Supplementary Materials for “DIF Statistical Inference

without Knowing Anchoring Items”

This file contains additional proofs of all the proposition and theorems in Section 1 and discusses

asymptotic distribution of = and the implementation details of Algorithms 1 and 2 in Section 2.

1 Proofs of Propositions and Theorems

Proof of Proposition 1. Note h is differentiable for all ¢ # 0 with,
J
Z|aj| sign(ajc —~;), ¢ #0.
Further note that sign(ajc —~;) = 0 when ¢ =77 /a} and

Sign(a;k'c — 7;) > (0 whenever a;c > 7;-‘, (1)

sign(ajc —~;) <0 whenever ajc <7;. (2)
Consider the right derivative (positive directional derivative) of h at 0 from +1 direction,

Oh*(0) := lim hie) = M(O)
cl0 C



By the definition of right derivative of h at 0, (1) and (2), we can rewrite Oh™(0) equivalently as

follows,

Oh+ (0 Z|aj|( 2> 0) +1(71 <0)> (3)

]

Similarly, define the left derivative (negative directional derivative) of h at 0 from —1 direction,

Oh~(0) := lim hie) = MO)
c10 C

By the definition of left derivative Oh~(0), (1) and (2), we can rewrite Oh~(0) equivalently as

follows,

J * *
oh=(0) = |a? <—1(zﬂ' > 0) + 1(% < 0)) . (4)

Since h is convex, we must have argmin,h(c) = 0 if and only if dh*(0) > 0 and dh~(0) < 0
(Boyd and Vandenberghe, 2004; Shor, 2012). From (3), (4) and the fact that ML1 Condition (4) is

equivalent to argmin, h(c) = 0, the result of the proposition follows directly. O

Proof of Corollary 1. By the definition of p*, Condition (8) is equivalent to

J J
mjin{la}‘\}ZI(V}‘/CL}f <0)> mjax{la}fl}zf(vf/aj > 0).
j=1 j=1

For the left-hand side and right-hand side of the above inequality, we have

<

J
mjilﬂ{lail}ZI(W}‘/CLZf <0) < Y lailI(v;/a} <0);
i=1

J=1

<

J
mfx{!aﬂ}zf(’vf/a; >0) > Y laj|I(v;/a} > 0).
J=1 J=1
Therefore, Condition (8) implies

(I(7j /a} < 0) = I(v}/a} > 0)) >0,

”M“



which is (7) in Proposition 1. Similarly, we have condition (9) implies
J

> lasl (I(vy/af < 0) = I(y}/aj > 0)) > 0.
j=1

which is (6) in Proposition 1. Hence, if Conditions (8) and (9) are satisfied, we have Condition (4)

holds by Proposition 1.

O]

Proof of Theorem 1. Since MIMIC model with constraint ’yI = 0 is identifiable, by classical asymp-
totic theory for MLE (van der Vaart, 2000), we have 2 converges in probability to Zf. That
is, as N — oo, for any € > 0, we must have with probability tending to 1 that \B — B < e,
162 — (BT < ¢, |55 — 'y;f| < ¢la; — a;r-| < ¢ and |dj — d;r| < ¢ for any j = 1,...,J. De-
note f(c) = Z}]:1 WJT - ca;| as a function of ¢. Similarly, denote fy(c) = Zj:l |9; — cajl|. Let
¢t = argmin, f (c) and ¢ = argmin, fn(c), respectively. We seek to establish that ¢ will converge
in probability to ¢/ as N — oco. First note that by regularity conditions, there exists C; < oo such
that J, |’y;|, |a;| < Cy. Then, there must exist Cy < co such that |¢f| < Cy. Furthermore, note fy
is clearly continuous and convex in ¢, so consistency will follow if fy can be shown to converge
point-wise to f that is uniquely minimized at the true value ¢! (typically uniform convergence is
needed, but point-wise convergence of convex functions implies their uniform convergence on com-
pact subsets). Following the model identifiability and the ML1 condition (4), ¢! is unique. To see
this, suppose for contradiction that there exist ¢; and ¢y such that ¢; # ¢ and ¢; = arg min, f(c)
and cg = argmin, f(c). First note that a; = a for all j = 1,...,J. Then by model identifiability,
T

there exists ¢3 such that v; = 7;j + czaj. So we have

J

c1 = arg minz 17; + (c3 — ¢)aj|
‘=
‘7_

and

J

cy = arg minz v + (c3 — ¢)ajl.
& 1
]_

Hence, v* = ~v' 4 (¢35 — c1)aj and y* = YT+ (e3 — cg)aj. If ML1 condition (4) holds, then c3 = ¢;



and c3 = c3. This contradicts the assumption ¢; # cz. Hence, ¢/ must be unique. For any |c| < Oy,
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< Je+ |cle.
< (C1 + Cy)e.

Take €; = (Cy + Cy)e, it follows that for any fixed |c| < Co, P(|fn(c) — f(c)] < e1) — 1 as N — oc.
Moreover, following from the uniqueness of ¢/ and the continuity and the convexity of fy(-) in ¢,

we must have |¢ — cf| = op(1) as N — oc.

Note that /3’ = B—i—é, 6% =62, qj = j —¢aj, a; = a;, d}- = cij forall j =1,...,J. From the model
identifiability and the ML1 condition (4), we know that 8* = T +¢f, (¢2)* = (¢2)1, Vi = 'ij» —cTa;,
af =al, df = di forall j =1,...,J. Since ¢ — | = 0p(1), |8 — 81| = 0p(1), |52 — (62| = 0p(1),
17 — ,ij‘ = op(1),|a; — a;r-| = op(1),|d; — d;| = op(1l) as N — oo, it follows directly from the
Slutsky’s Theorem that |5 — 8*| = op(1), 62 — (02)*| = op(1),19; — ;| = op(1),|a; — aj| = op(1),

d-—d*:OPI as N — oo. O
J J

2 Asymptotic Distribution of =

Since the model is identifiable with constraint 'yI = 0 and all the regularity conditions in Theo-

rem 5.39 of van der Vaart (2000) are satisfied, hence, by Theorem 5.39 in van der Vaart (2000),



— N(E1, %) in distribution as N — oo. In practice, we use the inverse of the observed Fisher

[1]:

information matrix, denoted by 3y, which is a consistent estimator of £*, to draw Monte Carlo

samples. Below, we give procedures to evaluate Sy from the marginal log-likelihood.

Following the notations in the main article, we first provide the complete data log-likelihood

function,
N
= 1 —(0; — Bx;)?
l(:; Y) = log exp <
; |: { \/27'(‘(1{“:0} + 021{$i:1}) 2(1{mi:0} + 0-21{%':1}) }
J
+ Z {vij(a;0; + d; + vjx;) — log(1 + exp{a;b; + d; + vjxi})}] )
=1

Since ; is considered as a random variable such that 0; | z; ~ N(Bx;, 15,0y + 021{%:1}), SO we

will work with the marginal log-likelihood function,

N J
- (a:0; + d. s 1 —(0; — )2
mll(Z;Y) = Zlog {/ H exp(yig (a6 + d; +3)) exp ( (6 5?) > dﬁi}.
P aiey 14+ exp(ajei + dj + ’}/jl'i) V2 2(1{%:0} +0o 1{%:1})

Note that the observed Fisher information matrix I(Z) cannot be directly obtained from the
mll(Z;Y") due to the intractable integral. Instead, we apply the Louis Identity (Louis, 1982) to eval-
uate the observed Fisher information matrix. Let S(Z;Y") and B(Z;Y’) denote the gradient vector

and the negative of the hessian matrix of the complete data log-likelihood function, respectively.

Then by the Louis Identity, /(Z) can be expressed as

I(Z) = B[B(E:Y) | Y] Bg[S(Z Y)SEY)T | Y]+ E[S(E:Y) | YIE[S(Z:Y) | Y],



Denote p;; = exp{yi;(a;0; + dj + vjz;)}/[1 + exp{yij(a;jb; + dj + v;x;)}]. Then, in particular,

_ o=y
““Y*:EE)
_{8l(E;Y) Il(Z;Y) I(Z;Y) I(Z;Y) I(Z;Y) }
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D 0i(yig = pig)s s D Dij = Yig)s s Y wilYis _pij)}-
i=1 i=1 i=1

Furthermore, note that B(Z;Y) = —021(Z;Y)/0Z0Z" is a (3J + 2) by (3J + 2) matrix with the

only non-zero entries,

321(53Y) _ Zi\il L

o2 g2
PUEY) _ _Zf\;l i(0; — B)? I Zz]\il Li
9(02)2 o6 204
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PUEY
8d 67J Z -szz] pz]

i=1

In practice, we can use Gaussian quadrature method to approximate the expectation of these terms
s0 as to obtain I(Z). Then ¥y can be evaluated with ¥y = I~'(Z). This then enables Step 1 of

Algorithm 1, where Monte Carlo samples of Z can be simulated from N(Z, 3 y).
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