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1. Mathematical Appendix

Let the notation and prerequirements be as in Sections ?? and ??. Also see, e.g., Muirhead

(2009) and van der Vaart (1998) for the following multivariate and asymptotic elaborations.

ADF Asymptotics

Let vec() be the usual operator that writes the elements of a symmetric matrix on and below

the diagonal into a column vector, see e.g. Muirhead (2009). Due to the assumption of �nite

eighth order moments (ADF) and IE(X1) = 0 we can write the normalized Cronbach coe�cient as

vec
(√

n1(Σ̂1 −Σ1)
)

=
1
√
n1

n1∑
i=1

vec
(
XiX

′
i − IE(XiX

′
i)
)

+ op(1), (10)

where op(1) converges in probability to zero as n1 →∞. Thus, it follows from the multivariate

central limit theorem that vec(
√
n1(Σ̂1 −Σ1)) is asymptotically multivariate normal with mean 0

and covariance cov(vec(X1X
′
1)). Since αC,1 = αC(Σ1) is a di�erentiable function of Σ1 (or

vec(Σ1) respectively) it follows as in Maydeu-Olivares et al. (2007) that
√
n1α̂C,1 is

asymptotically normal distributed with mean αC,1 and variance σ̃2
1 which depends on moments of

fourth order. In particular, the limit variance is given by

σ̃2
1 = σ̃2

1(Σ1) = δ(Σ1)′var(vec(X1X
′
1))δ(Σ1),

which can be obtained from the delta method, see Maydeu-Olivares et al. (2007) for details. Here

the vector δ(Σ1) is a function of Σ1 and is given in Equation (4) in Maydeu-Olivares et al. (2007).

However, we even know more. Note, that αC,1 (as a function from Rq1 to R, q1 = k1(k1+1)
2 ) is

di�erentiable at vec(Σ1) with total derivative, i.e. Jacobi matrix, α′Σ1
, see van der Vaart (1998)

for its explicit formula. Hence, it follows from the proof of the multivariate delta method (to be

concrete: the multivariate Taylor theorem), see e.g. Theorem 3.1. in van der Vaart (1998), that

α̂C,1 = αC(Σ̂1) is even asymptotically linear in this case, i.e.

√
n1(α̂C,1 − αC,1) =

1
√
n1

n1∑
i=1

fΣ1(Xi) + op(1) (11)

holds as n1 →∞ with

fΣ1(Xi) = α′Σ1
· vec

(
XiX

′
i − IE(XiX

′
i)
)
.

The latter ful�lls IE(fΣ1(Xi)) = 0 and var(fΣ1(Xi)) = σ̃2
1.
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Since a similar representation holds for
√
n2(α̂C,2 − αC,2) (with di�erent variance

σ̃2
2 = σ̃2

2(Σ2)) it follows that the statistic Mn is also asymptotically normal under H0 : αC,1 = αC,2
with mean zero and variance σ̃2 = (1− κ)σ̃2

1 + κσ̃2
2, i.e.

Mn =
√
n2

N

√
n1(α̂C,1 − αC,1)−

√
n1

N

√
n2(α̂C,2 − αC,2)

d−→N (0, (1− κ)σ̃2
1 + κσ̃2

2)

if n1/N → κ ∈ (0, 1). A consistent estimator for σ̃2 is given by

σ̃2 =
n2

N

(
1

n1 − 1

n1∑
i=1

(
δ̂
′
(Si1 − S1)

)2
)

+
n1

N

(
1

n2 − 1

n2∑
i=1

(
δ̂
′
(Si2 − S2)

)2
)
,

(12)

see Equation (7) in Maydeu-Olivares et al. (2007) for a similar formula in the one-sample case.

Here, Sk = vec(Σ̂k) for k = 1, 2 and Si1 = vec
[
(Xi −X

(1))(Xi −X
(1))′

]
for 1 ≤ i ≤ n1 and

X
(1) = 1

n1

∑n1
i=1Xi and Si2 is de�ned similarly with the random variables of the second sample.

Altogether it follows from Slutzky's theorem that the proposed studentized test statistic

Tn = Tn(X) = Mn
σ̃ in (??) is asymptotically standard normal under the null hypothesis H0, i.e.

Tn
d−→N (0, 1).

Parametric Bootstrap

To show that the proposed parametric bootstrap test ψ?n = 1{Tn > c?n(α)} is of asymptotic

level α we have to prove that the critical value c?n(α), i.e. the conditional (1− α)-quantile of the
parametric bootstrap procedure, converges in probability to the (1− α)-quantile z1−α of a

standard normal distribution, i.e.

c?n(α)
p−→ z1−α

as N →∞, see Lemma 1 in Janssen & Pauls (2003). By continuity of the limit distribution, this is

ful�lled if the conditional parametric bootstrap distribution function of the test statistic Tn is

asymptotically standard normal in probability due to Tn
d−→N (0, 1) under H0. By assumption we

again have

vec
(√

n1(Σ̂
?

1 −Σ1)
)

=
1
√
n1

n1∑
i=1

vec
(
X?

iX
?′
i − IE(X?

iX
?′
i )
)

+ op(1). (13)

Di�erent to above, however, the family of random variables X?
i , i ≤ n1 now forms an array of

row-wise i.i.d. random variables given the observed data. Thus, we cannot work with the classical

multivariate CLT but have to employ the multivariate version of Lindeberg's or Lyapunov's

theorems conditioned on the data. Due to the existence of �nite eighth order moments and the
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consistency of Σ̂1 Lyapunov's condition is ful�lled and we can obtain that vec(
√
n1(Σ̂

?

1 −Σ1)) is,
given the data, asymptotically multivariate normal with mean 0 and covariance matrix

cov(vec(Z1Z1
′)) in probability, where Z1 ∼ N (0,Σ1). Given the data, we can now proceed as in

the prove above, i.e. we �rst apply the delta-method, then combine the results for the two

independent bootstrap samples and �nally show that the given variance estimator is also

consistent for the bootstrap (which follows, e.g. from the Tchebysche� inequality) to show that

sup
x∈R
|P (T ? ≤ x|X1, . . . ,Xn)− Φ(x)| p−→ 0

as n1
N → κ ∈ (0, 1) and the result follows. Here, Φ is the distribution function of N (0, 1). Due to

the duality between statistical tests and con�dence intervals, this also shows the asymptotic

correctness of the latter. Moreover, the same argumentation also shows the lacking proof of the

validity of Padilla et al. (2012) one-sample con�dence interval for Cronbach's α coe�cient.

Permutation Distribution

Now suppose that k1 = k2. In order to prove that the permutation test is of asymptotic level

α we again have to show convergence of the corresponding critical value cπn(α), i.e. the conditional
(1− α)-quantile of the permutation distribution function, converge in probability to the

(1− α)-quantile z1−α of a standard normal distribution, i.e.

cπn(α)
p−→ z1−α.

In order to prove this, we apply Theorem 2.2 in Chung & Romano (2013) together with a

conditional Slutzky-type argument.

As in the beginning it holds that the normalized Cronbach coe�cients are asymptotically

linear in both groups, i.e. (11) as well as

√
n2(α̂C,2 − αC,2) =

1
√
n2

N∑
i=n1+1

fΣ2(Xi) + op(1), (14)

holds, where again op(1) stands for a random variable that converges in probability to 0 as

n2 →∞. Since by assumption σ̃2
1 ∈ (0,∞) all ingredients for applying Theorem 2.2 in Chung &

Romano (2013) are ful�lled and it follows by Slutzky that

1
N !

∑
π

1{Tn(Xπ) ≤ x}

converges in probability to Φ(x). Altogether this proves that ψn is an asymptotically exact level α
testing procedure in the general ADF model.

Derivations for other reliability measures

In the following the derivatives of the di�erent reliability measures λ`, ` = 1, 2, 4, 5, 5+, 6
(ωm, m = h, t) summarised in Section 4 of the main manuscript are given. Let
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σ = vec(Σ) = vec((σij)i,j), where vec() is a function stacking the elements of a symmetric matrix

on and below the diagonal into a vector. Let δ` = δ`(Σ) = λ′` = dλ`
dσ (δm = δm(Σ) = ω′m = dωm

dσ )

be the derivative of λ`, ` = 1, 2, 4, 5, 5+, 6 (ωm, m = h, t). Below the entries of δ` (δm) are given:

∂λ1

∂σij
=


tr(Σ)−1′kΣ1k

(1′kΣ1k)2 , i = j

2 · tr(Σ)

(1′kΣ1k)2 , i 6= j

∂λ2

∂σij
=


tr(Σ)−1′kΣ1k−

√
k
k−1

C
1/2
2

(1′kΣ1k)2 , i = j

2 ·
1−
√

k
(k−1)

(
C

1/2
2 −σijC

−1/2
2

)
+tr(Σ)−1′kΣ1k

(1′kΣ1k)2 , i 6= j

∂λ4

∂σij
=


(−2) · 1′kΣ1k−1′kΣA1k−1′kΣB1k

(1′kΣ1k)2 , i = j

(−4) · 1′kΣ1k−1′kΣA1k−1′kΣB1k

(1′kΣ1k)2 , i 6= j

∂λ5

∂σij
=


tr(Σ)−1′kΣ1k+2C̄

1/2
2

(1′kΣ1k)2 , i = j

2 · tr(Σ)−2σij(1′kΣ1k)C̄−
1/2

2 +2C̄
1/2
2

(1′kΣ1k)2 , i 6= j

∂λ5+

∂σij
=


tr(Σ)−1′kΣ1k+ 2k

k−1
C̄

1/2
2

(1′kΣ1k)2 , i = j

2tr(Σ)− 4k
k−1

(
σij(1′kΣ1k)C̄−

1/2
2 +C̄

1/2
2

)
(1′kΣ1k)2 , i 6= j

∂λ6

∂σij
=


∑k
t=1 e

2
t

(1′kΣ1k)2 , i = j

2 ·
∑k
t=1 e

2
t

(1′kΣ1k)2 , i 6= j

To handle the coe�cients ωt and ωh, we assume that c and A are di�erentiable in Σ and

additionally, we de�ne the two di�erentiable functions g(c) = 1′kcc
′1k and h(A) = 1′kAA

′1k.
Using the chain rule, the derivatives of ωt and ωh are given as follows:

∂ωt
∂σij

=



(∑k
s=1

∂g
∂cs

∂cs
∂σij

+
∑k
s,t=1

∂h
∂Ast

∂Ast
∂σij

)
(1′kΣ1k)−(1′kcc

′1k+1′kAA
′1k)

(1′kΣ1k)2 , i = j

(∑k
s=1

∂g
∂cs

∂cs
∂σij

+
∑k
s,t=1

∂h
∂Ast

∂Ast
∂σij

)
(1′kΣ1k)−2·(1′kcc

′1k+1′kAA
′1k)

(1′kΣ1k)2 , i 6= j



Psychometrika Resubmission December 12, 2017 6

∂ωh
∂σij

=


∑k
s=1

∂g
∂cs

∂cs
∂σij

(1′kΣ1k)−(1′kcc
′1k)

(1′kΣ1k)2 , i = j

∑k
s=1

∂g
∂cs

∂cs
∂σij

(1′kΣ1k)−2·(1′kcc
′1k)

(1′kΣ1k)2 , i 6= j

Since vec
(√

n
(
Σ̂−Σ

))
d→ N (0, var(vec(X1X

′
1))), where Σ̂ is the sample covariance matrix

of independent and identically distributed random vectors X1, . . . ,Xn with Σ = cov(X1) and
�nite fourth moments, it thus, follows from the multivariate delta method that

√
n(λ`(Σ̂)− λ`(Σ)) d→ N (0, δ′`var(vec(X1X

′
1))δ`)(√

n(ωm(Σ̂)− ωm(Σ)) d→ N (0, δ′mvar(vec(X1X
′
1))δm)

)
for all choices of ` = 1, 2, 4, 5, 5+, 6 (m = h, t). Due to the form of the derivatives given above the

unknown variance can be consistently estimated; in case of ωt and ωh they depend on the speci�c

forms of c and A.

2. More simulation results

Some simulation results for continuous data are presented. Two di�erent scenarios are

conducted: t-distributed and lognormally distributed data. In this section, we compare the ADF

method to the permutation test presented in Section 3.1 of the paper. The parametric bootstrap

procedure has been left out for lucidity since the permutation method performed slightly better.

Moreover, recall that the permutation test is �nitely exact under exchangeability. Again 10,000

simulation trails with 500 permutation samples were performed.

To check the behavior of the procedures in case of deviations from the underlying moment

assumption, we �rst deal with t-distributed data with four degrees of freedom. Note, that the

assumption of �nite eight order moment is clearly violated in this case. The data are generated

with the help of the R function rmvt() which is included in the mvtnorm package. Based on the

simulation results of the main manuscript, the following results are based on two correlation

matrices only. The reason is that there are matrices following the true-score equivalent model and

some do not. Another cause is the comparability of the results of the main simulation study.

Thus, in the following we only consider correlation matrices P1 and P4 given in Section 5.1.

The results are summarized in Figure 1, where the type I error levels of the permutation and

the asymptotic test for two di�erent correlation matrices are shown. In the left plot, same sample

sizes in the di�erent groups are considered, whereas the right plot summarizes the results of

unequal sample sizes. It is evident that the asymptotic test does not control the type I error rate

satisfactorily in all cases. Even for very large balanced sample sizes (ni > 350) the type I errors
are still around 7% and even larger in extremely unbalanced cases or smaller sample sizes. In

contrast, the novel permutation test controls the type I error rate fairly well in all situations and is

always in the range of 4.7 and 5.3%.

Next, we deal with log-normally distributed data. The data are generated by a scale model

with k = 5 items Xi = I
1/2
k εi, i = 1, . . . , N , where εi = ei−E(ei)√

var(ei)
and ei ∼ LN(0, 1) are



Psychometrika Resubmission December 12, 2017 7

equal_samplesize_tdistr.pdf

(a) equal sample sizes

unequal_samplesize_tdistr.pdf

(b) unequal sample sizes

Figure 1: Type I error level (α = 5%) simulation results (y-axis) for t-distributed data of the

permutation test ψn ( ) and the asymptotic test ϕn ( ) for di�erent sample sizes (x-axis) and

two di�erent correlation matrices P1 (black) and P4 (grey).

equal_samplesize_lognormdistr.pdf

(a) equal sample sizes

unequal_samplesize_lognormdistr.pdf

(b) unequal sample sizes

Figure 2: Type I error level (α = 5%) simulation results (y-axis) for lognormal distributed data of

the permutation test ψn ( ) and the asymptotic test ϕn ( ) for di�erent sample sizes (x-axis).
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independent standardized log-normally distributed error terms. Figure 2 shows the results of the

log-normal distribution. Contrary to the situation with the t-distributed data before, observations

simulated under this scenario ful�ll the postulated moment assumption. However, the observations

are rather similar. For smaller or strongly unbalanced sample sizes the true type I error is around

10% (or even larger) and decrease with increasing ni. However, even for larger sample sizes the

type I error control is not very satisfactory. The asymptotic test exhibits some issues in controlling

the type I error rate, whereas the permutation test works quite perfect.

3. R code

In the following, we present the R code of our new permutation and parametric bootstrap

procedures. First, we present the di�erent functions for the two resampling methods

(pval.perm() and pval.boot()). In a third part, a function for calculating the test statistic

(tstat()) and another function which writes the elements of a symmetric matrix on and below

the diagonal into a column vector (vecs()) are given.

3.1. R code of the permutation test

1 pval.perm <- function(data , n1 = NULL , n2 = NULL , p = NULL , B = 1000){

2 library(MASS)

3 perm.results <- matrix(rep(0, (4 * B)), ncol = 4)

4 n <- n1 +n2

5

6 # original data estimates of alpha and T statistics

7 orig.results <- tstat(data1 , data2 , n1, n2 , p1 , p2)

8

9 # permuted data estimates of alpha and T statistics

10 for (i in 1:B){

11 dat_temp <- data[sample (1: nrow(data)) ,]

12 perm.results[i, ] <- tstat(dat_temp , n1, n2, p)

13 }

14 perm.p.values = perm.p.values_nonorm <- numeric (3)

15

16 # permutation p-values

17 perm.p.values [1] <- (sum(orig.results [1] <= perm.results[, 1]) / B) # right -sided

18 perm.p.values [2] <- (sum(orig.results [1] >= perm.results[, 1]) / B) # left -sided

19 perm.p.values [3] <- (2 * min(perm.p.values [1:2])) # two -sided

20 names(perm.p.values) <- c("right.sided", "left.sided", "two -sided")

21 perm.p.values_nonorm [1] <- (sum(orig.results [2] <= perm.results[, 2]) / B) # right -

sided

22 perm.p.values_nonorm [2] <- (sum(orig.results [2] >= perm.results[, 2]) / B) # left -

sided

23 perm.p.values_nonorm [3] <- (2 * min(perm.p.values_nonorm [1:2])) # two -sided

24 names(perm.p.values_nonorm) <- c("right.sided", "left.sided", "two -sided")

25

26 return(list(perm.p.values=perm.p.values , perm.p.values_nonorm=perm.p.values_nonorm ,

alpha1=orig.results [3], alpha2=orig.results [4]))

27 }

3.2. R code of the parametric bootstrap test

1 pval.boot <- function(data , n1 = NULL , n2 = NULL , p = NULL , B = 1000){

2 library(mvtnorm)

3 boot.results <- matrix(rep(0, (2 * B)), ncol = 2)
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4 n <- n1+n2

5

6 # original data estimates of alpha and T statistics

7 orig.results <- tstat(data , n1, n2, p)

8

9 # bootstraped data estimates of alpha and T statistics

10 Sigma1 <- cov(data [1:n1 , 1:p])

11 Sigma2 <- cov(data[(n1 + 1):n, 1:p])

12 for (i in 1:B){

13 dat_temp <- rbind(mvrnorm(n1, rep(0, p), Sigma1), mvrnorm(n2, rep(0, p), Sigma2))

14 boot.results[i, ] <- tstat(dat_temp , n1, n2, p)

15 }

16

17 # bootstrap p-values

18 boot.p.values [1] <- (sum(orig.results [3] <= boot.results[, 3]) / B) # right -sided

19 boot.p.values [2] <- (sum(orig.results [3] >= boot.results[, 3]) / B) # left -sided

20 boot.p.values [3] <- (2 * min(boot.p.values [1:2])) # two -sided

21 names(boot.p.values) <- c("right.sided", "left.sided", "two -sided")

22 boot.p.values_nonorm [1] <- (sum(orig.results_nonorm [3] <= boot.results_nonorm[, 3])

/ B) # right -sided

23 boot.p.values_nonorm [2] <- (sum(orig.results_nonorm [3] >= boot.results_nonorm[, 3])

/ B) # left -sided

24 boot.p.values_nonorm [3] <- (2 * min(boot.p.values_nonorm [1:2])) # two -sided

25 names(boot.p.values_nonorm) <- c("right.sided", "left.sided", "two -sided")

26

27

28 return(list(boot.p.values=boot.p.values , boot.p.values_nonorm=boot.p.values_nonorm ,

alpha1=orig.results [3], alpha2=orig.results [4]))

29 }

3.3. R code of the test statistic and the vecs-function

1 ### function vecs

2 vecs <- function(data){

3 upna <- data

4 upna[upper.tri(data)] <- NA

5 upna_vec <- as.vector(upna)[!is.na(as.vector(upna))]

6 return(as.matrix(upna_vec))

7 }

1 ### calculates the test statistics of both tests

2 tstat <- function(data , n1 = NULL , n2 = NULL , p = NULL){

3 n <- (n1 + n2)

4 Sigma1 <- cov(data [1:n1 , 1:p])

5 Sigma2 <- cov(data[(n1 + 1):n, 1:p])

6 col.mean1 <- matrix(colMeans(data [1:n1, 1:p]), nrow = 1)

7 col.mean2 <- matrix(colMeans(data[(n1 + 1):n, 1:p]), nrow = 1)

8 trSigma1 <- sum(diag(Sigma1))

9 trSigma2 <- sum(diag(Sigma2))

10 sSigma1 <- sum(Sigma1)

11 sSigma2 <- sum(Sigma2)

12

13 # variances , separately

14 sigma1q <- ((2 * p^2 * (sSigma1 * (sum(diag(Sigma1 %*% Sigma1)) + trSigma1 ^2) - 2 *

trSigma1 * sum(Sigma1 %*% Sigma1))) / ((p - 1)^2 * sSigma1 ^3))

15 sigma2q <- ((2 * p^2 * (sSigma2 * (sum(diag(Sigma2 %*% Sigma2)) + trSigma2 ^2) - 2 *

trSigma2 * sum(Sigma2 %*% Sigma2))) / ((p - 1)^2 * sSigma2 ^3))

16

17 # Welch -type variance , pooled

18 sigma <- sqrt((n2 / n) * sigma1q + (n1 / n) * sigma2q)

19
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20 # variances nonorm , separately

21 helpdelta1 <- 2*p/(p-1)*(trSigma1/(sSigma1)^2)

22 helpdeltatr1 <- -p/(p-1)*((sSigma1 -trSigma1)/(sSigma1)^2)

23 delta_1 <- matrix(rep(helpdelta1 , p^2), nrow = p)

24 diag(delta_1) <- helpdeltatr1

25

26 helpdelta2 <- 2*p/(p-1)*(trSigma2/(sSigma2)^2)

27 helpdeltatr2 <- -p/(p-1)*((sSigma2 -trSigma2)/(sSigma2)^2)

28 delta_2 <- matrix(rep(helpdelta2 , p^2), nrow = p)

29 diag(delta_2) <- helpdeltatr2

30

31 sigma1q.non <- 0

32 wcv <- 0

33 v <-0

34 tmp <- 0

35 for (i in 1:n1){

36 v <- (as.matrix(data[i,1:p, drop = FALSE]) - col.mean1)

37 wcv <- (t(vecs(delta_1))%*%(vecs((t(v) %*%v))-vecs(Sigma1)))^2

38 sigma1q.non <- (sigma1q.non + wcv)

39 }

40

41 sigma2q.non <- 0

42 wcv <- 0

43 v <-0

44 tmp <- 0

45 for (i in 1:n2){

46 v <- (as.matrix(data[i+n1 ,1:p, drop = FALSE]) - col.mean2)

47 wcv <- (t(vecs(delta_2))%*%(vecs((t(v) %*%v))-vecs(Sigma2)))^2

48 sigma2q.non <- (sigma2q.non + wcv)

49 }

50

51 # variance , pooled

52 sigma.non <- sqrt(n2/n*(1/(n1 -1)*sigma1q.non)+n1/n*(1/(n2 -1)*sigma2q.non))

53

54 # Cronbach alpha

55 alpha1 <- (p / (p - 1) * (1 - trSigma1 / sSigma1))

56 alpha2 <- (p / (p - 1) * (1 - trSigma2 / sSigma2))

57

58 # test statistic

59 Mn <- (sqrt((n1 * n2) / n) * (alpha1 - alpha2))

60 tval <- (Mn / sigma)

61 tval.nonorm <- (Mn / sigma.non)

62

63 return(c(TSTAT = tval , TSTAT_NONORM = tval.nonorm))

64 }
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