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Supplementary Methods and Materials 

Participants 

Data for this study was from the Max Planck Institute “Leipzig Study for Mind- Body-Emotion 

Interactions” (LEMON) dataset (Babayan et al., 2019).  Recruited from September 2013 to 

September 2015, MRI data as well as data from behavioral tests, questionnaires, and interviews 

were collected from 227 eligible participants.  Participants were excluded based on their current 

or history of cardiovascular (hypertension, heart attack, or congenital heart defect), psychiatric 

(with inpatient treatment for longer than 2 weeks, within the last 10 years, such as psychosis, 

attempted suicide, or post-traumatic stress disorder), neurological (multiple sclerosis, stroke, 

epilepsy, brain tumor, meningoencephalitis, or severe concussion), or malignant diseases, as well 

as medication or drug use (centrally active medication, beta- and alpha-blocker, cortisol, any 

chemotherapeutic or psychopharmacological medication, extensive alcohol, MDMA, 

amphetamines, cocaine, opiates, benzodiazepine, or cannabis) and standard MRI exclusion 

criteria.  The dataset and its collection protocol are openly available to download at 

http://fcon_1000.projects.nitrc.org/indi/retro/MPI_LEMON.html.  The LEMON dataset was 

collected adhering to the World Medical Association Declaration of Helsinki and was approved 

by the Ethics Committee of the University of Leipzig (reference number 154/13-ff). 
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The specific sample chosen for this study was young adults (20-30 years of age; n = 140).  

Among these young adults, participants were screened and excluded (n = 28) based on current or 

history of psychiatric diagnoses, assessed through Standardized Clinical Interview for DSM-IV 

or SCID-I (Saß, Wittchen, & Zaudig, 1996; Wittchen, Wunderlich, Gruschwitz, & Zaudig, 

1997).  Participants who had poor quality or missing data in structural, diffusion, or functional 

imaging data were also excluded (n = 6).  Those with excessive head movement during resting 

state fMRI scans (mean framewise displacement, mean FD > 0.2 mm) were also screened (n = 

4), as well as those who encountered errors during connectome construction (n = 3).  The 

resulting sample comprised of 99 young German-speaking adults (n = 59 in age bracket 20-25, n 

= 40 in age bracket 25-30) among which 28 were female. 

 

Behavior Measures 

Data on emotion regulation tendency have been obtained from three different questionnaires 

(Emotion Regulation Questionnaire, ERQ; Cognitive Emotion Regulation Questionnaire, CERQ; 

Coping Orientations to Problems Experienced, COPE) to capture a broad range of individual 

difference in habitual emotion regulation.  All questionnaires were German versions of the 

original scales.  Of note, while some of the subscales from these questionnaires share the same 

name (e.g., “Acceptance” from CERQ and “Acceptance” from COPE), these were not 

considered redundant as the specific questionnaire items probed distinct aspects of habitual 

emotion regulation.  As a result, the compiled emotion regulation tendency had 23 subscales 

that assessed emotion regulation tendencies in everyday life. 

ERQ comprised of 10 items on a 7-point Likert scale ranging from 1 (strongly disagree) to 7 

(strongly agree) (Abler & Kessler, 2009; Gross & John, 2003).  Six items measured habitual 
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reappraisal, and four items gauged habitual expressive suppression.  CERQ is a 5-point Likert 

scale questionnaire ranging from 0 (almost never) to 4 (almost always) with 27 items (Garnefski, 

Kraaij, & Spinhoven, 2001; Loch, Hiller, & Witthöft, 2011).  The nine subscales of CERQ are 

acceptance, positive refocusing, refocusing on planning, positive reappraisal, putting into 

perspective, self-blame, rumination, catastrophizing, and blaming others.  COPE (Brief COPE 

Inventory) was on a 4-point Likert scale ranging from 1 (not at all) to 4 (very much), and 

included subscales of self-distraction, use of emotional support, behavioral disengagement, 

positive reframing, humor, alcohol consumption, use of instrumental support, venting, planning, 

acceptance, self-blame, religion, denial, and active coping (Carver, 1997; Knoll, Rieckmann, & 

Schwarzer, 2005).  Among the subscales of COPE, behavioral disengagement (Cronbach’s 

alpha = 0.21) and planning (Cronbach’s alpha = 0.44) were discarded due to poor reliability. 

 

Image Acquisition 

The following descriptions on image acquisition and preprocessing are further described in the 

original paper (Babayan et al., 2019).  All MRI images were acquired from a 3-Tesla scanner 

(32-channel head coil, MAGNETOM Verio, Siemens Healthcare GmbH, Erlangen, Germany), 

and had a very large coverage using simultaneous multi-slice acquisition to include the brain and 

the cerebellum.  Diffusion MRI data were collected parallel to the AC-PC line, with the volume 

at 149.6 mm height covering the entire brain including the cerebellum.  Functional data were 

angulated by -15° backwards relative to the AC-PC line, in which the slice block at 147 mm 

height also covered the entire brain including the cerebellum. 

T1-weighted images with 1mm isotropic voxel size were first collected through 

Magnetization-Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) sequence (Marques 
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et al., 2010).  A multiband accelerated sequence (Feinberg et al., 2010; Setsompop et al., 2012; 

Xu et al., 2013) combined with an in-plane GRAPPA (Griswold et al., 2002) (TR = 7,000 ms, 

TE = 80 ms, GRAPPA acceleration factor = 2, bandwidth = 1,502 Hz/Px, field of view = 220 × 

220 mm2, and voxel size = 1.7 × 1.7 × 1.7 mm3) was used to attain 60 diffusion MRI images 

with seven b0 images (60 diffusion directions, b-value = 1000 s/mm2).  Functional images were 

collected through a T2∗-weighted gradient echo echo planar imaging (EPI) multiband BOLD 

resting state fMRI sequence (Feinberg et al., 2010; Xu et al., 2013; Moeller et al., 2010) (TR = 

1400 ms, total number of volumes = 657, total acquisition time 15 min 30 s).  In the resting 

state sequence, the participants were instructed to remain awake and lie still with their eyes open 

while looking at a fixation cross.  One gradient echo fieldmap scan as well as two pairs of spin 

echo EPI images with reversed phase encoding direction were also acquired for correction for 

geometric distortions in EPI images. 

 

Image Preprocessing and Quality Check 

Preprocessed T1 MP2RAGE data were used as provided from the LEMON dataset.  In short, 

the background of the uniform T1-weighted image was removed using CBS Tools (Bazin et al., 

2014).  Then, FreeSurfer’s recon-all was used to reconstruct cortical surface from the masked 

image (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999).  A brain mask was created 

based on the FreeSurfer segmentation results, and a spatial transformation between the 

individual’s T1-weighted image and the Montreal Neurological Institute (MNI) 152 1mm 

standard space was computed via diffeomorphic nonlinear registration of the ANTs SyN 

algorithm (Avants et al., 2011).  A defacing mask was created using CBS Tools (Bazin et al., 

2014) to be applied to all anatomical scans. 
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Diffusion-weighted images were preprocessed through FMRIB’s Diffusion Toolbox (FDT) 

of FSL (FMRIB software library v6.0) in the following order (Jenkinson, Beckmann, Behrens, 

Woolrich, & Smith, 2012).  First, using two volumes with reversed phase encoding, topup was 

carried out to correct for susceptibility-induced distortion (Andersson, Skare, & Ashburner, 

2003).  Second, brain was extracted using BET (Smith, 2002).  Using eddy (–repol option), 

eddy current distortions as well as possible artifacts from head motion were identified and 

corrected (Andersson, Graham, Zsoldos, & Sotiropoulos, 2016; Andersson & Sotiropoulos, 

2016). 

QUAD and SQUAD, the automated quality control tool in FSL were used for quality 

checks on diffusion images (Bastiani et al., 2019).  No participant was excluded based on the 

exclusion threshold of average volume-to-volume head motion of < 3 mm or < 5% of total 

outliers, adapted from previous literature (Zheng et al., 2021).  The cleaned diffusion images 

were visually checked to confirm this result. 

Functional images in the dataset were provided as preprocessed through a Nipype pipeline 

(Babayan et al., 2019; Mendes et al., 2019).  In brief, the following steps were taken: discarding 

the first five EPI volumes, 3d motion correction (FSL MCFLIRT; Jenkinson, Bannister, Brady, 

& Smith, 2002), distortion correction (FSL FUGUE; Jenkinson, Beckmann, Behrens, Woolrich, 

& Smith, 2012), rigid-body coregistration of temporal mean image to anatomical image 

(FreeSurfer bbregister; Greve & Fischl, 2009), denoising (Nipype rapidart and aCompCor; 

Behzadi, Restom, Liau, & Liu, 2007), band-pass filtering between 0.01-0.1 Hz (FSL), mean-

centering and variance normalization of the denoised time series (Nitime; Rokem, Trumpis, & 

Perez, 2009), and spatial normalization to MNI152 2-mm standard space (ANTs SyN; Avants et 
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al., 2011).  The preprocessing pipeline can be found at 

https://github.com/NeuroanatomyAndConnectivity/pipelines/tree/master/src/lsd_lemon. 

Quality assessment for functional images were performed through the mriqc package 

(Esteban et al., 2017).  Apart from the eight participants that were excluded by the authors of 

the original article before dataset distribution (ghosting artifact n = 2, incomplete scan n = 1, 

anatomical preprocessing n = 4, functional preprocessing n = 1), four participants were further 

excluded as noted above based on the conventional threshold for determining excessive head 

movement (mean FD > 0.2 mm; 33). 

Building Connectomes 

The parcellation scheme used for both the functional and the structural connectomes was the 

268-node Shen atlas (Shen, Tokoglu, Papademetris, & Constable, 2013), which is derived from 

resting-state functional data of healthy adults.  The advantage of using this atlas is that it covers 

the whole brain including the cortex, the subcortex, and the cerebellum, and also that it aids 

translation of the results into the rich connectome-based predictive modelling literature that 

utilize said atlas (Finn et al., 2015).  The Shen atlas was transformed into subject-specific 

anatomical space using affine registration (FLIRT) and nonlinear registration (FNIRT) to be used 

as masks for nodes (Jenkinson, Bannister, Brady, & Smith, 2002). 

Structural connectomes were constructed with number of streamlines as the metric of 

structural connectivity.  First, bedpostx and probtrackx2 were performed on the cleaned 

diffusion weighted images to draw white matter tracts connecting 268 ´ 268 pairs of regions in 

subject-specific anatomical space (Behrens, Berg, Jbabdi, Rushworth, & Woolrich, 2007).  The 

probabilistic tractography algorithm was set at 0.5-mm step length, 1,000 streamlines, and 2,000 

steps across all computations.  Second, the raw number of streamlines were symmetrized and 
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log-transformed (Rosen & Halgren, 2021).  In detail, as white matter tracts were computed 

separately for both directions (e.g., region A to B, and region B to A), the arithmetic mean of 

these two values were used to symmetrize the structural connectome.  Lastly, log-

transformation (log10) was carried out to account for the log-normally distributed probabilistic 

tractography results (Fornito, Zalesky, & Bullmore, 2016). 

Functional connectomes were made using 3dNetCorr in AFNI (Taylor & Saad, 2013).  

The algorithm first derives the mean timeseries of functional activations for each of the 268 

regions, then calculates the correlation coefficients between the 268 ´ 268 pairs of regions for 

each subject.  These correlation coefficients, after Fisher z-transformation for normalization, are 

used as the metric of functional connectivity between pairs of regions. 

Finally, functional-structural hybrid connectomes were created by combining the functional 

and the structural connectome following the procedures of previous literature (Amico & Goñi, 

2018).  First, the Pearson correlation coefficient of the ith and jth row of the structural 

connectome are calculated, which effectively finds the “structural correlation.”  Then, these 

structural correlation coefficients that imply the degree of similarity in structural connections 

with the rest of the brain constitute the new structural connectome.  Importantly, only 

connections that are unanimously connected across all participants are considered, which 

preserves the sparse matrix structure of the structural connectome.  This procedure ensures that 

the numeric distributions of the structural connectome are normalized to roughly match the 

functional connectome while also retaining the essential properties of the structural connectome 

(Amico & Goñi, 2018), much like the matching index (Rubinov & Sporns, 2010). 

 

Intersubject Representational Similarity Analysis 
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To first confirm that the functional and structural connectome carry information relevant to 

emotion regulation tendencies, we conducted intersubject representational similarity analysis (IS-

RSA) via Mantel tests (Finn et al., 2015; Mantel, 1967).  IS-RSA examines the correlation 

between intersubject brain similarity (e.g., “do two subjects have similar connectomes?”) and 

intersubject behavior similarity (e.g., “do two subjects have similar emotion regulation 

tendencies?”), which bypasses challenges that arise from directly comparing brain and behavior 

(e.g., “are 268 ´ 268 connectome values correlated to 23 emotion regulation strategy values?”).  

As such, the Spearman rank correlation between brain similarity matrix and behavior similarity 

matrix were tested in the IS-RSA framework.  To elaborate, functional connectome similarity 

matrix was established by calculating the Euclidean distance between two vectors of functional 

connectome values for all pairs of individuals, resulting in a 99 ´ 99 matrix.  Structural 

connectome similarity matrix and functional-structural hybrid connectome similarity matrix were 

constructed in identical manner.  Statistical significance was investigated through the 

nonparametric procedure for Mantel tests, where the rows and columns of one of the similarity 

matrices are permuted 10,000 times to derive a null distribution of correlation values (Mantel, 

1967).  Data preprocessing, manipulation, and statistical analyses of IS-RSA were conducted 

through R 4.0.5 (R Core Team, 2021) and its package ‘vegan’ (Oksanen, 2010). 

Through these analytical steps, we sought to examine whether the joint consideration of 

functional and structural connectomes, compared to either connectome separately, offered better 

explanatory power for individual differences in emotion regulation tendencies.  We therefore 

tested three intersubject similarity correlation models: 1) interindividual similarity of functional 

connectome and interindividual similarity of emotion regulation tendencies, 2) interindividual 

similarity of structural connectome and interindividual similarity of emotion regulation 
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tendencies, and 3) interindividual similarity of functional-structural hybrid connectome and 

interindividual similarity of emotion regulation tendencies. 

 

Dimensionality Reduction 

Given that the functional-structural hybrid connectome showed stronger correlation with emotion 

regulation tendencies than either the functional or structural connectome by itself, the functional-

structural hybrid connectome was further inspected to pinpoint the source of the correlation.  

Although canonical correlation analysis (CCA) is a powerful multivariate analytic tool for 

capturing covariance between two sets of variables with high dimensionality (i.e., 268 ´ 268 

brain variables and 23 behavior variables) (McPherson, & Pestilli, 2021; Smith et al., 2015; 

Wang et al., 2020; Xia et al., 2018), concerns regarding its susceptibility to overfitting has been 

documented (Dinga et al., 2019; Mihalik et al., 2022).  To circumvent this issue, we sought to 

reduce the dimensions of variables before they are entered into the CCA framework, which 

increases the stability and the reliability of CCA (Wang et al., 2020; Mihalik et al., 2022).  

Crucially, considering the number of subjects of our study (n = 99), the number of variables that 

would lead to reliable results is around 3 to 10 according to introductory texts (Tabachnick & 

Fidell, 2001; Pituch & Stevens, 2016) and less than 9 according to a recent methodological guide 

(Mihalik et al., 2022).  Therefore, these standards were kept in mind when deciding the optimal 

number of dimensions in the following dimension reduction schemes. 

Principal component analysis (PCA) was utilized to extract the principal components 

among the 23 dimensions of emotion regulation tendencies.  In detail, principal axes that are 

orthogonal to each other were extracted in the order of amount of variance explained.  It is 

worth noting that the 23 emotion regulation strategies were standardized because PCA is 
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sensitive to scaling differences that were present among the three distinct questionnaires.  

Maximizing consensus between multiple criteria on the number of components to retain 

(Lüdecke, Ben-Shachar, Patil, & Makowski, 2020), three principal components that accounted 

for the 38.4% of the variance among the 23 dimensions were derived (Supplementary Figure 

1A).  A seven-component solution also emerged as the second-best solution that explains 

63.3% of the variance but was ultimately discarded due to risk of overfitting. 

Independent component analysis (ICA) was chosen as the dimension reduction scheme for 

functional-structural hybrid connectomes.  In practice, this would entail decomposing the 

variance of the functional-structural hybrid connectomes into a handful of components that each 

possess variance independent to each other.  In other words, networks of functional and 

structural connections that covary would be clustered together to be separated from other 

networks.  Adopting a previous approach (Amico & Goñi, 2018), the ICA procedure was 

carried out as follows.  First, PCA was performed on the functional-structural hybrid 

connectomes to filter noise (Calhoun et al., 2006; Kessler, Angstadt, Welsh, & Sripada, 2014).  

This resulted in 42 components that explained 90% of variance in the data, which is comparable 

to the 40 components that explained 90% of variance in the original functional-structural hybrid 

connectome ICA study (Amico & Goñi, 2018).  Then, the FastICA algorithm was run 1,000 

times to extract the most robust components (Hyvärinen, 1999).  The resultant components 

were only retained if they emerged more than 95% of the 1,000 runs with correlation higher 

than .95 across runs.  It is worth noting that since it is challenging to anticipate the exact 

number of independent components that is adequate for the data at hand (Calhoun, Liu, & Adalı, 

2009; Hyvärinen, & Oja, 2000), we chose to first run ICA under various settings.  As the final 

number of independent components reached a plateau that indicate reliability at four and again at 
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sixteen across the manifold settings, a four-component solution was chosen to avoid overfitting 

(Supplementary Figure 1B). 

 

Control Analyses 

To account for possible alternate explanations for our results, we first carried out the CCA 

analysis with either the functional connectome or the structural connectome as sole source of 

information.  This entailed applying PCA and ICA to the functional connectome as well as 

applying PCA to the structural connectome to match the number of variables that would be 

entered into CCA.  Of note, because the structural connectome is relatively redundant between 

subjects (Amico & Goñi, 2018), PCA alone was enough to reduce the dimensionality down to 4 

components, explaining 96% of variance.  This procedure was designed to check if significant 

canonical correlations could be derived from using only the functional or the structural 

connectome. 

We additionally performed permutation tests where the entire ICA and CCA pipeline was 

repeated 1,000 times after permuting the combination of connectomes (Supplementary Figure 2).  

In detail, we reasoned that if the CCA result is solely dependent on 1) the functional connectome, 

2) the structural connectome, or 3) the pure amount of data in the functional and structural 

connectome, it would not be robust to randomizing the functional-structural combinations across 

subjects.  We therefore mix-and-matched the functional and structural connectome pairs before 

entering them into the ICA and CCA pipeline 1,000 times to establish a null distribution of 

canonical correlation coefficients.  The number of independent components was set at 4 across 

all trials to keep the amount of variance consistent. 
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HBN dataset connectome building 

The same 268-node Shen atlas parcellation scheme was used for both the functional and the 

structural connectomes for the HBN dataset as well (Shen, Tokoglu, Papademetris, & Constable, 

2013).  Following affine registration (FLIRT) and nonlinear registration (FNIRT), the Shen 

atlas was transformed into subject-specific anatomical space (Jenkinson, Bannister, Brady, & 

Smith, 2002).  

Functional connectomes were built from resting state data.  Collected from the Siemens 

3T Prisma at Citigroup Biomedical Imaging Center (CBIC; n = 71) or from the Siemens 3T Tim 

Trio at Rutgers University Brain Imaging Center (RUBIC; n = 22), resting state scans ran for 5.1 

minutes (TR = 800 ms; TE = 30 ms; FA = 31°; slice thickness = 2.4 mm; field of view (FOV) = 

204 mm; multi-band acceleration factor = 6; voxel size = 2.4 mm isotropic).  The fMRI data 

were preprocessed via fMRIPrep 21.0.2 (60), which includes BOLD signal reference image 

estimation, head-motion estimation, slice-time correction, co-registration, resampling onto 

standard space (MNI PediatricAsym:cohort-1) and confounds estimation.  Smoothing was done 

as well with a 4 mm Full-Width at Half-Maximum Gaussian kernel using 3dmerge in AFNI 

(Cox, 1996; Cox & Hyde, 1997).  After discarding the first four volumes, confound regression 

was also performed with 24 head motion parameters (three translational and three rotational 

deviations and their squares, six temporal derivatives and their squares) and three mean tissue 

signals (global, cerebrospinal fluid and white matter).  Then, high-pass filtering and low-pass 

filtering were carried out with a 0.01 Hz cut-off and a 0.10 Hz cut-off.  Finally, functional 

connectomes were constructed following the same steps as described above. 

Structural connectomes for the HBN dataset were also made using number of 

streamlines as the metric of structural connectivity.  Single-shell (b = 1000 s/mm2) dMRI scans 
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were acquired (1.8 × 1.8 × 1.8 mm3; 72 slices; TE = 100.20 ms; TR = 3320 ms; flip angle = 90°; 

multiband acceleration factor 3; 64 diffusion directions).  Further information on image 

acquisition can be found in the original paper for the dataset (Alexander et al., 2017).  Four 

individuals from the dataset had missing diffusion imaging scans and were excluded from further 

analyses.  Diffusion images were preprocessed using similar denoising and distortion correction 

methods as the young adult dataset (Andersson et al., 2003; Smith et al., 2004; Andersson & 

Sotiropoulos, 2016), but were processed through the MRtrix3 pipeline (Tournier et al., 2019).  

In detail, analyses were restricted to brain voxels (Tustison et al., 2010), and multi-tissue 

constrained spherical deconvolution was conducted to estimate multiple fiber orientations in 

each voxel (Jeurissen, Tournier, Dhollander, Connelly, & Sijbers, 2014), followed by calculation 

of fiber orientation density (Raffelt et al., 2017).  Then, gray matter and white matter tissue 

boundaries were found on individual anatomical images and were coregistered with the diffusion 

images to anatomically constrain tractography (Smith, Tournier, Calamante, & Connelly, 2012).  

Finally, probabilistic tractography (iFOD2 algorithm; FOD cutoff 0.06, maximum tract length 

250 mm, 10 million streamlines) was performed with the tckgen command (Tournier, Calamante, 

& Connelly, 2010).  This resulted in structural connectomes with the 268 ´ 268 resolution, 

similar to the young adult dataset. 

 

Replication of the CCA results on HBN dataset 

Lastly, CCA was carried out using the functional and structural connectomes of the 

transdiagnostic adolescents following the same pipeline as described above.  Adhering to the 

original parameters (i.e. retaining components appearing in more than 95% of the 1,000 runs 

with correlation higher than .95 across runs) yielded no stable independent components from the 
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functional-structural hybrid connectomes.  Because more lenient thresholds of 50% appearance 

and .50 correlation across runs was found to be sufficient in finding robust components (Amico 

& Goñi, 2018), we then lowered both thresholds to 85% appearance and .85 correlation to 

explore the possibility that connectomes of individuals with diverse clinical symptoms are more 

variable and require more flexibility.  This resulted in four independent components of 

functional-structural connectomes following the same decision heuristic.  The first three 

principal components (explaining 63.9% of variance; Supplementary Table 2) of coping 

strategies were used as input data for the CCA analysis (Supplementary Figure 4).  This 

decision was based on an observation that despite the high percentage of variance explained by 

the first principal component of the CCSC scale, it may be insufficient in considering the 

variable nature of coping strategies, as the low loadings across strategies imply (Table 2).  The 

covariate matrix comprised of gender, age, data acquisition site, resting-state EPI movement 

(mean FD values), and diagnoses categories were regressed out from both the ICA components 

and the PCA components.  The permutation and significance testing procedure followed the 

same pipeline, which yielded a canonical correlation between the functional-structural hybrid 

connectomes and coping strategies after correcting for multiple tests. 

 

 

Supplementary Results 

 

Intersubject Representational Analysis 

Mantel tests with 10,000 permutations revealed that interindividual similarity of the functional-

structural hybrid connectome was significantly correlated with interindividual similarity of 
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emotion regulation tendency (P = 0.002).  The structural connectome similarity matrix was not 

significantly correlated with emotion regulation tendency similarity matrix (P = 0.116).  The 

functional connectome similarity matrix was significantly correlated with emotion regulation 

tendency similarity matrix (P = 0.029).  When comparing the mantel correlation coefficient, 

functional-structural hybrid connectome similarity was highest (Mantel’s r = 0.141) compared to 

functional connectome similarity (Mantel’s r = 0.092) and structural connectome similarity 

(Mantel’s r = 0.067).  Furthermore, functional-structural hybrid connectome similarity was still 

significantly correlated with emotion regulation tendency similarity even after controlling for 

either the functional connectome similarity (P = 0.025) or the structural connectome similarity (P 

= 0.009). 

 

Dimensionality Reduction 

Performing PCA on the 23 emotion regulation strategies led to three principal components that 

explained 38.4% of variance.  To elaborate, the first component loaded most positively on 

positive reappraisal, use of instrumental support, and refocus on planning, and loaded most 

negatively on suppression, substance use, and catastrophizing (15.1% variance explained).  The 

second component had heavy positive loadings on catastrophizing, denial, and rumination, when 

loading negatively on positive reframing, reappraisal, and positive reappraisal (13.6% variance 

explained).  The last component loaded positively on suppression, acceptance (both CERQ and 

COPE), and self-blame (both CERQ and COPE), and loaded negatively on venting, use of 

emotional support, and use of instrumental support (9.8% variance explained).  Consequently, 

the three principal components of emotion regulation tendencies were each deemed to carry 

unique aspects (Supplementary Table 1). 
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ICA on the 99 pairs of functional-structural hybrid connectomes resulted in four 

independent components that convey network covariance properties across the functional and 

structural connectome (Supplementary Figure 3).  The first independent component consisted of 

functional connections involving the default mode network and the medial frontal network as 

well as structural connections mainly concerning the motor network and the visual network.  

The second independent component had functional connections focused within the medial frontal 

network, frontoparietal network, and the default mode network and structural connections 

heavily involving subcortical and cerebellar regions.  The functional component of the third 

independent component heavily engaged the visual networks and the motor network, whereas the 

structural component was concentrated on the subcortical-cerebellum network and the visual 

networks.  The fourth independent component had pronounced functional connections 

involving the medial frontal network, frontoparietal network, the default mode network, and the 

visual networks as well as structural connections associated with the subcortical-cerebellum 

network, the motor network, and the visual networks. 

 

Control Analysis 

First, we tested if either the functional connectome or the structural connectome was sufficient to 

extract a significant correlation between brain variables and emotion regulation tendency 

variables.  CCA analyses showed no significant mode of correlation between brain components 

and emotion regulation tendency components when using either the functional connectome (P = 

0.340) or the structural connectome (P = 0.229) alone. 

Among the 1,000 trials of permutations, the canonical correlation coefficient of the true 

CCA result was at the top 44, indicating that the true combination of the functional and structural 
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connectomes significantly contributed to the CCA result (P = 0.044).  In other words, the result 

was not driven solely by the functional connectome, the structural connectome, or the pure 

amount of data in the functional and structural connectome. 

 
Replication of the CCA results on HBN dataset 

CCA results indicated a significant canonical correlation based on 10,000 permutations (r = 

0.331, P = 0.042 after correcting for multiple tests; Supplementary Figure 4).  When combined 

across the independent components of the functional-structural hybrid connectomes using the 

resultant CCA weights, the composite mode mainly involved functional connections between the 

medial frontal network and other networks as well as connections within the visual network 

(Supplementary Figure 5).  Critical structural connections from the composite mode were 

aggregated in the subcortical-cerebellum network and between the visual networks and other 

networks.  The composite coping tendency followed a similar adaptive-to-maladaptive 

spectrum (Supplementary Table 2). 

Notably, the composite coping tendency score comprised of the first three first principal 

components had a stronger correlation with the network score derived from the young adult 

sample (r = 0.291, P = 0.006).  The difference in model fit showed that the composite coping 

tendency score better explained the network score (DAIC = 2.53; Burnham & Anderson, 2004).  

This indicates that including a wider range in the adaptive-to-maladaptive spectrum of coping 

strategies leads to stronger alignment with the originally derived network, which bolsters the 

rationale for utilizing the first three principal components for the CCA analysis. 
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Supplementary Figure 1. Finding the optimal number of components in the dimensionality 

reduction process.  A In the PCA procedure for 23 emotion regulation strategies, a 3-component 

solution emerged as a solution that maximizes consensus among various criteria, followed by a 

7-component solution, both of which can be confirmed by the “elbow” points in the scree plot.  

B In the ICA procedure for functional-structural hybrid connectomes, highest reliability was 

shown by the 4-robust-component solution and the 16-robust-component solution.  The x-axis 

specifies the initial setting for number of components, which is used to extract a specific number 

of independent components before finding the most robust components among them. 
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Supplementary Figure 2. Permutation test. Functional-structural pairings were mix-and-

matched through permutation and were subjected to the ICA and CCA pipeline to create a null 

distribution of CCA results.  The true CCA result was statistically significant (P = 0.044), 

indicating that the result was not solely driven by 1) the functional connectome, 2) the structural 

connectome, or 3) the amount of data in the functional-structural hybrid connectome. 
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Supplementary Figure 3. Four independent components of the functional-structural hybrid 

connectome.  Sizes and colors of the nodes are scaled by their eigenvector centrality (Rubinov 

& Sporns, 2010).  To allow comparison between components, the maximum eigenvector 

centrality value for color scaling was set at 0.2 for the functional portions of independent 

component 1, 2, and 4.  Connections with top 1% weight in either the positive or the negative 

direction are illustrated in the brain figures and the matrices. 
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Supplementary Figure 4. Replication of the CCA framework in the HBN dataset. After 

correcting for multiple tests, one significant mode of correlation was found between the 

functional-structural hybrid connectomes and the coping strategies of the adolescents. 

  

CCA

0.523

Independent Comp 1

Independent Comp 2

Independent Comp 3

Independent Comp 4

Principal Comp 1

Principal Comp 2

Principal Comp 3

r = 0.3306
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-0.831

0.319

-0.180
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Supplementary Figure 5. Composite functional and structural network properties from the 

significant mode of canonical correlation in the HBN dataset. A Important functional connections 

were located between the medial frontal network and other networks as well as within the visual 

network. B Important structural connections involved the subcortical-cerebellum network and the 

visual networks.  

A

B
Top 1% Negative Connections Top 1% Positive Connections

Top 1% Negative Connections Top 1% Positive Connections

0.0001 0.3617

0.0002 0.4894
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Supplementary Table 1. Three principal components of 23 emotion regulation strategies.  

Weights show the degree to which each emotion regulation tendency is involved in the principal 

components. 

 
Emotion Regulation Strategies PC1 PC2 PC3 

Reappraisal 0.125 -0.167 0.239 

Suppression -0.193 0.028 0.388 

Self Blame(CERQ) 0.073 0.261 0.273 

Acceptance(CERQ) 0.215 0.032 0.362 

Rumination 0.195 0.333 0.007 

Positive Refocusing 0.115 -0.017 0.060 

Refocus On Planning 0.334 -0.006 -0.064 

Positive Reappraisal 0.349 -0.211 0.141 

Putting Into Perspective 0.292 -0.149 0.181 

Catastrophizing 0.012 0.375 0.070 

Blaming Others 0.086 0.285 -0.091 

Self Distraction 0.052 0.094 0.248 

Use Of Emotional Support 0.280 0.175 -0.226 

Positive Reframing 0.288 -0.239 0.151 

Humor 0.205 -0.064 0.045 

Substance Use -0.065 0.301 0.090 

Use Of Instrumental Support 0.327 0.124 -0.242 

Venting 0.269 0.187 -0.258 

Acceptance(COPE) 0.219 -0.034 0.312 

Self Blame(COPE) 0.007 0.291 0.257 

Religion 0.122 0.086 0.086 

Denial 0.017 0.389 0.014 

Active Coping 0.246 -0.113 -0.260 
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Supplementary Table 2. Three principal components of 14 coping strategies and the composite 

coping tendency derived from the results of the CCA analysis on the transdiagnostic adolescent 

dataset. The 14 coping strategies are shown ordered by their canonical correlation weight. 

 
Coping Strategies Weight PC1 PC2 PC3 

Seeking Understanding  0.445 0.298 -0.229 -0.291 
Cognitive Decision Making  0.405 0.312 -0.129 -0.358 

Direct Problem Solving 0.375 0.326 -0.233 -0.076 
Positivity 0.274 0.314 -0.156 0.013 
Control  0.241 0.325 -0.080 -0.029 

Wishful Thinking  0.162 0.256 0.190 -0.416 
Support Sought from Mother/Father/Guardian 0.159 0.243 -0.250 0.375 

Support Sought from Peers 0.034 0.298 0.133 0.562 
Support Sought from Other Adults 0.030 0.214 -0.104 0.390 

Optimism 0.016 0.310 0.170 0.049 
Support Sought from Siblings -0.002 0.221 -0.110 0.486 

Religion -0.130 0.176 0.241 0.107 
Avoidant Actions -0.145 0.225 0.421 -0.120 

Repression -0.513 0.133 0.666 0.217 
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