1 and discusses

asymptotic distribution of Ξ̃ and the implementation details of Algorithms 1 and 2 in Section 2.

1 Proofs of Propositions and Theorems

Proof of Proposition 1. Note h is differentiable for all c ̸= 0 with,

▽h(c) =
J∑

j=1

|aj | · sign(a∗jc− γ∗j ), c ̸= 0.

Further note that sign(a∗jc− γ∗j ) = 0 when c = γ∗j /a
∗
j and

sign(a∗jc− γ∗j ) > 0 whenever a∗jc > γ∗j , (1)

sign(a∗jc− γ∗j ) < 0 whenever a∗jc < γ∗j . (2)

Consider the right derivative (positive directional derivative) of h at 0 from +1 direction,

∂h+(0) := lim
c↓0

h(c)− h(0)

c
.
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By the definition of right derivative of h at 0, (1) and (2), we can rewrite ∂h+(0) equivalently as

follows,

∂h+(0) =
J∑

j=1

|a∗j |

(
−I
(γ∗j
a∗j

> 0
)
+ I
(γ∗j
a∗j

≤ 0
))

. (3)

Similarly, define the left derivative (negative directional derivative) of h at 0 from −1 direction,

∂h−(0) := lim
c↑0

h(c)− h(0)

c
.

By the definition of left derivative ∂h−(0), (1) and (2), we can rewrite ∂h−(0) equivalently as

follows,

∂h−(0) =
J∑

j=1

|a∗j |

(
−I
(γ∗j
a∗j

≥ 0
)
+ I
(γ∗j
a∗j

< 0
))

. (4)

Since h is convex, we must have argminc h(c) = 0 if and only if ∂h+(0) > 0 and ∂h−(0) < 0

(Boyd and Vandenberghe, 2004; Shor, 2012). From (3), (4) and the fact that ML1 Condition (4) is

equivalent to argminc h(c) = 0, the result of the proposition follows directly.

Proof of Corollary 1. By the definition of ρ∗, Condition (8) is equivalent to

min
j

{|a∗j |}
J∑

j=1

I(γ∗j /a
∗
j ≤ 0) > max

j
{|a∗j |}

J∑
j=1

I(γ∗j /a
∗
j > 0).

For the left-hand side and right-hand side of the above inequality, we have

min
j

{|a∗j |}
J∑

j=1

I(γ∗j /a
∗
j ≤ 0) <

J∑
j=1

|a∗j |I(γ∗j /a∗j ≤ 0);

max
j

{|a∗j |}
J∑

j=1

I(γ∗j /a
∗
j > 0) >

J∑
j=1

|a∗j |I(γ∗j /a∗j > 0).

Therefore, Condition (8) implies

J∑
j=1

|a∗j |
(
I(γ∗j /a

∗
j ≤ 0)− I(γ∗j /a

∗
j > 0)

)
> 0,
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which is (7) in Proposition 1. Similarly, we have condition (9) implies

J∑
j=1

|a∗j |
(
I(γ∗j /a

∗
j < 0)− I(γ∗j /a

∗
j ≥ 0)

)
> 0.

which is (6) in Proposition 1. Hence, if Conditions (8) and (9) are satisfied, we have Condition (4)

holds by Proposition 1.

Proof of Theorem 1. Since MIMIC model with constraint γ†1 = 0 is identifiable, by classical asymp-

totic theory for MLE (van der Vaart, 2000), we have Ξ̃ converges in probability to Ξ†. That

is, as N → ∞, for any ϵ > 0, we must have with probability tending to 1 that |β̃ − β†| ≤ ϵ,

|σ̃2 − (σ2)†| ≤ ϵ, |γ̃j − γ†j | ≤ ϵ, |ãj − a†j | ≤ ϵ and |d̃j − d†j | ≤ ϵ, for any j = 1, ..., J . De-

note f(c) =
∑J

j=1 |γ
†
j − ca†j | as a function of c. Similarly, denote fN (c) =

∑J
j=1 |γ̃j − cãj |. Let

c† = argminc f(c) and ĉ = argminc fN (c), respectively. We seek to establish that ĉ will converge

in probability to c† as N → ∞. First note that by regularity conditions, there exists C1 < ∞ such

that J, |γ†j |, |a
†
j | ≤ C1. Then, there must exist C2 < ∞ such that |c†| ≤ C2. Furthermore, note fN

is clearly continuous and convex in c, so consistency will follow if fN can be shown to converge

point-wise to f that is uniquely minimized at the true value c† (typically uniform convergence is

needed, but point-wise convergence of convex functions implies their uniform convergence on com-

pact subsets). Following the model identifiability and the ML1 condition (4), c† is unique. To see

this, suppose for contradiction that there exist c1 and c2 such that c1 ̸= c2 and c1 = argminc f(c)

and c2 = argminc f(c). First note that a†j = a∗j for all j = 1, ..., J. Then by model identifiability,

there exists c3 such that γ†j = γ∗j + c3a
∗
j . So we have

c1 = argmin
c

J∑
j=1

|γ∗j + (c3 − c)a∗j |

and

c2 = argmin
c

J∑
j=1

|γ∗j + (c3 − c)a∗j |.

Hence, γ∗ = γ† + (c3 − c1)a
∗
j and γ∗ = γ† + (c3 − c2)a

∗
j . If ML1 condition (4) holds, then c3 = c1
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and c3 = c2. This contradicts the assumption c1 ̸= c2. Hence, c
† must be unique. For any |c| ≤ C2,

|fN (c)− f(c)|

=
∣∣∣ J∑
j=1

(
|γ̃j − cãj | − |γ†j − ca†j |

)∣∣∣
≤
∣∣∣ J∑
j=1

(
|(γ̃j − cãj)− (γ†j − ca†j)|

)∣∣∣
=
∣∣∣ J∑
j=1

(
|(γ̃j − γ†j ) + c(a†j − ãj)|

)∣∣∣
≤

J∑
j=1

(
|γ̃j − γ†j |+ |c| · |a†j − ãj |

)
≤ Jϵ+ |c|ϵ.

≤ (C1 + C2)ϵ.

Take ϵ1 = (C1+C2)ϵ, it follows that for any fixed |c| ≤ C2, P
(
|fN (c)− f(c)| ≤ ϵ1

)
→ 1 as N → ∞.

Moreover, following from the uniqueness of c† and the continuity and the convexity of fN (·) in c,

we must have |ĉ− c†| = oP (1) as N → ∞.

Note that β̂ = β̃+ ĉ, σ̂2 = σ̃2, γ̂j = γ̃j − ĉãj , âj = ãj , d̂j = d̃j for all j = 1, ..., J. From the model

identifiability and the ML1 condition (4), we know that β∗ = β†+ c†, (σ2)∗ = (σ2)†, γ∗j = γ†j − c†a†j ,

a∗j = a†j , d
∗
j = d†j for all j = 1, ..., J. Since |ĉ − c†| = oP (1), |β̃ − β†| = oP (1), |σ̃2 − (σ2)†| = oP (1),

|γ̃j − γ†j | = oP (1), |ãj − a†j | = oP (1), |d̃j − d†j | = oP (1) as N → ∞, it follows directly from the

Slutsky’s Theorem that |β̂ − β∗| = oP (1), |σ̂2 − (σ2)∗| = oP (1),|γ̂j − γ∗j | = oP (1), |âj − a∗j | = oP (1),

|d̂j − d∗j | = oP (1) as N → ∞.

2 Asymptotic Distribution of Ξ̃

Since the model is identifiable with constraint γ†1 = 0 and all the regularity conditions in Theo-

rem 5.39 of van der Vaart (2000) are satisfied, hence, by Theorem 5.39 in van der Vaart (2000),
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Ξ̃ → N(Ξ†,Σ∗) in distribution as N → ∞. In practice, we use the inverse of the observed Fisher

information matrix, denoted by Σ̂N , which is a consistent estimator of Σ∗, to draw Monte Carlo

samples. Below, we give procedures to evaluate Σ̂N from the marginal log-likelihood.

Following the notations in the main article, we first provide the complete data log-likelihood

function,

l(Ξ;Y ) =
N∑
i=1

[
log
{ 1√

2π(1{xi=0} + σ21{xi=1})
exp

(
−(θi − βxi)

2

2(1{xi=0} + σ21{xi=1})

)}

+
J∑

j=1

{
yij(ajθi + dj + γjxi)− log(1 + exp{ajθi + dj + γjxi})

}]
.

Since θi is considered as a random variable such that θi | xi ∼ N(βxi, 1{xi=0} + σ21{xi=1}), so we

will work with the marginal log-likelihood function,

mll(Ξ;Y ) =
N∑
i=1

log
{∫  J∏

j=1

exp(yij(ajθi + dj + γjxi))

1 + exp(ajθi + dj + γjxi)

 1√
2π

exp

(
−(θi − βxi)

2

2(1{xi=0} + σ21{xi=1})

)
dθi

}
.

Note that the observed Fisher information matrix I(Ξ) cannot be directly obtained from the

mll(Ξ;Y ) due to the intractable integral. Instead, we apply the Louis Identity (Louis, 1982) to eval-

uate the observed Fisher information matrix. Let S(Ξ;Y ) and B(Ξ;Y ) denote the gradient vector

and the negative of the hessian matrix of the complete data log-likelihood function, respectively.

Then by the Louis Identity, I(Ξ) can be expressed as

I(Ξ) = Eθ[B(Ξ;Y ) | Y ]−Eθ[S(Ξ;Y )S(Ξ;Y )T | Y ] +Eθ[S(Ξ;Y ) | Y ]Eθ[S(Ξ;Y ) | Y ]T .
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Denote pij = exp{yij(ajθi + dj + γjxi)}/[1 + exp{yij(ajθi + dj + γjxi)}]. Then, in particular,

S(Ξ;Y ) =
∂l(Ξ;Y )

∂Ξ

=
{∂l(Ξ;Y )

∂β
,
∂l(Ξ;Y )

∂σ2
, ...,

∂l(Ξ;Y )

∂aj
, ...,

∂l(Ξ;Y )

∂dj
, ...,

∂l(Ξ;Y )

∂γj
, ...
}

=
{∑N

i=1 xi(θi − β)

σ2
,

∑N
i=1 xi(θi − β)2

2σ4
−
∑N

i=1 xi
2σ2

,...,

N∑
i=1

θi(yij − pij), ...,
N∑
i=1

(pij − yij), ...,
N∑
i=1

xi(yij − pij)
}
.

Furthermore, note that B(Ξ;Y ) = −∂2l(Ξ;Y )/∂Ξ∂ΞT is a (3J + 2) by (3J + 2) matrix with the

only non-zero entries,

∂2l(Ξ;Y )

∂β2
= −

∑N
i=1 xi
σ2

,

∂2l(Ξ;Y )

∂(σ2)2
= −

∑N
i=1 xi(θi − β)2

σ6
+

∑N
i=1 xi
2σ4

,

∂2l(Ξ;Y )

∂β∂σ2
= −

∑N
i=1 xi(θi − β)

σ4
,

∂2l(Ξ;Y )

∂a2j
= −

N∑
i=1

θ2i pij(1− pij),

∂2l(Ξ;Y )

∂d2j
= −

N∑
i=1

pij(1− pij),

∂2l(Ξ;Y )

∂γ2j
= −

N∑
i=1

x2i pij(1− pij),

∂2l(Ξ;Y )

∂aj∂dj
=

N∑
i=1

θipij(1− pij),

∂2l(Ξ;Y )

∂aj∂γj
= −

N∑
i=1

θixipij(1− pij),

∂2l(Ξ;Y )

∂dj∂γj
=

N∑
i=1

xipij(1− pij).

In practice, we can use Gaussian quadrature method to approximate the expectation of these terms

so as to obtain Î(Ξ̃). Then Σ̂N can be evaluated with Σ̂N = Î−1(Ξ̃). This then enables Step 1 of

Algorithm 1, where Monte Carlo samples of Ξ† can be simulated from N(Ξ̃, Σ̂N ).
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