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Abstract

In this supporting information we present all theoretical derivations together with
additional simulation results and the R-code for applying the novel resampling

procedures in practice.
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1. Mathematical Appendix

Let the notation and prerequirements be as in Sections 7?7 and ??7. Also see, e.g., Muirhead
(2009) and van der Vaart (1998) for the following multivariate and asymptotic elaborations.

ADF Asymptotics

Let vec() be the usual operator that writes the elements of a symmetric matrix on and below
the diagonal into a column vector, see e.g. Muirhead (2009). Due to the assumption of finite
eighth order moments (ADF) and IE(X ) = 0 we can write the normalized Cronbach coefficient as

vec (JE(il — 21)) = \/17171 ZVeC (XzX; - ]E(XZX;,)) + Op(1)7 (10)
=1

where 0, (1) converges in probability to zero as ny — oco. Thus, it follows from the multivariate
central limit theorem that vec(\/n1 (81 — 1)) is asymptotically multivariate normal with mean 0
and covariance cov(vec(X1X1)). Since acy = ac(X1) is a differentiable function of Xy (or
vec(X1) respectively) it follows as in Maydeu-Olivares et al. (2007) that \/njac,; is
asymptotically normal distributed with mean o ; and variance &2 which depends on moments of
fourth order. In particular, the limit variance is given by

57 = 62(21) = 6(31) var(vec(X 1 X)))d(Z1),

which can be obtained from the delta method, see Maydeu-Olivares et al. (2007) for details. Here
the vector 6(X;) is a function of 3; and is given in Equation (4) in Maydeu-Olivares et al. (2007).
However, we even know more. Note, that ac 1 (as a function from R to R, ¢1 = kl(k;rl)) is
differentiable at vec(31) with total derivative, i.e. Jacobi matrix, o5, , see van der Vaart (1998)
for its explicit formula. Hence, it follows from the proof of the multivariate delta method (to be
concrete: the multivariate Taylor theorem), see e.g. Theorem 3.1. in van der Vaart (1998), that

Qo1 = ac(f)l) is even asymptotically linear in this case, i.e.

Vi@ — acn) = ——= 3 fi(X0) + 0p(1) (11)

holds as n; — oo with
le(Xi) = O/El - vec (XZX; — IE(Xl.X/Z)) .

The latter fulfills IE(fs, (X)) = 0 and var(fs, (X;)) = 67
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Since a similar representation holds for \/na(qc2 — ac2) (with different variance
53 = 53(29)) it follows that the statistic M,, is also asymptotically normal under Hy : ac = ac2
with mean zero and variance 62 = (1 — k)d7 + k53, i.e.

Mn_ffa01—a01 \/7\/70402—0(02)

0, (1 — #)37 + KG3)
if n1/N — k € (0,1). A consistent estimator for 52 is given by
n
ARy g CICIR )2
o N (nl 1 ; ( il 1)

ng

(S Eees)).

see Equation (7) in Maydeu-Olivares et al. (2007) for a similar formula in the one-sample case.
Here, Sy, = vec(f)k) for k=1,2 and S;; = vec [(XI —Y(l))(Xi —Y(l))’} for 1 <i<mnqand

b_ n% Yoty X and Sjo is defined similarly with the random variables of the second sample.
Altogether it follows from Slutzky’s theorem that the proposed studentized test statistic
T, =T,X) = % in (?7?) is asymptotically standard normal under the null hypothesis Hy, i.e.

T, -4 N(0, 1).

Parametric Bootstrap

To show that the proposed parametric bootstrap test % = 1{T,, > ¢} («)} is of asymptotic
level o we have to prove that the critical value ¢ («), i.e. the conditional (1 — «)-quantile of the
parametric bootstrap procedure, converges in probability to the (1 — a)-quantile z;_, of a

standard normal distribution, i.e.
*

cr(a) 2, 21—a

as N — o0, see Lemma 1 in Janssen & Pauls (2003). By continuity of the limit distribution, this is
fulfilled if the conditional parametric bootstrap distribution function of the test statistic T}, is

asymptotically standard normal in probability due to T, LN (0,1) under Hy. By assumption we
again have

1 & ' ,
== e (X7 (X X)) +0p(1). (13)
VI

vec <\/n1(§]; - 21))
Different to above, however, the family of random variables X7, i < n; now forms an array of
row-wise i.i.d. random variables given the observed data. Thus, we cannot work with the classical
multivariate CLT but have to employ the multivariate version of Lindeberg’s or Lyapunov’s
theorems conditioned on the data. Due to the existence of finite eighth order moments and the
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consistency of N Lyapunov’s condition is fulfilled and we can obtain that vec(\/n1 (f]; —3)) is,
given the data, asymptotically multivariate normal with mean 0 and covariance matrix
cov(vec(Z1Z1")) in probability, where Z1 ~ N(0,%1). Given the data, we can now proceed as in
the prove above, i.e. we first apply the delta-method, then combine the results for the two
independent bootstrap samples and finally show that the given variance estimator is also
consistent for the bootstrap (which follows, e.g. from the Tchebyscheff inequality) to show that

sup |[P(T* < 2| X1,...,X,) — ®(z)] 250

z€eR
as 5+ — £ € (0,1) and the result follows. Here, ® is the distribution function of N'(0,1). Due to
the duality between statistical tests and confidence intervals, this also shows the asymptotic
correctness of the latter. Moreover, the same argumentation also shows the lacking proof of the
validity of Padilla et al. (2012) one-sample confidence interval for Cronbach’s « coefficient.

Permutation Distribution

Now suppose that k1 = ks. In order to prove that the permutation test is of asymptotic level
a we again have to show convergence of the corresponding critical value ¢] («), i.e. the conditional
(1 — a)-quantile of the permutation distribution function, converge in probability to the
(1 — a)-quantile z1_, of a standard normal distribution, i.e.

Yy

() 2 2.

In order to prove this, we apply Theorem 2.2 in Chung & Romano (2013) together with a
conditional Slutzky-type argument.

As in the beginning it holds that the normalized Cronbach coefficients are asymptotically
linear in both groups, i.e. (11) as well as

Vin(@oz —aca) = —— > fua(Xi)+ op(1), (14)

holds, where again op(1) stands for a random variable that converges in probability to 0 as
ng — o0o. Since by assumption 7 € (0,00) all ingredients for applying Theorem 2.2 in Chung &
Romano (2013) are fulfilled and it follows by Slutzky that

S HTE < 2)

converges in probability to ®(x). Altogether this proves that v, is an asymptotically exact level «
testing procedure in the general ADF model.

Deriwations for other reliability measures

In the following the derivatives of the different reliability measures Ay, £ =1,2,4,5,5+,6
(Wm, m = h,t) summarised in Section 4 of the main manuscript are given. Let
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o = vec(X) = vec((0i5)i,j), where vec() is a function stacking the elements of a symmetric matrix

_ dX\

on and below the diagonal into a vector. Let 6y = 6¢(X) = Xy = T (0 = 0 (Z) = w), = d(;"—om)
be the derivative of Ay, £ =1,2,4,5,54,6 (wy,, m = h,t). Below the entries of d; (d,,) are given:

Y

0oij

0o
aO’ij

Oy
00ij

OAs
00ij

05+
0o

O
0oij

tr(2)71;€21k
[ (121)"

, 1=]
) tr(X) . .

1
tr(E) -1, 31—/ L5 0

(1,21;)°

. 1= (001,05 ) +er()-14 21, oy

(1.21,)° ’

(-2). 1221k*122A1k;12231k
(1,214)

1/.31,—-1.341.—-1, 51

_4 1k k r—ALlLk rk<~Blk
=4 (1151,

, i=j

, 1=]

, 1F]

( tr(X)-1,%15,+20,
(1h=15)°

; =]
tI‘(E)—QO’U (1%2116)5’;1/2
: 2
(1. =14)
£1(2)~ 1) B1j 4125 Gy
2
(1=1)

+2021/ ?

2 , 1F]

; i=J

260(8)— 27 (015 (1,21,,) G *+6,?)
(1,21,)*

, 1F ]
25:1 et
(1,31;)%

X 25:1 ef
(1,21;)°

1=17

i F ]

To handle the coefficients w; and wy,, we assume that ¢ and A are differentiable in 3 and
additionally, we define the two differentiable functions g(¢) = 1}.ec’1; and h(A) = 1} AA'1,.
Using the chain rule, the derivatives of w; and wy, are given as follows:

k
s=1 Ocg 00

99 B k oh 9A
e DDA agfjt>(1;211@)—(%cc’lk—&-l;@AA’lk)

2 Z:j
Ow; (17,215 ’
Do K 9g o k on A
i b £+ Dt i B (B et AR )
y UF]

(1,21;)°
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kL ;’i g;:j (15,215,)— (1 cc'1y,)

dun (1:21,)° Y
doij Yot o pe (1:31k) =2 (Thec'1y) y
(1;921k’)2 ) ¢ j

Since vec (\/ﬁ <f] - 2)) < N (0, var(vec(X1X"))), where 3 is the sample covariance matrix

of independent and identically distributed random vectors X1, ..., X, with 3 = cov(X ) and
finite fourth moments, it thus, follows from the multivariate delta method that

Vi(A(E) = M(2)) L N(0, 8)var(vec(X1X)))dy)

(ﬁ(wm(ﬁ) — (D) % N, 5;71var(vec(X1X'1))6m)>

for all choices of £ =1,2,4,5,54+,6 (m = h,t). Due to the form of the derivatives given above the
unknown variance can be consistently estimated; in case of w; and wy, they depend on the specific
forms of ¢ and A.

2. More simulation results

Some simulation results for continuous data are presented. Two different scenarios are
conducted: t-distributed and lognormally distributed data. In this section, we compare the ADF
method to the permutation test presented in Section 3.1 of the paper. The parametric bootstrap
procedure has been left out for lucidity since the permutation method performed slightly better.
Moreover, recall that the permutation test is finitely exact under exchangeability. Again 10,000
simulation trails with 500 permutation samples were performed.

To check the behavior of the procedures in case of deviations from the underlying moment
assumption, we first deal with t-distributed data with four degrees of freedom. Note, that the
assumption of finite eight order moment is clearly violated in this case. The data are generated
with the help of the R function rmvt () which is included in the mvtnorm package. Based on the
simulation results of the main manuscript, the following results are based on two correlation
matrices only. The reason is that there are matrices following the true-score equivalent model and
some do not. Another cause is the comparability of the results of the main simulation study.
Thus, in the following we only consider correlation matrices Py and Py given in Section 5.1.

The results are summarized in Figure 1, where the type I error levels of the permutation and
the asymptotic test for two different correlation matrices are shown. In the left plot, same sample
sizes in the different groups are considered, whereas the right plot summarizes the results of
unequal sample sizes. It is evident that the asymptotic test does not control the type I error rate
satisfactorily in all cases. Even for very large balanced sample sizes (n; > 350) the type I errors
are still around 7% and even larger in extremely unbalanced cases or smaller sample sizes. In
contrast, the novel permutation test controls the type I error rate fairly well in all situations and is
always in the range of 4.7 and 5.3%.

Next, we deal with log-normally distributed data. The data are generated by a scale model

with k£ =5 items X; = Ii/Qsi, 1=1,...,N, where g; = il/i% and e; ~ LN(0,1) are
var(e;



PSYCHOMETRIKA RESUBMISSION December 12, 2017 7

equal_samplesize_tdistr.pdf unequal_samplesize_tdistr.pdf

(a) equal sample sizes (b) unequal sample sizes

Figure 1: Type I error level (a« = 5%) simulation results (y-axis) for t-distributed data of the
permutation test ¢, (——) and the asymptotic test o, (- ) for different sample sizes (x-axis) and
two different correlation matrices Py (black) and Py (grey).

equal_samplesize_lognormdistr.pdf unequal_samplesize_lognormdistr.pdf

(a) equal sample sizes (b) unequal sample sizes

Figure 2: Type I error level (o = 5%) simulation results (y-axis) for lognormal distributed data of
the permutation test v, (——) and the asymptotic test ¢, () for different sample sizes (x-axis).
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independent standardized log-normally distributed error terms. Figure 2 shows the results of the
log-normal distribution. Contrary to the situation with the t-distributed data before, observations
simulated under this scenario fulfill the postulated moment assumption. However, the observations
are rather similar. For smaller or strongly unbalanced sample sizes the true type I error is around
10% (or even larger) and decrease with increasing n;. However, even for larger sample sizes the
type I error control is not very satisfactory. The asymptotic test exhibits some issues in controlling
the type I error rate, whereas the permutation test works quite perfect.

3. R code

In the following, we present the R code of our new permutation and parametric bootstrap
procedures. First, we present the different functions for the two resampling methods
(pval.perm() and pval.boot()). In a third part, a function for calculating the test statistic
(tstat ()) and another function which writes the elements of a symmetric matrix on and below
the diagonal into a column vector (vecs()) are given.

3.1. R code of the permutation test

pval.perm <- function(data, nl = NULL, n2 = NULL, p = NULL, B = 1000){
library (MASS)
perm.results <- matrix(rep(0, (4 * B)), ncol = 4)
n <- nl +n2

# original data estimates of alpha and T statistics
orig.results <- tstat(datal, data2, nl, n2, pl, p2)

© 00 N O U R W N

# permuted data estimates of alpha and T statistics
for (i in 1:B){
dat_temp <- datal[sample(l:nrow(data)),]
perm.results[i, ] <- tstat(dat_temp, nl, n2, p)
}

perm.p.values = perm.p.values_nonorm <- numeric(S)

e e e e
D U W N = O

# permutation p-values

perm.p.values[1] <- (sum(orig.results[1] <= perm.results[, 1]) / B) # right-sided

perm.p.values[2] <- (sum(orig.results[1] >= perm.results[, 1]) / B) # left-sided

perm.p.values[3] <- (2 * min(perm.p.values[1:2])) # two-sided

names (perm.p.values) <- c("right.sided", "left.sided", "two-sided")

perm.p.values_nonorm[1] <- (sum(orig.results[2] <= perm.results[, 2]) / B) # right-
sided

22 perm.p.values_nonorm[2] <- (sum(orig.results[2] >= perm.results[, 2]) / B) # left-

sided

23 perm.p.values_mnonorm[3] <- (2 * min(perm.p.values_nonorm[1:2])) # two-sided

24 names (perm.p.values_nonorm) <- c("right.sided", "left.sided", "two-sided")

25

26 return(list(perm.p.values=perm.p.values, perm.p.values_nonorm=perm.p.values_nonorm,

alphal=orig.results[3], alpha2=orig.results[4]))

O
= O © ®

27| }

3.2. R code of the parametric bootstrap test

—

pval .boot <- function(data, nl = NULL, n2 = NULL, p = NULL, B = 1000){
library (mvtnorm)
boot.results <- matrix(rep(0, (2 *x B)), ncol = 2)

w N
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n <- nl+n2
# original data estimates of alpha and T statistics
orig.results <- tstat(data, nl, n2, p)
# bootstraped data estimates of alpha and T statistics
Sigmal <- cov(datal[l:n1l, 1:p])
Sigma2 <- cov(datal[(nl + 1):n, 1:p])
for (i in 1:B){
dat_temp <- rbind(mvrnorm(nl, rep(0, p), Sigmal), mvrnorm(n2, rep(0, p), Sigma2))
boot.results[i, ] <- tstat(dat_temp, nl, n2, p)
}
# bootstrap p-values
boot.p.values[1] <- (sum(orig.results[3] <= boot.results[, 3]) / B) # right-sided
boot.p.values[2] <- (sum(orig.results[3] >= boot.results[, 3]) / B) # left-sided
boot.p.values[3] <- (2 * min(boot.p.values[1:2])) # two-sided
names (boot.p.values) <- c("right.sided", "left.sided", "two-sided")
boot.p.values_nonorm[1] <- (sum(orig.results_nonorm[3] <= boot.results_nonorm[, 3])
/ B) # right-sided
boot.p.values_nonorm[2] <- (sum(orig.results_nonorm[3] >= boot.results_nonorm[, 3])
/ B) # left-sided
boot.p.values_nonorm[3] <- (2 * min(boot.p.values_nonorm[1:2])) # two-sided
names (boot.p.values_nonorm) <- c("right.sided", "left.sided", "two-sided")
return(list(boot.p.values=boot.p.values, boot.p.values_nonorm=boot.p.values_nonorm,
alphal=orig.results[3], alpha2=orig.results[4]))
}
3.3. R code of the test statistic and the vecs-function
### function vecs
vecs <- function(data)q{
upna <- data
upna [upper.tri(data)] <- NA
upna_vec <- as.vector(upna)[!is.na(as.vector(upna))]
return(as.matrix (upna_vec))
}

### calculates the test statistics of both tests
tstat <- function(data, nl = NULL, n2 = NULL, p = NULL){
n <- (n1 + n2)
Sigmal <- cov(datal[il:n1l, 1:p])
Sigma2 <- cov(datal[(nl + 1):n, 1:p])
col.meanl <- matrix(colMeans(datal[l:n1, 1:p]), nrow = 1)
col.mean2 <- matrix(colMeans(datal[(nl + 1):n, 1:p]), nrow = 1)
trSigmal <- sum(diag(Sigmal))
trSigma2 <- sum(diag(Sigma2))
sSigmal <- sum(Sigmal)
sSigma2 <- sum(Sigma2)

# variances, separately

sigmalqg <- ((2 * p~2 * (sSigmal * (sum(diag(Sigmal %*% Sigmal)) + trSigmal~2) - 2 =*
trSigmal * sum(Sigmal %x*% Sigmal))) / ((p - 1)°2 % sSigmal~3))

sigma2q <- ((2 * p~2 * (sSigma2 * (sum(diag(Sigma2 %*% Sigma2)) + trSigma2~2) - 2 =*
trSigma2 * sum(Sigma2 %*% Sigma2))) / ((p - 1)°2 * sSigma2~3))

# Welch-type variance, pooled
sigma <- sqrt((n2 / n) * sigmalq + (nl / n) * sigma2q)
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20 # variances nonorm, separately

21 helpdeltal <- 2x%p/(p-1)*(trSigmal/(sSigmal)~2)

22 helpdeltatrl <- -p/(p-1)*((sSigmal-trSigmal)/(sSigmal)~2)
23 delta_1 <- matrix(rep(helpdeltal, p~2), nrow = p)

24 diag(delta_1) <- helpdeltatri

25
26 helpdelta2 <- 2x%p/(p-1)*(trSigma2/(sSigma2)~2)

27 helpdeltatr2 <- -p/(p-1)*((sSigma2-trSigma2)/(sSigma2)~2)
28 delta_2 <- matrix(rep(helpdelta2, p~2), nrow = p)

29 diag(delta_2) <- helpdeltatr2

30
31 sigmalq.non <- 0
32 wcv <- 0

33 v <-0
34 tmp <- 0
35 for (i in 1:n1){

36 v <- (as.matrix(datal[i,l:p, drop = FALSE]) - col.meanl)

37 wev <- (t(vecs(delta_1))%*%(vecs((t(v) %*%v))-vecs(Sigmal)))~2
38 sigmalq.non <- (sigmalq.non + wcv)

39 }

40

41 sigma2q.non <- 0

42 wev <- 0

43 v <-0
44 tmp <- 0
45 for (i in 1:n2){

46 v <- (as.matrix(datali+nl,1:p, drop = FALSE]) - col.mean2)

a7 wev <- (t(vecs(delta_2))%*%(vecs ((t(v) ¥%*%v))-vecs(Sigma2)))~2
48 sigma2q.non <- (sigma2q.non + wcv)

49 }

50

51 # variance, pooled

52 sigma.non <- sqrt(n2/n*x(1/(nl-1)xsigmalq.non)+nl/n*(1/(n2-1)*sigma2q.non))
53
54 # Cronbach alpha

55 alphal <- (p / (p - 1) * (1 - trSigmal / sSigmal))
56 alpha2 <- (p / (p - 1) * (1 - trSigma2 / sSigma2))
57
58 # test statistic

59 Mn <- (sqrt((nl * n2) / n) * (alphal - alpha2))
60 tval <- (Mn / sigma)

61 tval .nonorm <- (Mn / sigma.non)

62
63 return(c(TSTAT = tval, TSTAT_NONORM = tval.nonorm))
64| +
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