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FIGURE S1. Schematic of proposed neural circuit mechanisms of hippocampal 
dysfunction in the pathophysiology underlying psychosis onset. In (1), low glutamate 
signal/input from hypofunctioning NMDARs (akin to faulty homeostatic sensors) prompts 
GABAergic interneurons to homeostatically increase excitation by reducing inhibition 
(disinhibition) of glutamatergic pyramidal cells. However, by disinhibiting pyramidal cells (and 
thus increasing glutamate signalling) in this dysfunctional neural environment, the potential 
homeostatic adaptation becomes allostatic, with enhanced excitatory drive inducing (2) 
hypermetabolism and hyperperfusion (elevated blood flow to meet increased metabolic 
demand), and (3) an overdrive in the responsivity of midbrain dopamine neurons, which 
project to the associative striatum. Note that the connection between hippocampal pyramidal 
cells and midbrain dopamine neurons is presented as monosynaptic but is in fact polysynaptic 
via the ventral striatum and ventral pallidum. Completing the (simplified) circuit, local 
glutamatergic tone is increased in (4) but is not detected as such by hypofunctioning NMDARs 
on GABAergic interneurons. Figure reproduced and adapted with permission (CCBY 4.0) from 
(Davies et al., 2019). For original diagrams and discussion of evidence for this proposed 
circuit, see (Lisman et al., 2008; Krystal and Anticevic, 2015; Modinos et al., 2015; Krystal et 
al., 2017; Lieberman et al., 2018). Abbreviations: Glu, glutamate; NMDAR, N-methyl-D-
aspartate receptor; CA1, Cornu Ammonis 1. 
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SUPPLEMENTARY METHODS 
 
MRI Acquisition and Image Processing 
 

Image Acquisition 

All scans were acquired (eyes-open) on a General Electric Signa HDx 3T MR system with an 

8-channel coil at the Institute of Psychiatry, Psychology and Neuroscience, King’s College 

London. For image registration both a high resolution T2-weighted Fast Spin Echo (FSE) 

image (TE= 54.58ms, TR= 4380ms, Flip angle= 90deg, FoV= 240, Matrix size= 320 x 320, 

slice thickness= 2mm, 72 spatial locations) and a high-resolution T1-weighted Spoiled 

Gradient Recalled (SPGR) image (TE= 2.85ms, TR= 6.98ms, Flip angle= 11deg, FoV= 260, 

Matrix size= 256 x 256, slice thickness= 1.2mm, 196 spatial locations) were acquired.  

 

Resting Cerebral Blood Flow (CBF) was measured using 3D pseudo-Continuous Arterial Spin 

Labelling (CASL) scans acquired with a 3D Fast Spin Echo (FSE) spiral multi-shot readout, 

following a post-labelling delay of 1.5s. The spiral acquisition used a short (10ms) TE, and 8 

spiral arms (interleaves) with 512 points in each arm. FSE TE= 32.26ms, TR = 5500ms. 64 

slices of 3mm thickness were obtained and the in-plane FoV was 240×240mm. Three pairs of 

tagged-untagged images were collected. The whole ASL pulse sequence, including the 

acquisition of calibration images, was performed in 6:08min. 

 

Image Processing 

Data were preprocessed using FMRIB Software Library (FSL) 6.0.2 using the following 

procedure: (1) T1 and T2 images were skull-stripped and corresponding brain-only binary 

masks created; (2) original CBF images were coregistered to the T2 images and (3) multiplied 

by the binary T2 mask to create a skull-stripped CBF image in T2 space; (4) skull-stripped T2 

was coregistered to skull-stripped T1; (5) skull-stripped T1 was first linearly coregistered to 

the MNI152 T1 2mm brain template, before non-linear registration (FNIRT) of the original T1 

to MNI space; (6) original T2 images were registered to the MNI template (via T1 space) in a 

single concatenated step, using the T2-to-T1 transformation matrix (from step 4) and T1-to-

MNI warp (from step 5); (7) skull-stripped CBF images (already in T2 space) were registered 

to the MNI template using the concatenated procedure in step 6; (8) normalised CBF images 

were spatially smoothed with a 6mm Gaussian kernel. The final voxel size was 2 x 2 x 2 mm. 

All images were visually inspected for preprocessing errors.  

 

Statistical Thresholds in SPM 
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Statistical thresholds for exploratory wholebrain analyses (cluster-forming threshold: p<.005; 

cluster reported as significant at p<.05 using FWE cluster correction in SPM) were determined 

a priori based on previous work at our Institute investigating the effects of potential novel 

pharmacotherapies on rCBF in humans (Paloyelis et al., 2016; Martins et al., 2020b, 2022), 

including in our previous work in CHR patients (Davies et al., 2019), and are standardly applied 

in ASL studies measuring rCBF (Joe et al., 2006; Takeuchi et al., 2011; Loggia et al., 2013; 

Mutsaerts et al., 2019; Martins et al., 2020a; Nwokolo et al., 2020). 
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SUPPLEMENTARY RESULTS 
 
CONSORT Details 
The study was registered (ISRCTN46322781): https://doi.org/10.1186/ISRCTN46322781. 

Further details required for adherence to CONSORT (including recruitment periods, power 

calculations, randomisation and further blinding details, etc) can be found in the 

Supplementary Material of our previous publication in the same sample, where the study 

protocol is also appended (Bhattacharyya et al., 2018a). 

 

 
FIGURE S2. CONSORT Flow Diagram (CHR patients) 
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FIGURE S3. Plot showing CBD plasma levels in CHR placebo and CBD groups 
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Supplementary Wholebrain Analyses: SPM vs FSL Randomise 
 
To test the robustness of the wholebrain findings, we re-ran our pairwise wholebrain analyses 

using two independent t-tests (controls vs placebo; placebo vs CBD) using randomise in 

FSL/6.0.1. De-meaned age, sex, years of education, smoking status and mean grey matter 

CBF per subject were included as covariates in the design matrix. The analysis used 5000 

permutations and was restricted using a grey matter mask (thresholded at >.50). Cluster-

based thresholding (threshold=2.3 due to modest sample size) was used, corrected for 

multiple comparisons by using the null distribution of the max (across the image) cluster size. 

 

Healthy Control vs CHR Placebo 
We found significantly higher CBF in a single (large, k=3660) cluster in the CHR placebo group 

vs healthy controls (cluster pFWE=.025; see randomise output table below). In terms of 

anatomical location, the significant cluster found here using FSL’s randomise (shown in red in 

the figure below) was almost identical to the significant clusters in our original analyses using 

SPM (shown in yellow in the figure below, superimposed on the FSL results [red]), with the 

addition of some further left cerebellar coverage with the FSL results. In terms of spatial extent, 

the FSL-derived clusters included slightly more voxels than the SPM results. 
 

 
 

Cluster 

Index 
Voxels 1-p-

MAX 
1-p-

MAX 

X 

(vox) 

1-p-

MAX 

Y 

(vox) 

1-p-

MAX 

Z 

(vox) 

1-p-

COG 

X 

(vox) 

1-p-

COG 

Y 

(vox) 

1-p-

COG 

Z 

(vox) 

COPE-

MAX 
COPE-

MAX X 

(vox) 

COPE-

MAX Y 

(vox) 

COPE-

MAX Z 

(vox) 

COPE-

MEAN 

1 3660 0.975 61 41 13 43.1 49 27.5 4.98 58 68 32 2.9 
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Placebo vs CBD 
For the CHR placebo vs CBD contrast, we did not observe any significant clusters using FSL’s 

randomise. However, the cluster found using SPM (where CBD > placebo) was present at a 

relaxed statistical threshold (cluster pFWE=.15; see randomise output table below). In terms of 

anatomical location, the (non-significant) cluster found using FSL’s randomise (shown in red 

in the figure below) was almost identical to the significant cluster in our original analyses using 

SPM (shown in yellow in the figure below, superimposed on the FSL cluster [red]). In terms of 

spatial extent, the FSL-derived cluster included slightly more voxels than the SPM results, but 

note that this cluster was not significant in the FSL analysis. The reasons for the differential 

findings for this contrast in SPM vs FSL are unclear, but it is possible that the magnitude of 

the difference (SPM results: T(21)=4.51, pFWE=.014) was not sufficiently large—combined  

with the modest sample size—to be significant with FSL’s non-parametric statistical tests. 
 

 
 

Cluster 

Index 
Voxels 1-p-

MAX 
1-p-

MAX 

X 

(vox) 

1-p-
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Y 

(vox) 

1-p-
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Z 

(vox) 
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X 

(vox) 
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Y 

(vox) 

1-p-
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Z 
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MAX 
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MAX X 

(vox) 

COPE-

MAX Y 

(vox) 

COPE-

MAX Z 

(vox) 

COPE-

MEAN 

1 1206 0.854 72 38 22 70.6 30.9 33.2 4.4 67 23 39 2.83 
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Exploratory Correlations between CAARMS and rCBF 
 
As we collected CAARMS data prior to drug administration and scanning, only baseline values 

from the CHR-placebo group could have been used in analyses with the imaging data, and 

given the modest sample size, we did not plan any a priori hypotheses along these lines. 

However, to explore whether hippocampal rCBF may be related to CAARMS scores, we 

correlated CAARMS positive symptoms (sum of the product of severity x frequency for each 

of the 4 positive symptoms) and total symptoms with rCBF values in the hippocampus (from 

the significant cluster from the linear trend/relationship analyses) in the placebo group. We 

found no significant correlation between rCBF and either CAARMS positive symptoms 

(r=.065, p=.83, n=14) or total symptoms (r=-.073, p=.80, n=14). This is consistent with two 

previous studies conducted at our institute, which found no significant association between 

attenuated positive symptom scores and elevated hippocampal rCBF in CHR patients (Allen 

et al., 2016, 2018).
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SUPPLEMENTARY DISCUSSION 
 
rCBF effects vs previous fMRI findings 
Using the same patient and control sample, we previously demonstrated that CBD has effects 

on task-based BOLD haemodynamic readouts (Bhattacharyya et al., 2018b; Wilson et al., 

2019; Davies et al., 2020), finding the same commensurate pattern of placebo > CBD > 

controls (or vice versa) in mediotemporal regions during fear processing and verbal memory 

fMRI (Bhattacharyya et al., 2018b; Davies et al., 2020). CBF is intrinsically linked to BOLD 

responses via neurovascular coupling (Kim et al., 2020), but its acquisition does not require 

the cognitive or other manipulation needed for task-based fMRI contrasts (Alsop et al., 2015). 

As such, CBF can be used to index more proximal basal resting-state conditions (Alsop et al., 

2015). Moreover, it permits exploration of quantitative pharmacological effects across the 

brain without being spatially restricted to (and dependent on) the regions engaged by specific 

fMRI tasks. Capitalising on these advantages, our results extend previous knowledge by 

suggesting that CBD may also attenuate basal resting-state hippocampal activity in CHR 

patients. An interesting corollary of this finding is that in patients with early psychosis, 

hippocampal hyperperfusion has been directly associated with reduced hippocampal BOLD 

signal during fMRI scene processing (McHugo et al., 2019). Increased basal perfusion 

combined with an attenuated stimulus-driven activation has also been observed in the 

amygdala in patients with schizophrenia (Pinkham et al., 2015). These findings raise the 

possibility that elevated baseline activity (i.e. hyperperfusion) might be limiting effective 

recruitment during task performance (McHugo et al., 2019). Although speculative, if CBD is 

indeed able to partially normalise basal hippocampal hyperperfusion this may, in turn, allow 

hippocampal circuitry to be recruited normally to meet mnemonic or other cognitive demands. 

Future CHR studies that combine perfusion imaging and memory fMRI (ideally with 

concomitant measures of performance), together with a CBD challenge, would allow 

investigation of this possibility. 

 

Mechanisms 
The molecular mechanisms by which CBD might have effects on hippocampal activity and 

rCBF remain unclear (Pertwee, 2008), but preclinical and in vitro work suggests that the 

general effects of CBD may be mediated by various mechanisms, including negative allosteric 

modulation of the CB1 receptor (Laprairie et al., 2015). CB1 is highly expressed in 

hippocampus (Glass et al., 1997) and CB1 agonism has been shown to disinhibit 

glutamatergic pyramidal neurons (Hájos et al., 2000), an effect directly related to circuit-based 

models of psychosis (Fig S1) and which may be predicted to increase hippocampal blood flow 

(Lisman et al., 2008; Knight et al., 2022). By ‘antagonising the agonists’ of CB1 and impacting 



 11 

hippocampal endocannabinoid tone, it is possible that CBD modulates CBF through these 

direct receptor/circuit mechanisms. Further proposed mechanisms include inhibition of 

anandamide hydrolysis (Bisogno et al., 2001) and actions on 5-HT1A (Russo et al., 2005), 

vanilloid type 1 (Bisogno et al., 2001) and GPR55 receptors (Ryberg et al., 2007; Pertwee, 

2008). Recent work has also implicated effects on the glutamate system (Gomes et al., 2015; 

Linge et al., 2016), which is of particular relevance to psychosis pathophysiology (Lodge and 

Grace, 2011; Howes et al., 2015; Bossong et al., 2019). On the human neuroimaging level, 

CBD modulates hippocampal glutamate in patients with early psychosis while concomitantly 

reducing psychotic symptoms (O’Neill et al., 2021), and may partially ameliorate glutamatergic 

dysfunction in those at CHR (Davies et al., 2023). CBD also alters glutamate and GABA in 

ASD and neurotypical individuals (Pretzsch et al., 2019). The mechanisms underlying the 

effects of CBD on these neuroimaging parameters as well as on symptoms therefore remains 

an important avenue for future research. 
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