
Supplementary Materials for

Bayesian Semiparametric Longitudinal
Inverse-Probit Mixed Models

for Category Learning

The supplementary materials detail the choice of the prior hyper-parameters, the MCMC
algorithm used to sample from the posterior and some performance diagnostics, and the
analysis of a real benchmark data set. Separate files additionally include R programs imple-
menting the longitudinal inverse-probit mixed model developed in this article and the PTC1
data set analyzed in Section 6 in the main paper.
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S.1 Modelling the Drift Parameters

S.1.1 Functional Fixed Effects

We model the fixed effects functions fx(t) using flexible mixtures of B-spline bases (de Boor,
1978) that allow them to smoothly vary with time t while also depending locally on the
indexing variable x as

fx(t) =
∑K

k=1 βx,kBk(t) = B(t)βx. (S.1)

HereB(t) = {B1(t), . . . , BK(t)} are a set of known locally supported basis functions spanning
[1, T ], βx = (βx,1, . . . , βx,K)

T are associated unknown coefficients to be estimated from the
data. Allowing the βx’s to flexibly vary with x can generate widely different shapes for
different input-response category combinations.

Towards clustering the fixed effects curves, we introduce a set of latent variables zx for
each input-response category combination x with a shared state space {1, . . . , zmax} and as-
sociated coefficient atoms β⋆

z = (β⋆
z,1, . . . , β

⋆
z,K)

T, we let

(βx | zx = z) = β⋆
z, implying {fx(t) | zx = z} = f ⋆

z (t) =
∑K

k=1 β
⋆
z,kBk(t), (S.2)

To probabilistically cluster the βx’s, we next let

zx ∼ Mult(πz) = Mult(π1, . . . , πzmax),

πz ∼ Dir(α/zmax, . . . , α/zmax).
(S.3)

We next consider priors for the atoms β⋆
z. We let

β⋆
z ∼ MVNK{µβ,0, (σ

−2
a IK + σ−2

s P)−1}, (S.4)

where MVNK(µ,Σ) denotes a K dimensional multivariate normal distribution with mean
µ and covariance Σ and P = DTD, where the (K − 1) × K matrix D is such that Dβ
computes the first order differences in β. The model thus penalizes

∑K
k=1(∇β⋆

z,k)
2 = βTPβ,

the sum of squares of first order differences in β(i)
u (Eilers and Marx, 1996). The variance

parameter σ2
s models the smoothness of the functional atoms, smaller σ2

s inducing smoother
f ⋆
z (t)’s. Additional departures from µβ,0 are explained by the other variance component σ2

a.
We assign half Cauchy priors on the variance parameters as

σ2
s ∼ C+(0, 1), σ2

a ∼ C+(0, 1).

S.1.2 Functional Random Effects

We allow different random effects u
(i)
C (t) and u

(i)
I (t) for correct (C) (when d = s) and incor-

rect (I) (when d ̸= s) identifications, respectively, as

u
(i)
d,s(t) = u

(i)
C (t) when d = s, u

(i)
d,s(t) = u

(i)
I (t) when d ̸= s.
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Suppressing the subscripts to simplify notation, we model the time-varying random effects
components u(i)(t) as

u(i)(t) =
∑K

k=1 β
(i)
u,kBk(t) = B(t)β(i)

u ,

β(i)
u ∼ MVNK{0, (σ−2

u,aIK + σ−2
u,sP)−1},

(S.5)

where β(i)
u = (β

(i)
1,u, . . . , β

(i)
K,u)

T are subject-specific spline coefficients. We assign non-
informative half-Cauchy priors on the variance parameters as

σ2
u,s ∼ C+(0, 1), σ2

u,a ∼ C+(0, 1).

S.2 Prior Hyper-parameters and Initialization

The random effects of the inverse-probit mixed model are all initialized at zero. The variance
and smoothing parameters are initially set to 0.1 each. The location parameter of the prior
on β⋆

z, µβ,0 is set to (1, . . . , 1). This choice of β⋆
z would set the expected value of µ

(i)
x (t) to

1, which is supported empirically. The value of the parameter α is set to 1.

S.3 Posterior Inference

Posterior inference for the longitudinal drift-diffusion mixed model, described in Section 3 in
the main paper, is based on samples drawn from the posterior using an MCMC algorithm.
The algorithm carefully exploits the conditional independence relationships encoded in the
model as well as the latent variable construction of the model. Sampling the latent inverse-
Gaussian distributed response times, in particular, greatly simplifies computation.

In what follows, ζ denotes a generic variable that collects all other variables not explicitly
mentioned, including the data points. Also, p0 will sometimes be used as a generic for a prior
distribution without explicitly mentioning its hyper-parameters. The notation x is used to
abbreviate (d′, s). The sampler for the inverse-probit mixed model of Section 3 iterates
between the following steps.

1. Sampling τ
(i,l)
1:d0

(t): Suppose the i-th individual selects the output tone d, in the t-th block,

l-th trial, given the input tone s. Then τ
(i,l)
1 (t), . . . , τ

(i,l)
d0

(t) is generated as in Algorithm 1

(see Section 4) from the joint distribution of τ
(i,l)
1 (t), . . . , τ

(i,l)
d0

(t) given µ
(i)
1,s(t), . . . , µ

(i)
d0,s

(t),
followed by an accept reject step.

2. Updating the components of fixed effects fx(t):

(a) The latent variable zx, indicating the group identities of βx, follows multinomial
distribution with zmax labels and probabilities P (zx = z|ζ), z = 1, . . . , zmax a pos-
teriori. The probability P (zx = z|ζ) ∝ πz × lz, where lz is the likelihood of βx
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evaluated at βz. Let L⋆ be the set of all trials corresponding to input-output tones
x = (s, d) for i-th individual and t-th block, and n

(i)
x (t) be the cardinality of L⋆.

Furthermore, let τ
(i)
x (t) =

∑
l∈L⋆ τ

(i,l)
x (t), τx(t) =

∑
i τ

(i)
x (t), and nx(t) =

∑
i n

(i)
x (t).

A little algebra shows that the likelihood of βx is Gaussian with variance matrix

Σβ,x =
{∑

t τx(t)B(t)TB(t)
}−1

, and mean vector µβ,x = Σβ,x {
∑

t B(t)Mx(t)}, where
Mx(t) = 2nx(t) −

∑
i u

(i)
x (t)τ

(i)
x (t). Therefore, lz is the Gaussian likelihood with mean

µβ,x and variance Σβ,x, evaluated at βz.

(b) Let Nz =
∑

x 1(zx = z), z = 1, . . . , zmax, where 1(·) is the indicator function. Then the
conditional posterior of πz is Dirichlet with parameters α/zmax+N1, . . . , α/zmax+Nzmax .

(c) The full conditional posterior distribution of the coefficient atoms β⋆
z is Gaussian with

variance-covariance matrix Σ⋆
β,z and µ⋆

β,z, where Σ⋆,−1
β,z =

∑
x:zx=z Σ

−1
β,x + Σ−1

β,0, and

µ⋆
β,z = Σ⋆

β,z

[∑
x:zx=z Σ

−1
β,xµβ,x +Σ−1

β,0µβ,0

]
, where Σ−1

β,0 = (σ−2
a IK + σ−2

s P).

3. Updating the components of random effects: We use the generic notation U
to indicate the correct (C, i.e., d = s) or incorrect (I, i.e, d ̸= s) cases. Define

τ
(i)
U (t) =

∑
x:x∈U τ

(i)
x (t), n

(i)
U (t) =

∑
x:x∈U n

(i)
x (t), fτ

(i)
U (t) =

∑
x:x∈U τ

(i)
x (t)fx(t), Σ−1

U,0 =

σ−2
U,aIK + σ−2

U,sP, and Σ
(t)−1
U =

∑
t τ

(i)
U (t)B(t)TB(t). The conditional posterior of β

(i)
U is

Gaussian with covariance Σ
(i)
U,post =

(
Σ−1

U,0 +Σ
(i)−1
U

)−1

, and location parameter µ
(i)
C =

Σ
(i)
U,postΣ

(i)−1
U

[∑
t

{
2n

(i)
U (t)− fτ

(i)
U (t)

}
B(t)

]
, respectively.

4. Updating the precision and smoothing parameters: The precision and smooth-
ness parameters involved in the fixed effects part are σ2

a and σ2
s , and those involved in the

random effects part are σU,a and σ2
U,s, U = C, I. We update these variance components

using Metropolis-Hastings algorithm with log-normal proposal distributions centered on the
previous sample values.

5. Estimation of probability: For each (s, i, t), we calculate the probability of selecting

the d-th response in the following way: Let g{· | µ(i)
d′,s(t)} be the pdf of inverse Gaussian

distribution of the form (1) with parameters δs = 0, bd′,s = 2 and µd′,s = µ
(i)
d′,s(t). We

generate M = 2000 independent samples τm = [τ1,m, . . . , τd0,m]
T , m = 1, . . . ,M , where τd′,m

is generated independently from g{· | µ(i)
d′,s(t)}. Among these M independent samples, the

proportion of occurrences of {τd,m ≤ ∧d′=1:d0τd′,m} is considered as the estimated probability
of selecting dth response.

The results reported in this article are all based on 5, 000 MCMC iterations with the
initial 2, 000 iterations discarded as burn-in. The remaining samples were further thinned by
an interval of 5. We programmed in R. The codes are available as part of the supplementary
material. A ‘readme’ file, providing additional details for a practitioner, is also included in
the supplementary material. In all experiments, the posterior samples produced very stable
estimates of the population and individual level parameters of interest. MCMC diagnostic
checks were not indicative of any convergence or mixing issues.
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S.4 MCMC Diagnostics

This section presents some convergence diagnostics for the MCMC sampler described in the
main manuscript. The results presented here are for the PTC1 data set. Diagnostics for the
simulation experiments and the benchmark data were similar and hence omitted.

Figure S.1: Analysis of PTC1 data: Trace plots (top) and auto-correlation plots (bottom) of the

individual drift rates µ
(1)
1,1(t) corresponding to the success categorization of tone T1 evaluated at

each of the training blocks. In each panel, the solid red line shows the running mean. Results for
other drift parameters were very similar.

Figure S.1 shows the trace plots and auto-correlation of some individual level parameters
at different training blocks. These results are based on the MCMC thinned samples. As
these figures show, the running means are very stable and there seems to be no convergence
issues. Additionally, the Geweke test (Geweke, 1992) for stationarity of the chains, which
formally compares the means of the first and last part of a Markov chain, was also performed.
If the samples are drawn from the stationary distribution of the chain, the two means are
equal and Geweke statistic has an asymptotically standard normal distribution. The results
of the test, reported in Table S.1, indicate that convergence was satisfactory.
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t = 1 t = 2 t = 2 t = 2 t = 2 t = 2

Geweke statistics -1.233 -0.392 -0.678 -0.136 0.440 0.339
p-value 0.217 0.695 0.498 0.892 0.660 0.734

Table S.1: Geweke statistics and associated p-values assessing convergence of the of the
individual level drift parameters µ

(1)
1,1(t) corresponding to the success categorization of tone

T1 evaluated at each of the training blocks. Results for other drift parameters were very
similar.

S.5 Analysis of Benchmark Data

Description of the data. The data set we consider next is a multi-day longitudinal
speech category training study reported previously in Reetzke et al. (2018) and analyzed
previously in Paulon et al. (2021). In this study, n = 20 participants were trained to learn 4
tones, namely, high-level (T1), low-rising (T2), low-dipping (T3), or high-falling (T4) tone,
respectively. The trials were administered in blocks, each comprising 40 categorization trials.
Participants were trained across several days, with five blocks on each day. On each trial,
participants indicated the tone category they heard via button press on a computer keyboard.
Following the button press, they were given corrective feedback. The data consist of tone
responses and associated response times for different input tones for the 20 participants. We
focus here on the first two days of training (10 blocks in total) as they exhibited the steepest
improvement in learning as well as the most striking individual differences relative to any
other collection of blocks.

Analysis. We first demonstrate the performance of the proposed method in estimating the
probabilities associated with different (d, s) pairs. Figure S.2 shows the 95% credible intervals
for the estimated probabilities for different input tones along with the average proportions
of times an input tone was classified into different tone categories across subjects.

Observe that, except in situations with a very small number of data points the 95%
credible intervals include the empirical probabilities. Further, the estimated credible region
is narrow enough implying high precision of the inference.

Next, consider the clustering results. We obtained two clusters each in pairs of success
combinations (d = s) and in the wrong allocations (d ̸= s). The clusters of success com-
binations are S1 = {(1, 1), (3, 3)} and S2 = {(2, 2), (4, 4)}, and that in wrong allocations are
M1 = {(1, 2), (2, 1), (2, 3), (3, 2), (4, 1), (4, 2)}, and M2 = {(1, 3), (1, 4), (2, 4), (3, 1), (3, 4), (4, 3)}.
The network plot in Figure S.3 shows the stability of the clusters over the MCMC iterations.

From an overall perspective, the trajectory of ‘High-level’ (T1) and ‘Low-dipping’ (T3)
are similar with two wrong allocations from M2 and one from M1, and that of ‘Low-rising’
(T2) and ‘High-failing’ (T4) are similar with two wrong allocations from M1 and one from
M2. These similarities in the overall trajectories of {T1, T3} and {T2, T4} were also noted by
Paulon et al. (2021).

Next, we consider the estimation of the underlying drift parameters µ
(i)
d′,s(t). Due to

the identifiability constraints, the estimates of µ
(i)
d′,s(t) can only be observed on a relative
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Figure S.2: Results for the benchmark data: Estimated probability trajectories compared with
average proportions of times an input tone was classified into different tone categories across sub-
jects (in dashed line). High-flat tone responses are shown in red; low-rising in blue; low-dipping in
green; and high-falling in purple.

scale. Figure S.4 shows the posterior mean trajectories and associated 95% credible intervals
for the projected drift rates estimated by our method for different combinations of (d′, s).
In comparison with the previous analysis of Paulon et al. (2021), the trajectories of our
estimated drift rates show significant similarity throughout.

Figure S.5 shows the posterior mean trajectories and associated 95% credible intervals
for the drift rates µ

(i)
d′,s(t) for the different correct combinations (d′, s) with d′ = s for two

participants - the one with the best accuracy averaged, and the one with the worst accuracy
averaged across all blocks. For the well-performing participant, the drift trajectories increase
rapidly and for the poorly performing candidate, on the other hand, the drift trajectories
increase very slowly. Once again, in spite of the limitation of inferring on a relative scale, the
relative differences of the best and worst performing participants across blocks show great
similarity with the inference of Paulon et al. (2021).
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Figure S.3: Results for the benchmark data: Network plot of similarity groups showing the intra
and inter-cluster similarities. Each node is associated with a pair indicating the input-response
tone category (s, d). The number associated with each edge indicates the proportion of times the
pair in the two connecting nodes appeared in the same cluster after burning.

S.6 Rand and Adjusted Rand Indices

Rand Index. Given a set of n objects S = {s1, . . . , sn}, let U = {U1, . . . , UR} and V =
{V1, . . . , VC} represent two different partitions of the objects in S such that ∪R

i=1Ui = S =
∪C

j=1Vj and Ui ∩ Ui′ = ∅ = Vj ∩ Vj′ for 1 ≤ i ̸= i′ ≤ R and 1 ≤ j ̸= j′ ≤ C. Rand index
estimates the similarity between the allocations of S in U and V.

Let a be the number of pairs of objects that are placed in the same partition in U and the
same partition in V, and b be the number of pairs of objects that are in different partitions
of U, as well as in different partitions of V. Here a and b can be interpreted as agreements
in U and V, and the total number of pairs is

(
n
2

)
. The Rand index (Rand, 1971) is

RI = (a+ b)/

(
n

2

)
.

The Rand index lies between 0 and 1. When the two partitions agree perfectly, the RI takes
the value 1.

Adjusted Rand Index. The expected value of the Rand index of two random partitions
does not take a constant value. The adjusted Rand index (Hubert and Arabie, 1985) assumes
generalized hypergeometric distribution as the model of randomness, and makes a base and
scale change of the quantity (a+ b), defined above, so that the resultant quantity is bounded
by [−1, 1] and has expected value 0 under completely random allocation.

Let ni,j be the number of object that are both in ith partition of U and jth partition of
V, ni and nj be the total number of components in ith partition of U, and jth partition of
V, respectively.
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Figure S.4: Results for the benchmark data: Estimated posterior mean trajectories of the popu-
lation level drifts µd′,s(t) for the proposed model. The shaded areas represent the corresponding
95% pointwise credible intervals. Parameters for the high-flat tone response category are shown in
red; low-rising in blue; low-dipping in green; and high-falling in purple.

The expression a+ d can be simplified to a linear transformation of
∑

i,j

(
ni,j

2

)
. Further,

under the generalized hypergeometric model, it can be shown that

E

∑
i,j

(
nij

2

) =

∑
i

(
ni

2

)∑
j

(
nj

2

) /

(
n

2

)
.

Therefore, scaled the difference of linear transformed (a + b) and its expectation is the
adjusted Rand index, defined as:

ARI =

∑
i,j

(
ni,j

2

)
−
[∑

i

(
ni

2

)∑
j

(
ni,j

2

)]
/
(
n
2

)
1
2

[∑
i

(
ni

2

)
+
∑

j

(
nj

2

)]
−
[∑

i

(
ni

2

)∑
j

(
nj

2

)]
/
(
n
2

) .
The expected value of ARI index is zero and the range is [−1, 1]. Like the RI, the ARI also
takes the value 1, when the two partitions agree perfectly.
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Figure S.5: Results for the benchmark data: Estimated posterior mean trajectories for individual

specific drifts µ
(i)
d′,s(t) = exp{fd′,s(t) + u

(i)
C (t)} for correct identification (d′ = s) for two different

participants - one performing well (dashed line) and one performing poorly (dotted line). The
shaded areas represent the corresponding 95% point-wise credible intervals. Parameters for the
high-flat tone response category are shown in red; low-rising in blue; low-dipping in green; and
high-falling in purple.
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