
Supplementary Material: Descriptions of the

Continouos-Discrete Time Extended Kim Filter

(CDEKimF) Proposed in “Representing Sudden

Shifts in Intensive Dyadic Interaction Data Using

Differential Equation Models with Regime

Switching”

As summarized in the paper titled “Representing Sudden Shifts in Inten-

sive Dyadic Interaction Data Using Differential Equation Models with Regime

Switching,” the CDEKimF is composed of four key steps for the purposes of la-

tent variable and regime probability estimation: (1) the CDEKF (for latent

variable estimation); (2) the Hamilton filter (to estimate the probability of

the latent regime indicator, Si(ti,j)); (3) a collapsing procedure (to consolidate

regime-specific estimates to reduce computational burden); and (4) a smoothing

procedure to compute refined latent variable estimates by using data from all

time points, Yi(Ti). Here, we describe each of these four steps in turn. Addi-

tional procedures to perform parameter estimation and computation of infor-

mation criterion measures using by-products of these steps have been described
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in the paper. To facilitate generalization of modeling terminology to scenarios

involving individuals as opposed to dyads as the smallest independent unit of

analysis, we describe i as indexing person in this section.

0.1 Step 1: The Continuous-Discrete Extended Kalman

Filter (CDEKF)

With regime-specific dynamic and measurement functions, the prediction and

update steps in the CDEKF-RS, as distinct from standard CDEKF procedures,

are regime-dependent. Let η̂i(ti,j |ti,j−1)l,m = E
(
ηi(ti,j)|Si(ti,j) = m,Si(ti,j−1) =

l,Yi(ti,j−1)
)

; Pi(ti,j |ti,j−1)l,m = Cov
(
ηi(ti,j)|Si(ti,j) = m,Si(ti,j−1) = l,Yi(ti,j−1)

)
;

vi(ti,j)
l,m is the one-step-ahead prediction errors and Vi(ti,j)

l,m is the associ-

ated covariance matrix; l and m are indices for the previous regime and current

regime, respectively.

The prediction step of the CDEKF now involves obtaining η̂i(ti,j |ti,j−1)l,m

and Pi(ti,j |ti,j−1)l,m by numerically solving the ODEs in Equations 8 and 9 us-

ing the dynamic functions of the mth regime, fSi(t)(.) to yield η̂i(ti,j |ti,j−1)l,m

and Pi(ti,j |ti,j−1)l,m, and with initial conditions η̂i(ti,j−1|ti,j−1)l = E
(
ηi(ti,j−1)|Si(ti,j−1) =

l,Yi(ti,j−1)
)

and Pi(ti,j−1|ti,j−1)l = Cov
(
ηi(ti,j−1)|Si(ti,j−1) = l,Yi(ti,j−1)

)
.

The Jacobian matrix ∂fm(η̂i(t),t,xi(t))
∂η̂i(t)

shown in Equation (9) is now based on

differentiating the dynamic functions from the mth regime evaluated at η̂i(t) =

η̂i(ti,j−1|ti,j−1)l, and with the time-varying covariates in xi(t) fixed at their ob-

served values, x(ti,j); or specifically,
∂fm(η̂i(t),t,xi(ti,j))

∂η̂i(t)
|η̂i(t)=η̂i(ti,j−1|ti,j−1)l,t=ti,j ,xi(t)=xi(ti,j).

In particular, the gth row and hth column of this Jacobian matrix carries

the partial derivative of the gth dynamic function characterizing regime m

with respect to the hth latent variable, evaluated at η̂i(ti,j−1|ti,j−1)l, with

xi(t) = x(ti,j).
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The update step of the regime-specific CDEKF can be summarized as:

vi(ti,j)
l,m = yi(ti,j)−

(
τm + Λmη̂i(ti,j |ti,j−1)l,m + Amx(ti,j)

)
, (S.1)

Vi(ti,j)
l,m = ΛmPi(ti,j |ti,j−1)l,mΛT

m + Rm, (S.2)

η̂i(ti,j |ti,j)l,m = η̂i(ti,j |ti,j−1)l,m + Km(ti,j)vi(ti,j)
l,m, (S.3)

Pi(ti,j |ti,j)l,m = Pi(ti,j |ti,j−1)l,m −Km(ti,j)ΛmPi(ti,j |ti,j−1)l,m,(S.4)

where Km(ti,j) = Pi(ti,j |ti,j−1)l,mΛT
m[Vi(ti,j)

l,m]−1 is called the Kalman gain

function. The regime-specific CDEKF algorithm works recursively (i.e., one

time point at a time) from time 1 to Ti and i = 1, . . . n until η̂i(ti,j |ti,j)l,m and

Pi(ti,j |ti,j)l,m, have been computed for all time points and people.

0.2 Step 2: The Hamilton Filter

The Hamilton filter is also a recursive process and it can be expressed as:

Pr[Si(ti,j−1) = l, Si(ti,j) = m|Yi(ti,j−1)] = Pr[Si(ti,j) = m|Si(ti,j−1) = l]×

Pr[Si(ti,j−1) = l|Yi(ti,j−1)],

f(Yi(ti,j)|Yi(ti,j−1)) =

M∑
m=1

M∑
l=1

f(Yi(ti,j)|Si(ti,j) = m,Si(ti,j−1) = l,Yi(ti,j−1))×

Pr[Si(ti,j−1) = l, Si(ti,j) = m|Yi(ti,j−1)],

(S.5)

3



Pr[Si(ti,j−1) = l, Si(ti,j) = m|Yi(ti,j)] =

f(Yi(ti,j)|Si(ti,j) = m,Si(ti,j−1) = l,Yi(ti,j−1)) Pr[Si(ti,j−1) = l, Si(ti,j) = m|Yi(ti,j−1)]

f(Yi(ti,j)|Yi(ti,j−1))
,

(S.6)

Pr[Si(ti,j) = m|Yi(ti,j)] =

M∑
l=1

Pr[Si(ti,j−1) = l, Si(ti,j) = m|Yi(ti,j)],

(S.7)

Pr[Si(ti,j) = m|Yi(ti,j−1)] =

M∑
l=1

Pr[Si(ti,j−1) = l, Si(ti,j) = m|Yi(ti,j−1)]

(S.8)

where Pr[Si(ti,j) = m|Si(ti,j−1) = l] is the transition probability of switch-

ing from regime l to regime m based on Equation (7). f(Yi(ti,j)|Si(ti,j) =

m,Si(ti,j−1) = l,Yi(ti,j−1)) is a multivariate normal likelihood function ex-

pressed as

f(Yi(ti,j)|Si(ti,j) = m,Si(ti,j−1) = l,Yi(ti,j−1)) =

(2π)−p/2|Vi(ti,j)
l,m|−1/2 exp{−1

2
(vi(ti,j)

l,m)T (Vi(ti,j)
l,m)−1vi(ti,j)

l,m}. (S.9)

Since the prediction error decomposition function computed using Equa-

tion S.5 is essentially a raw data likelihood function, missing values can be read-

ily accommodated by using only the non-missing observed elements of Yi(ti,j)

in computing the prediction errors, vi(ti,j)
l,m and their associated covariance

matrix. To handle missing data in the rest of the regime-specific CDEKF proce-

dures, we used the approach suggested by Hamaker and Grasman (2012), that

is, to only update the estimates in {η̂i(ti,j |ti,j)l,m, Pi(ti,j |ti,j)l,m, η̂i(ti,j |ti,j)l,

Pi(ti,j |ti,j)l, Pr[Si(ti,j−1) = l, Si(ti,j) = m|Yi(ti,j)], Pr[Si(ti,j) = m|Yi(ti,j)]}

using non-missing elements from each measurement occasion.
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0.3 Step 3: The Collapsing Process

At each ti,j , the regime-specific CDEKF procedures use only the marginal es-

timates, η̂i(ti,j−1|ti,j−1)l and Pi(ti,j−1|ti,j−1)l, from the previous time point.

This is because to ease computational burden, a collapsing procedure is per-

formed on η̂i(ti,j |ti,j)l,m and Pi(ti,j |ti,j)l,m after each CDEKF step to yield

η̂i(ti,j |ti,j)m and Pi(ti,j |ti,j)m. Given a total of M regimes, if no collapsing is

used, the M sets of computations involving η̂i(ti,j−1|ti,j−1)l and Pi(ti,j−1|ti,j−1)l

in the prediction step of the CDEKF (Step 1) would have to be performed us-

ing η̂i(ti,j−1|ti,j−1)l,m and Pi(ti,j−1|ti,j−1)l,m for every possible value of l and

m. As a result, the number of possible values of filtered estimates to store can

quickly become unwieldy if the number of time points is large. To circumvent

this computational issue, Kim and Nelson (1999) proposed collapsing the M×M

sets of new η̂i(ti,j |ti,j)l,m and Pi(ti,j |ti,j)l,m at each t as

η̂i(ti,j |ti,j)m =

M∑
l=1

Wl,m(ti,j)η̂i(ti,j |ti,j)l,m,

Pi(ti,j |ti,j)m =

M∑
l=1

Wl,m(ti,j)
[
Pi(ti,j |ti,j)l,m

+ (η̂i(ti,j |ti,j)m − η̂i(ti,j |ti,j)l,m)(η̂i(ti,j |ti,j)m − η̂i(ti,j |ti,j)l,m)T
]
,

Wl,m(ti,j) =
Pr[Si(ti,j−1) = l, Si(ti,j) = m|Yi(ti,j)]

Pr[Si(ti,j) = m|Yi(ti,j)]
, (S.10)

Collapsing the estimates across the current regime, m, yields the estimates:

η̂i(ti,j |ti,j) =

M∑
m=1

Pr[Si(ti,j) = m|Yi(ti,j)]η̂i(ti,j |ti,j)m and

Pi(ti,j |ti,j) =

M∑
m=1

Pr[Si(ti,j) = m|Yi(ti,j)][
Pi(ti,j |ti,j)m + (η̂i(ti,j |ti,j)− η̂i(ti,j |ti,j)m)(η̂i(ti,j |ti,j)− η̂i(ti,j |ti,j)m)>

]
.

(S.11)
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Although not needed for latent variable and parameter estimation purposes,

it is sometimes of interest to obtain the predicted latent variable estimates and

their associated covariance matrix, as well as the prediction errors and their

associated covariance matrix for each ti,j as collapsed across the previous and

current regimes l and m as:

η̂i(ti,j |ti,j−1)m =

M∑
l=1

Wl,m(ti,j−1)η̂i(ti,j |ti,j−1)l,m,

Pi(ti,j |ti,j−1)m =

M∑
l=1

Wl,m(ti,j−1)
[
Pi(ti,j |ti,j−1)l,m

+ (η̂i(ti,j |ti,j−1)m − η̂i(ti,j |ti,j−1)l,m)(η̂i(ti,j |ti,j−1)m − η̂i(ti,j |ti,j−1)l,m)T
]
,

η̂i(ti,j |ti,j−1) =

M∑
m=1

Pr[Si(ti,j) = m|Yi(ti,j−1)]η̂i(ti,j |ti,j−1)m and

Pi(ti,j |ti,j−1) =

M∑
m=1

Pr[Si(ti,j) = m|Yi(ti,j−1)]

[
Pi(ti,j |ti,j−1)m + (η̂i(ti,j |ti,j−1)− η̂i(ti,j |ti,j−1)m)(η̂i(ti,j |ti,j−1)− η̂i(ti,j |ti,j−1)m)>

]
.

vi(ti,j)
m =

M∑
l=1

Wl,m(ti,j−1)vi(ti,j)
l,m,

Vi(ti,j)
m =

M∑
l=1

Wl,m(ti,j−1)
[
Vi(ti,j)

l,m + (vi(ti,j)
m − vi(ti,j)l,m)(vi(ti,j)

m − vi(ti,j)l,m)>
]
,

vi(ti,j) =

M∑
m=1

Pr[Si(ti,j) = m|Yi(ti,j−1)]vi(ti,j)
m, and

Vi(ti,j) =

M∑
m=1

Pr[Si(ti,j) = m|Yi(ti,j−1)]

[
Vi(ti,j)

m + (vi(ti,j)− vi(ti,j)m)(vi(ti,j)− vi(ti,j)m)>
]
,

(S.12)
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where Wl,m(ti,j−1) is computed as:

Wl,m(ti,j−1) =
Pr[Si(ti,j−1) = l, Si(ti,j) = m|Yi(ti,j−1)]

Pr[Si(ti,j) = m|Yi(ti,j−1)]
. (S.13)

0.4 Step 4: The Smoothing Procedure

Given the latent variable and regime probability estimates from Steps 1-3, these

estimates can be further refined using observed data from each individual’s entire

time series. Using η̂i(ti,j |ti,j−1)l,m,Pi(ti,j |ti,j−1)l,m, η̂i(ti,j |ti,j)l,Pi(ti,j |ti,j)l,

Pr[Si(ti,j) = m|Yi(ti,j)] and Pr[Si(ti,j) = m|Yi(ti,j−1)], the smoothing proce-

dure can be implemented for ti,j = Ti − 1, . . . 1 and i = 1, . . . n as follows.

First, smoothed estimates from regime m to the next regime o at time ti,j+1 are

obtained as

Pr[Si,t+1 = o, Si(ti,j) = m|Yi(Ti)] =

Pr[Si,t+1 = o|Yi(Ti)] Pr[Si(ti,j) = m|Yi(ti,j)] Pr[Si,t+1 = o|Si(ti,j) = m]

Pr[Si,t+1 = o|Yi(ti,j)]
,

Pr[Si(ti,j) = m|Yi(Ti)] =

M∑
o=1

Pr[Si,t+1 = o, Si(ti,j) = m|Yi(Ti)],

η̂i(ti,j |Ti)
m,o = η̂i(ti,j |ti,j)o + P̃(ti,j)

m,o(η̂i(ti,j+1|Ti)
o − η̂i(ti,j+1|ti,j)m,o),

Pi(ti,j |Ti)
m,o = Pi(ti,j |ti,j)o + P̃(ti,j)

m,o(Pi(ti,j+1|Ti)
o −Pi(ti,j+1|ti,j)m,o)P̃(ti,j)

m,o,

(S.14)

where P̃(ti,j)
m,o = Pi(ti,j |ti,j)mBT

o [Pi(ti,j+1|ti,j)m,o]−1, where Bo is the Jaco-

bian matrix, ∂fo(η̂i(t),t,xi(t))
∂η̂i(t)

|η̂i(t)=η̂i(ti,j |ti,j)o,t=ti,j ,xi(t)=xi(ti,j). Similar to the

collapsing procedure used in the regime-specific CDEKF, a collapsing process
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is implemented here as

η̂i(ti,j |Ti)
m =

M∑
o=1

Pr[Si,t+1 = o, Si(ti,j) = m|Yi(Ti)]

Pr[Si(ti,j) = m|Yi(Ti)]
η̂i(ti,j |Ti)

m,o,

Pi(ti,j |Ti)
m =

M∑
o=1

Pr[Si,t+1 = o, Si(ti,j) = m|Yi(Ti)]

Pr[Si(ti,j) = m|Yi(Ti)][
Pi(ti,j |Ti)

m,o +
(
η̂i(ti,j |Ti)

m − η̂i(ti,j |Ti)
m,o
)(
η̂i(ti,j |Ti)

m − η̂i(ti,j |Ti)
m,o
)T ]

.

Finally, smoothed latent variable estimates and their associated covariance ma-

trix are obtained by summing over the M regimes in effect to yield

η̂i(ti,j |Ti) =

M∑
m=1

Pr[Si(ti,j) = m|Yi(Ti)]η̂i(ti,j |Ti)
m and

Pi(ti,j |Ti) =

M∑
m=1

Pr[Si(ti,j) = m|Yi(Ti)][
Pi(ti,j |Ti)

m + (η̂i(ti,j |Ti)− η̂i(ti,j |Ti)
m)(η̂i(ti,j |Ti)− η̂i(ti,j |Ti)

m)T
]
.

(S.15)

Equations S.14—S.15 yield three sets of estimates: η̂i(ti,j |Ti), the smoothed la-

tent variable estimates conditional on all observations, the smoothed covariance

matrix, Pi(ti,j |Ti), and Pr[Si(ti,j) = m|Yi(Ti)], the smoothed probability for

person i to be in regime m at time ti,j .
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