
Supplement to “Diving Deep in Diagnostic Modeling:
DeepCDMs”

In this Supplementary Material, Section S.1 presents the proofs of the identifiability

results of DeepCDMs, and Section S.2 provides the posterior computation details of the

Gibbs sampling algorithms for DeepCDMs.

S.1 Proofs of the Identifiability Results

All of our identifiability proofs leverage a key technical insight about DeepCDMs – that is,

identifiability can be examined and established in a layer-by-layer manner, from the bottom

up, thanks to the probabilistic formulation of the directed graphical model. This insight

was initially used in Gu and Dunson (2021) to establish identifiability of the deep Bayesian

Pyramid model for multivariate categorical data.

Proof of Theorem 1. Recall the joint distribution of all the random variables in a DeepCDM

(including a DeepDINA model and a Hybrid DeepCDM) is

P(R,A(1), . . . ,A(D)) = P(R | A(1)) ·
D∏
d=2

P(A(d−1) | A(d)) · P(A(D)).

The marginal distribution of the observed vector R is obtained by marginalizing out all the

latent variables A(1), . . . ,A(D) in the above joint distribution. According to the definition of

a general directed acyclic graph (DAG), the marginal distribution of each latent vector A(d)

for layer d = 1, . . . , D − 1 can be written as

P(A(d) = α(d)) (S.1)

=
∑

α(d+1)∈{0,1}Kd+1

· · ·
∑

α(D)∈{0,1}KD

D∏
m=d+1

P(A(m−1) = α(m−1) | A(m) = α(m)) · P(A(D) = α(D)).
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Now we specifically marginalize out all latent variables except the shallowest layer A(1) in

the joint distribution,

P(R = r)

=
∑

α(1)∈{0,1}K1

· · ·
∑

α(D)∈{0,1}KD

P(R = r,A(1) = α(1), . . . ,A(D) = α(D))

=
∑

α(1)∈{0,1}K1

P(R = r | A(1) = α(1))×

∑
α(2)∈{0,1}K2

· · ·
∑

α(D)∈{0,1}KD

D∏
d=2

P(A(d−1) = α(d−1) | A(d) = α(d)) · P(A(D) = α(D))

︸ ︷︷ ︸
P(A(1)=α(1))

=
∑

α(1)∈{0,1}K1

P(R = r | A(1) = α(1)) · P(A(1) = α(1)), (S.2)

We introduce a notation π(1) =
(
π
(1)
α ; α ∈ {0, 1}K1

)
to collect the proportion parameters

of the categorical distribution that A(1) follows in (S.2):

P(A(1) = α) = π(1)
α , ∀α ∈ {0, 1}K1 . (S.3)

Then π(1) lives in the (2K1 − 1)-dimensional probability simplex. Then based solely on

α(1) ∈ {0, 1}K1 , the probability mass function of the random vector R can be written as

follows for each r ∈ {0, 1}J ,

P(R = r | π(1), θ(1), Q(1)) =
∑

α(1)∈{0,1}K1

π
(1)

α(1)

J∏
j=1

P(Rj = rj | A(1) = α(1), θ(1), Q(1)), (S.4)

where the notation θ(1) collects all the continuous parameters needed to specify the condi-

tional distribution of R | A(1) under Q(1). For example, under the DeepDINA model, θ(1)

denotes the collection of s(1) and g(1). Note that (S.4) gives a restricted latent class model

(equivalently, a CDM) for R with 2K1 latent classes, subject to the constraints induced by

the J ×K1 Q-matrix Q(1). Similarly, according to the general marginal distribution of A(d)
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in (S.1), we also have

P(A(d) | A(d+1)) =
∑

α(d+1)∈{0,1}Kd+1

P(A(d) | A(d+1) = α(d+1),Q(d+1),θ(d+1)) · P(A(d+1) = α(d+1)),

which is another cognitive diagnostic model for the “response vector” being A(d) and the

“latent attribute vector” being A(d+1) under the Q-matrix Q(d+1), where d = 2, . . . , D.

Now consider the DeepDINA model setting in Theorem 1. When R | A(1) follows the

DINA model, then as long as Q(1) satisfies the C-R-D conditions in Gu and Xu (2021),

then Q(1) itself and the continuous parameters θ(1) and π(1) are identifiable. Note that the

statement that π(1) is identifiable means the marginal distribution of A(1) is identifiable,

which implies A(1) can be treated as if it is observed when studying the identifiability of

Q(2), θ(2), and the marginal distribution of A(2). Therefore, if Q(2) also satisfies the C-R-D

conditions, then Q(2), θ(2), and the marginal distribution of A(2) are identifiable. Now it

is easy to see that we can proceed in a layerwise manner from bottom up, and examining

whether Q(1), Q(2), . . ., Q(D) satisfy the identifiability conditions successively. Specifically,

under a DeepDINA model, as long as all the Q(d) satisfy the C-R-D conditions, then all the

Q-matrices and all the continuous parameters (s(d), g(d)), d = 1, . . . , D and πdeep are strictly

identifiable. This proves the sufficiency part in Theorem 1.

To show the necessity part in Theorem 1, we only need to note that if Q(d) fails to

satisfy the C-R-D conditions, then certain parameters in π(d) and θ(d) will not identifiable,

indicating the non-identifiability of the DeepDINA model. This proves the necessity of the

proposed identifiability conditions and completes the proof of Theorem 1.

Proof of Theorem 2 and Proposition 1. We use the same insight elaborated in the proof of

Theorem 1: the layerwise proof argument of identifiability. Specifically, the marginal distri-

bution of R in (S.2), the marginal distribution of A(1) in (S.3), and the conditional distri-

bution of R given A(1) in (S.4) all hold generally for an arbitrary DeepCDM and a Hybrid

DeepCDM. Therefore, we still start with the bottom two layers and examine whether Q(1)

satisfies the identifiability conditions for a general CDM; if so, we then examine Q(2), so

on and so forth. First, we consider the case that condition (S) holds; that is, each Q(d)
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can be written as Q(d) = [IKd , IKd , IKd , (Q(d)∗)>]> after some column/row permutation.

In this case, following a similar argument as the proof of Theorem 4 in Gu and Dunson

(2021) but constraining to considering binary responses, we obtain the strict identifiability

of (θ(d),Q(d)) for d = 1, . . . , D and that of πdeep. Second, we consider the case that condition

(S∗) holds, then following a similar argument as the proof of Theorem 1 in Culpepper (2019)

but constraining to considering binary responses, we also obtain the strict identifiability of

all the parameters and Q-matrices in a general DeepCDM. This proves Theorem 2.

Further note that the above layerwise proof strategy does not require each layer in a

DeepCDM to conform to the same diagnostic model. This means in a Hybrid CDM where

some layers follow the DINA (or DINO) model and some layers follow the main-effect or all-

effect diagnostic models, we can examine their corresponding Q-matrices using the respective

identifiability conditions in Theorems 1 or 2 to assess identifiability. For example, if the

marginal distribution of A(d) is already identified, then A(d) | A(d+1) follows the DINA

model, then Q(d+1) only needs to satisfy the weaker C-R-D conditions to proceed to the

deeper layer. This proves Proposition 1.

Proof of Theorem 3. Similarly as the proofs of strict identifiability results, we still use the

layerwise identifiability argument. In the literature, Theorem 4 in Gu and Xu (2021) es-

tablished generic identifiability for single-latent-layer main-effect/all-effect CDMs (also see

Gu and Xu (2020) and Chen et al. (2020)) under the considered conditions (G1) and (G2)

in its single-layer form (D = 1); in that theorem, the Lebesgue measure-zero subset of the

parameter space where identifiability may break down only concerns the item parameters.

That means, in the context of a DeepCDM consisting of main-effect or all-effect layers, as

long as the item parameters θ(1) ∈ Ωmain(β(1); Q(1)) do not fall within the layer-specific

unidentifiable subset N (1) which has measure zero in Ωmain(β(1); Q(1)), then θ(1), π(1), and

Q(1) are identifiable. This implies that as long as the between-layer continuous parameters

θ(1), . . ., θ(D) do not fall within the finite union of the measure-zero subsets of the parameter

space ∪Dd=1Ωmain(β(d); Q(d)), then the entire main-effect or all-effect DeepCDM is identifiable.

This proves the generic identifiability conclusion in Theorem 3 under conditions (G1) and

(G2).
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S.2 Details for the Gibbs Sampling Algorithms

S.2.1 Gibbs Sampler for Two-latent-layer DeepDINA

For i ∈ [N ], j ∈ [J ], and k ∈ [K1], introduce binary ideal response indicators ξ1,ij and ξ2,ik:

ξ1,ij =

K1∏
k=1

(
a
(1)
i,k

)q(1)j,k
, ξ2,ik =

K2∏
m=1

(
a
(2)
i,m

)q(2)k,m
. (S.5)

Denote s
(1)
j , g

(1)
j , s

(2)
k , and g

(2)
k by s1,j, g1,j, s2,k, and g2,k, respectively. Under the priors

specified in the main text, the posterior distribution in the two-latent-layer DeepDINA can

be written as

p(θ
(1)
DINA,θ

(2)
DINA,π

deep,A(1),A(2) | R,Q(1),Q(2))

∝
N∏
i=1

J∏
j=1

[
(1− s1,j)ξ1,ijg

1−ξ1,ij
1,j

]ri,j [
s
ξ1,ij
1,j (1− g1,j)1−ξ1,ij

]1−ri,j

×
N∏
i=1

2K2∏
`=1

{
π`

K1∏
k=1

[
(1− s2,k)ξ2,ikg

1−ξ2,ik
2,k

]a(1)i,k [
s
ξ2,ik
2,k (1− g2,k)1−ξ2,ik

]1−a(1)i,k}1(a
(2)
i =α`)

×
J∏
j=1

[sas−11,j (1− s1,j)bs−1gag−11,j (1− g1,j)bg−11(g1,j < 1− s1,j)]

×
K1∏
k=1

[sas−12,k (1− s2,k)bs−1gag−12,k (1− g2,k)bg−11(g2,k < 1− s2,k)]×
2K2∏
`=1

πδ−1`

Based on the above posterior, the full conditional distributions of the quantities θ(1), θ(2),

πdeep, A(1), A(2) are as follows.

(1) Sample s
(1)
1,j and g

(1)
1,j from truncated Beta distributions:

s
(1)
j ∼ Beta

(
1 +

∑N

i=1
(1− rij)ξ1,ij, 1 +

∑N

i=1
rijξ1,ij

)
· 1(s

(1)
j < 1− g(1)j );

g
(1)
j ∼ Beta

(
1 +

∑N

i=1
rij(1− ξ1,ij), 1 +

∑N

i=1
(1− rij)(1− ξ1,ij)

)
· 1(g

(1)
j < 1− s(1)j ).
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(2) Sample s
(2)
2,k and g

(2)
2,k from truncated Beta distributions:

s
(2)
k ∼ Beta

(
1 +

∑N

i=1
(1− a(1)ik )ξ2,ik, 1 +

∑N

i=1
a
(1)
ik ξ2,ik

)
· 1(s

(2)
k < 1− g(2)k );

g
(2)
k ∼ Beta

(
1 +

∑N

i=1
a
(1)
ik (1− ξ2,ik), 1 +

∑N

i=1
(1− a(1)ik )(1− ξ2,ik)

)
· 1(g

(2)
k < 1− s(2)k ).

(3) Sample πdeep from the Dirichlet distribution:

πdeep ∼ Dirichlet
(
δ1 +

∑N

i=1
1(a

(2)
i = α1), . . . , δ2K2 +

∑N

i=1
1(a

(2)
i = α2K2 )

)
.

(4) Sample each entry a
(1)
i,k from the Bernoulli distribution with the following probability:

P(a
(1)
i,k = 1 | −) = P(a

(1)
i,k = 1 | ri,a(2)

i ,θ(1),θ(2))

=
P(a

(1)
i,k = 1 | a(2)

i ,θ(2))P(ri | a(1)i,k = 1,a
(1)
i,−k,θ

(1))∑
x=0,1 P(a

(1)
i,k = x | a(2)

i ,θ(2))P(ri | a(1)i,k = x,a
(1)
i,−k,θ

(1))
,

where the conditional distributions P(a
(1)
i,k = x | a(2)

i ,θ(2)) and P(ri | a(1)i,k = x,a
(1)
i,−k,θ

(1))

just directly follow the likelihood defined under the DeepDINA model in Section 4.1

of the main text, and they are both DINA.

(5) Sample each pattern a
(2)
i from the categorical distribution with |{0, 1}K2| = 2K2 com-

ponents with the following probabilities:

P(a
(2)
i = α` | −) = P(a

(2)
i = α` | a(1)

i ,θ(2),πdeep);

=
P(a

(2)
i = α` | πdeep)P(a

(1)
i | a

(2)
i = α`,θ

(2))∑2K2

`′=1 P(a
(2)
i = α`′ | πdeep)P(a

(1)
i | a

(2)
i = α`′ ,θ

(2))
,

where the P(a
(2)
i = α`′ | πdeep) and P(a

(1)
i | a

(2)
i = α`′ ,θ

(2)) also directly follow the

definition of DeepDINA, with the former being a Dirichlet distribution and the latter

following a DINA model conditional distribution.

Overall, our Gibbs sampler cycles through the above five steps iteratively to approximate

the posterior distributions of all the quantities.
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S.2.2 Gibbs Sampler for Hybrid GDINA-DINA

Recall that we will focus on those θ
(1)
j,S parameters for the shallower GDINA layer during the

Gibbs sampling, which denote conditional positive response probabilities:

θ
(1)
j,S =

∑
S′⊆S

β
(1)
j,S′ = P(ri,j = 1 | a(1)>

i q
(1)
j,S = q

(1)>
j,S q

(1)
j,S).

Introduce binary indicators for the GDINA layer as

ξ1,ij,S = 1

(
a
(1)>
i q

(1)
j,S = q

(1)>
j,S q

(1)
j,S

)
, i ∈ [N ], j ∈ [J ], S ⊆ Kj,

where the notation Kj = {k ∈ [K1] : q
(1)
j,k = 1} was defined in the main text. For the deeper

DINA layer, we still introduce binary ideal response indicators ξ2,ik for k ∈ [K1] similarly as

the previous (S.5). Under the priors specified in the main text, the posterior distribution in

the Hybrid GDINA-DINA can be written as

p(θ
(1)
GDINA,θ

(2)
DINA,π

deep,A(1),A(2) | R,Q(1),Q(2))

∝
N∏
i=1

J∏
j=1

∏
S⊆Kj

[(
θ
(1)
j,S

)ri,jξ1,ij,S(
1− θ(1)j,S

)(1−ri,j)ξ1,ij,S]

×
N∏
i=1

2K2∏
`=1

{
π`

K1∏
k=1

[
(1− s2,k)ξ2,ikg

1−ξ2,ik
2,k

]a(1)i,k [
s
ξ2,ik
2,k (1− g2,k)1−ξ2,ik

]1−a(1)i,k}1(a
(2)
i =α`)

×
J∏
j=1

∏
S⊆Kj

[
(θ

(1)
j,S)aθ−1(1− θ(1)j,S)aθ−11(θ

(1)
j,S > θ

(1)
j,∅ if S is a singleton set)

]

×
K1∏
k=1

[sas−12,k (1− s2,k)bs−1gag−12,k (1− g2,k)bg−11(g2,k < 1− s2,k)]×
2K2∏
`=1

πδ−1` .

Our Gibbs sampler will cycle through the following steps iteratively.

(1) Sample each θ
(1)
j,S from the (truncated) Beta distribution:

θ
(1)
j,S ∼ Beta

(
aθ +

N∑
i=1

ri,jξ1,ij,S, bθ +
N∑
i=1

(1− ri,j)ξ1,ij,S

)
1(θ

(1)
j,S > θ

(1)
j,∅ if S is a singleton set).
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(2) Sample s
(2)
2,k and g

(2)
2,k from truncated Beta distributions:

s
(2)
k ∼ Beta

(
1 +

∑N

i=1
(1− a(1)ik )ξ2,ik, 1 +

∑N

i=1
a
(1)
ik ξ2,ik

)
· 1(s

(2)
k < 1− g(2)k );

g
(2)
k ∼ Beta

(
1 +

∑N

i=1
a
(1)
ik (1− ξ2,ik), 1 +

∑N

i=1
(1− a(1)ik )(1− ξ2,ik)

)
· 1(g

(2)
k < 1− s(2)k ).

(3) Sample πdeep from the Dirichlet distribution:

πdeep ∼ Dirichlet
(
δ1 +

∑N

i=1
1(a

(2)
i = α1), . . . , δ2K2 +

∑N

i=1
1(a

(2)
i = α2K2 )

)
.

(4) Sample each entry a
(1)
i,k from the Bernoulli distribution with the following probability:

P(a
(1)
i,k = 1 | −) =

P(a
(1)
i,k = 1 | a(2)

i ,θ(2))P(ri | a(1)i,k = 1,a
(1)
i,−k,θ

(1))∑
x=0,1 P(a

(1)
i,k = x | a(2)

i ,θ(2))P(ri | a(1)i,k = x,a
(1)
i,−k,θ

(1))
,

where the conditional distributions P(a
(1)
i,k = x | a(2)

i ,θ(2)) and P(ri | a(1)i,k = x,a
(1)
i,−k,θ

(1))

follow the likelihood under the DINA and GDINA, respectively.

(5) Sample each pattern a
(2)
i from the categorical distribution with |{0, 1}K2| = 2K2 com-

ponents with the following probabilities:

P(a
(2)
i = α` | −) = P(a

(2)
i = α` | a(1)

i ,θ(2),πdeep);

=
P(a

(2)
i = α` | πdeep)P(a

(1)
i | a

(2)
i = α`,θ

(2))∑2K2

`′=1 P(a
(2)
i = α`′ | πdeep)P(a

(1)
i | a

(2)
i = α`′ ,θ

(2))
,

where the P(a
(2)
i = α`′ | πdeep) and P(a

(1)
i | a

(2)
i = α`′ ,θ

(2)) also directly follow the

definition of DeepDINA, with the former being a Dirichlet distribution and the latter

following a DINA model conditional distribution.
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S.2.3 Gibbs Sampler for Two-latent-layer DeepLLM

The posterior distribution of the two-latent-layer DeepLLM can be written as

p(β
(1)
LLM,β

(2)
LLM,π

deep,A(1),A(2) | R,Q(1),Q(2))

∝
N∏
i=1


J∏
j=1

exp
(
ri,j

(
β
(1)
j,0 +

∑K1

k=1 q
(1)
j,kβ

(1)
j,ka

(1)
i,k

))
1 + exp

(
β
(1)
j,0 +

∑K1

k=1 q
(1)
j,kβ

(1)
j,ka

(1)
i,k

) × K1∏
k=1

exp
(
a
(1)
i,k

(
β
(2)
k,0 +

∑K2

m=1 q
(2)
k,mβ

(2)
k,ma

(2)
i,m

))
1 + exp

(
β
(2)
k,0 +

∑K2

m=1 q
(2)
k,mβ

(2)
k,ma

(2)
i,m

)


×
N∏
i=1

2K2∏
`=1

π
1(a

(2)
i =α`)

` ×
2K2∏
`=1

πδ−1` ×
J∏
j=1

{
N(β

(1)
j,0 | 0, σ2

β)

K1∏
k=0

N(β
(1)
j,k | 0, σ

2
β)1(β

(1)
j,k > 0 if q

(1)
j,k = 1)

}

×
K1∏
k=1

{
N(β

(2)
k,0 | 0, σ

2
β)

K2∏
m=0

N(β
(2)
k,m | 0, σ

2
β)1(β

(2)
k,m > 0 if q

(2)
k,m = 1)

}

×
N∏
i=1

J∏
j=1

PG(w
(1)
i,j | 1, 0) ·

N∏
i=1

K1∏
k=1

PG(w
(2)
i,k | 1, 0).

Our Gibbs sampler iteratively cycles through the following steps.

(1) Recall the notation Kj = {k ∈ [K1] : q
(1)
j,k = 1}. Define

β
(1)
j,Kj = (β

(1)
j,0 , β

(1)
j,k ; k ∈ Kj),

which is a vector of length |Kj|+ 1. We introduce a notation X
(1)
j , which is a N × |Kj|

matrix; the entries in this matrix are indexed by a
(1)
i,k q

(1)
j,k where i ∈ [N ] and k ∈ {0}∪Kj.

Sample β
(1)
j,Kj from the (truncated) Multivariate Normal (MVN) distribution:

β
(1)
j,Kj ∼ MVN(µ1j,Σ1j), where

Σ1j =
(
X

(1)>
j diag

(
W

(1)
:,j

)
X

(1)
j

)−1
, µ1j = Σ1jX

(1)>
j (R:,j − 1/2) .

(2) Define a new notation

K2,k = {m ∈ [K2] : q
(2)
k,m = 1}.
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Define

β
(2)
k,K2,k

= (β
(2)
k,0, β

(2)
k,m; m ∈ K2,k),

which is a vector of length |K2,k| + 1. We introduce a notation X
(2)
k , which is a N ×

|K2,k| matrix; the entries in this matrix are indexed by a
(2)
i,mq

(2)
k,m where i ∈ [N ] and

m ∈ {0} ∪ K2,k. Sample β
(2)
k,K2,k

from the (truncated) Multivariate Normal (MVN)

distribution:

β
(2)
k,K2,k

∼ MVN(µ2k,Σ2k), where

Σ2k =
(
X

(2)>
k diag

(
W

(2)
:,k

)
X

(2)
k

)−1
, µ2k = Σ2kX

(2)>
k

(
A

(1)
:,k − 1/2

)
.

(3) Sample each w
(1)
i,j , j ∈ [J ] from the Polya-Gamma distribution:

w
(1)
i,j ∼ PG

(
1, β

(1)
j,0 +

∑
k∈Kj

β
(1)
j,ka

(1)
i,k

)
.

(4) Sample each w
(2)
i,k , k ∈ [K1] from the Polya-Gamma distribution:

w
(2)
i,k ∼ PG

(
1, β

(2)
k,0 +

∑
m∈K2,k

β
(2)
k,ma

(2)
i,m

)
.

(5) Sample πdeep from the Dirichlet distribution:

πdeep ∼ Dirichlet
(
δ1 +

∑N

i=1
1(a

(2)
i = α1), . . . , δ2K2 +

∑N

i=1
1(a

(2)
i = α2K2 )

)
.

(6) Sample each entry a
(1)
i,k from the Bernoulli distribution with the following probability:

P(a
(1)
i,k = 1 | −) =

P(a
(1)
i,k = 1 | a(2)

i ,θ(2))P(ri | a(1)i,k = 1,a
(1)
i,−k,θ

(1))∑
x=0,1 P(a

(1)
i,k = x | a(2)

i ,θ(2))P(ri | a(1)i,k = x,a
(1)
i,−k,θ

(1))
,

where the conditional distributions P(a
(1)
i,k = x | a(2)

i ,θ(2)) and P(ri | a(1)i,k = x,a
(1)
i,−k,θ

(1))
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both follow the likelihood under the LLM.

(7) Sample each pattern a
(2)
i from the categorical distribution with |{0, 1}K2| = 2K2 com-

ponents with the following probabilities:

P(a
(2)
i = α` | −) = P(a

(2)
i = α` | a(1)

i ,θ(2),πdeep);

=
P(a

(2)
i = α` | πdeep)P(a

(1)
i | a

(2)
i = α`,θ

(2))∑2K2

`′=1 P(a
(2)
i = α`′ | πdeep)P(a

(1)
i | a

(2)
i = α`′ ,θ

(2))
,

where the P(a
(2)
i = α`′ | πdeep) and P(a

(1)
i | a(2)

i = α`′ ,θ
(2)) also directly follow

the definition of LLM, with the former being a Dirichlet distribution and the latter

following a LLM model conditional distribution.
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