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Method
[bookmark: _Toc136284700]Smoker grouping 
The smokers were split into 6 subgroups based on their smoking characteristics (Smoking status and Smoking frequency, Table S1). Specifically, those who currently smoke on most or all days were classified as “Current smoker” (n = 1254); those who previously smoked on most or all days but occasionally still smoked were classified as “Ex-smoker1” (n = 240); those who previously smoked on most or all days and had stopped smoking at the time of the study were classified as “Ex-smoker2” (n = 6749); those who had smoked occasionally in the past and now and had smoked a total of at least 100 times were classified as “Light smoker1” (n = 418); those who used to smoke occasionally and smoked a total of at least 100 times but quit smoking currently were classified as “Light smoker2” (n = 3751); and those who had extremely lightly smoked and failed to meet the standards of light smokers (i.e., a total of at least 100 times in their lifetime) were classified as “Other smoker” (n = 6214). 
[bookmark: _Toc136284701]Smoking parameters 
The other two key smoking parameters calculated were: i) pack-years was calculated as cigarettes per day divided by 20 and then times the number of years smoked and was only available for current and ex-smokers, measuring the amount of smoking; ii) quitting duration, which was calculated as age at the time of data collection minus the age when the participant stopped smoking on most days and this was only available for ex-smokers. 
[bookmark: _Toc106117249][bookmark: _Toc136284702]Brain Age Gap prediction 
In this study, extreme gradient boosting (XGBoost) predictors, a popular technique in recent brain age studies, was used to build a brain-age estimating model across all controls, with chronological age as the dependent variable and 166 regional GMV as independent variables, and was implemented using the R package xgboost (https://github. com/dmlc/xgboost). XGBoost is an implementation of gradientboosted trees designed for speed and performance; the final model is based on a collection of individual models. Compared to regular gradient boosting, which uses the loss function of the base model as a proxy for minimizing error, XGBoost computes second-order derivatives to provide information about the direction of gradients and how to obtain the minimum loss function. It also includes advanced regularization to reduce overfitting. 
In this study, the tuning parameter ranges were set to maximum depth M = [2, 3, 4, 5, 6, 7, 8, 9, 10], number of estimators N = [50, 100, 150, 200, 250], and learning rate η = [0.01, 0.05, 0.1, 0.2, 0.5], and the default values were used for all other parameters. For each set of (M, N, η), the mean squared error was measured for each inner five-fold CV loop, and a mean value for all the five-fold inner loops was then obtained to indicate the inner prediction performance. The parameter set with the highest inner prediction accuracy among the inner five-fold CVs was chosen as the optimal parameter. Finally, all samples of the inner five-fold CV were trained with the best parameters, and the testing subjects of the outer five-fold CV were predicted. The training and testing procedures of the outer five-fold CV were repeated five times, with each subset used once as the testing set. 
Therefore, a full nested five-fold CV loop finally produced five XGBoost predictors with optimal parameters, and all training data (controls) had a predicted age (interpreted as BrainAge). The BrainAge Gap can be computed by subtracting the chronological age from the estimated brain age (i.e., BrainAge – True age). The BrainAge of smokers was predicted using five XGBoost predictors and then averaged across the five predicted values as the final BrainAge of smokers, and the BrainAge Gap was also calculated for every smoker.
Specifically, we divided the brain into 166 regions based on the AAL3 brain atlas and extracted their grey matter volume (GMV), and regressed potential images for confounding variables such as gender, ethnicity, handedness, BMI, alcohol consumption, and TIV separately for regional GMV of all 166 regions using linear regression models. Then, an XGBoost prediction model was built to predict age in a non-smoking group of 𝑛 = 14,667 non-smoking subjects using the residuals of 166 linear regression models as features. To simultaneously train the predictive ability of the model and assess the generalization ability of the model, we used a nested 5-fold Cross Validation (5-fold CV) method to train the model, where the inner 5-fold CV was used to determine the optimal parameters and the outer 5-fold CV to estimate the generalization capability. The nested 5-fold CV loops produced five XGBoost prediction models with optimal parameters, and all training data had a predicted age (i.e. brain age). In the smoking group (N=18626), the brain age predicted using the 5 XGBoost prediction models and the mean of the 5 predicted values will be used as the final predicted brain age (BrainAge). Pearson's correlation coefficient (r), mean absolute error (MAE) and root mean squared error (RMSE) between predicted and chronological ages were calculated for the non-smoker and smoker groups respectively to assess the accuracy of the predictors.
Finally, BrainAge Gap (BAG) is defined as the difference between predicted age and chronological age (brain age - true age). Probably due to problems such as regression dilution and the non-Gaussian distribution of age, practical applications of brain age estimation often show age bias: BrainAge is overestimated in younger subjects and underestimated in older subjects, while BrainAge predictions are more accurate for subjects whose age is closer to the average age (of the training data set). Therefore, in order to avoid spurious correlations between BrainAge Gap and age-related variables in subsequent statistical analyses, a bias correction step is necessary. A common approach is to apply a linear regression model to remove the effect of chronological age on the estimated BrainAge. In the present study, we used the following BrainAge correction model in the non-smoker group.

	 	
The residuals of this regression equation represent the difference between BrainAge and chronological age after controlling for confounders, including linear and quadratic effects of chronological age, which we refer to as the Corrected BrainAge Gap and are calculated using the following formula (2). Further, Corrected BrainAge can be calculated using the following formula(3).

	 	

	 	
The BrainAge Gap (BAG) used in the statistical analysis was adjusted for bias unless stated otherwise. 
[bookmark: _Toc136284703]Polygenic risk score
In our calculation of PRS, the base data was a meta-analysis of over 30 genome wide association studies (GWAS) in over 1.2 million participants with European ancestry on nicotine and substance use (https://doi.org/10.1038/s41588-018-0307-5). Specifically, it targeted different stages and kinds of substance use from initiation (smoking initiation and age of regular smoking initiation) to regular use (drinks per week and cigarettes per day) to cessation (smoking cessation). The GWAS included have all been imputed to Haplotype Reference Consortium, 1000 Genomes or a combination including more specific reference panels. (more see https://conservancy.umn.edu/handle/11299/201564) 
The PRS was generated using PRSice-2 software (choishingwan.github.io/PRSice/) and calculated in the target sample according to the following equation:

	 
where, 𝑃𝑇 represents the p-value threshold, 𝑖=1,2, ..., 𝑚 denotes the 𝑖-th SNP under the 𝑃𝑇 threshold, 𝛽𝑖 denotes the effect size of the 𝑖-th SNP, 𝑗=1,2, ..., 𝑛 represents the 𝑗-th sample, 𝐺𝑖𝑗 =0,1,2 denotes the number of risk alleles for the 𝑖-th SNP in the 𝑗-th sample. The PRS at 𝑃𝑇 refers to the cumulative polygenic risk, that is, the weighted sum of the SNPs with GWAS p value less than 𝑃𝑇. 
[bookmark: _Toc136284704]Mediation analysis
To verify whether there is a mediating effect among Pack-year, BAG and PRS, a standard three-variable path mediation model was implemented using the R package “mediation”, and the specific model as follows: 
(1) 𝑌 = 𝑘1 + 𝜏𝑋 + ω1Covar + 𝜀1 . 
(2) 𝑍 = 𝑘2 + 𝛼𝑋 + ω2Covar +𝜀2 . 
(3) 𝑌 = 𝑘4 + 𝜏′𝑋 + 𝛽’𝑍 + ω4Covar + 𝜀4 . 
[bookmark: _Hlk133918771]where X is the predictor variable, Y is the response variable, and Z is the mediating variable, Covar is a covariate, as our hypotheses;
Further, we used a 4-variable mediation analysis model to test whether the relationship between PRS and Pack-year was mediated by tGMV and BAG, and whether the relationship between PRS and BAG was mediated by Pack-year and tGMV. The specific model was as follow:
(1) 𝑌 = 𝑘1 + 𝜏𝑋 + ω1Covar + 𝜀1 . 
(2) 𝑍 = 𝑘2 + 𝛼𝑋 + ω2Covar + 𝜀2 . 
(3) 𝑌 = 𝑘3 + δ𝑍 + ω3Covar + 𝜀3 . 
(4) 𝑀= 𝑘4 + 𝜁𝑋 + λ𝑍 + ω4Covar + 𝜀4 . 
(5) 𝑌 = 𝑘5 + 𝜏′𝑋 + 𝛾𝑀 + 𝜂𝑍 + ω5Covar + 𝜀5 .
where X is the predictor variable, Y is the response variable, and M and Z are the mediating variables, Covar is a covariate;
[bookmark: _Hlk113096228]The significance of the mediation, that is, whether the relationship had been significantly reduced with the inclusion of the mediator, was estimated using the bias-corrected bootstrap approach (with 1000 random samplings). Confounding variables, as in the association analysis, were regressed in the mediation model. The percentage of the mediation effect (PM) that could be explained by the mediator (indirect effect) was measured using the formula: 100% × (𝜏−𝜏′)/(𝜏). 
Since not all participants had Pack-year and PRS data, the mediation analysis was restricted to smokers who had Pack-year data (N=5799). It is worth mentioning that significant mediation effects indicate to what extent is the correlation between the independent and dependent variables related to the mediating variable, and that this is strictly a measure of association and does not imply causal relationships.
[bookmark: _Toc136284705]Other significant pathways in enrichment analysis
[bookmark: _Toc136284706]Morphine addiction
Morphine addiction can cause alterations in dopaminergic neurotransmission, and stress depression is associated with reduced dopaminergic nerve function, suggesting that morphine addiction is closely related to stress depression affective psychosis and that they may share one or more of the same neurobiological mechanisms. The region, from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), the amygdala (Amy), the hippocampus (Hip) and the striatum (ST), play an important role in morphine addiction and stress depression.
[bookmark: _Toc136284707]ErbB signaling pathway
The ErbB receptor tyrosine kinase family consists of four cell membrane receptors that are activated following ligand binding and receptor dimerization. Insufficient ErbB signaling is associated with the development of neurodegenerative diseases, such as multiple sclerosis and Alzheimer's disease. Additionally, several types of cancer are associated with the mutation or increased expression of members of the ErbB family including lung, breast, stomach, and pancreatic cancers. Because ErbB family members are critical factors in the development and malignancy of these tumors, they have been important therapeutic targets.
[bookmark: _Toc136284708]Focal adhesion kinase
Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that is overexpressed and activated in several cancers, including SCLC, and contributing to cancer progression and metastasis through its important role in cell proliferation, survival, adhesion, spreading, migration, and invasion. Increased FAK expression or activity has been observed by various methods in many human cancers, including lung cancer.
Someone believes that Glutamate is the real workhorse of all transmitters in the brain. Dopamine is the more popularly known neurotransmitter, a lack of which contributes to depression, anxiety, attention deficit hyperactivity disorder and Parkinson's disease—but it actually accounts for less than 5 percent of all synaptic activity. By contrast, glutamate accounts for about 50 percent of this activity and is especially involved in the reward-motivation circuits integral to addiction.(from Study finds neurotransmitter may play a role in alcohol relapse, addiction (medicalxpress.com) by Indiana University)
[bookmark: _Toc136284709][bookmark: _Hlk134003120]Genome wide association study
Genome wide association study (GWAS) is a genotype-phenotype association test for a dense set of hundreds of thousands to millions of genetic variants across the genome Genotype-phenotype association tests are performed on hundreds of thousands to millions of genetic variants across the genome to investigate common genetic variants in disease or to identify heritable quantitative traits for disease risk factors. GWAS has many advantages . First, the genetic loci identified by GWAS genetic loci identified by GWAS often involve new disease-causing genes of unknown function or previously unanticipated, and subsequent studies of these genes may reveal new biological aspects of the disease. Subsequent studies of these genes may reveal new biological mechanisms of disease, which in turn may provide insight into the structure of disease susceptibility. Secondly. GWAS can help to discover new drug targets and disease biomarkers. Finally, the genetic variants identified by GWAS can be used to identify high GWAS can be used to identify individuals at high risk of certain diseases for early detection, prevention, or treatment, thus contributing to the development of personalized medicine. The genetic variants identified by GWAS can be used to identify individuals at high risk of certain diseases for early detection, prevention, or treatment, thus contributing to personalized medicine.
In order to look for such sequence variants, we ran a genome wide association scan (GWAS) in the UK Biobank sample on Pack-year which quantifies smoking and associates with accelerated brain ageing using Plink software. 
As for GWAS quality control, SNPs with minor allele frequencies (MAF) <1%, call rates <95%, Hardy-Weinberg equilibrium p<10-5 were excluded from analysis, and individuals with excessive missingness >5% and sex mismatches >0.90 were excluded from the study.
To protect against potential confounding effects, we adjusted for potential nuisance variables, such as sex, age, TIV, handedness, BMI, alcohol consumption and the first ten components generated. In our GWAS, the exome-wide significance threshold was set to be 0.05/number of the tests, which is 0.05/616,339 = 8.112419e-08 and the suggestive significance was set to be 1/number of the tests, which is 1/616,339 = 1.622484e-06, as suggested by a previous GWAS study. 
Finally, two genome-wide significance associations and six suggestive significance association were identified (Table S9, Figure S3, S4). In our GWAS, Genomic Inflation Factor = 1.082, indicating that there is no population stratification, and it is harder to have a false positive result, and there is no need to correct the population stratification. 
The sequence variant with the strongest association, rs199533 (p=8.825e-19), is located at 17q21.31, a region involved in inversion polymorphism. This inversion spans ~1 Mb and includes 10 genes, including CRHR1, MAPT, NSF and a protein-coding gene (LRRC37A2 leucine-rich repeat sequence). Among them, the MAPT gene is associated with several dementias, the CRHR1 gene is closely related to the development of depression, anxiety, suicide, bipolar disorder and other psychiatric disorders of affective disorders, and the gene NSF, in which the sequence variant rs199533 is located, LRRC37A2 is associated with progressive myoclonic epilepsies. Due to extensive linkage disequilibrium (LD) in the 17q21.31 inversion region, markers of various associations in this region often differ in studies. 
Another genome-wide significant sequence variant, rs7542 (p=1.689e-11), is located in MAPK3, a protein-coding gene, and the diseases associated with MAPK3, including pancreatic and cholangiocarcinoma cancer. Individuals with 16p11.2, the chromosomal location where the sequence variant rs7542 is located, deletion syndrome typically have developmental delays and intellectual disabilities, and most also have at least some features of autism spectrum disorders, which may account for its association with positive BAG. Smoking is currently the only recognized risk factor with a definite role in the development of pancreatic cancer. Numerous prospective and case-control studies have shown that the risk ratio of death in pancreatic cancer patients who smoke versus non-smokers is between 1.6 and 3.1:1, and that the amount of smoking is positively associated with the development of pancreatic cancer.
The six suggestive significant sequence variants were rs864736 (p=9.715e-08), rs12650174 (p=9.475e-07), rs75298305 (p=8.422e-07), rs12146713 (p=5.368e-07), rs11618612 (p=7.590e-07), and rs6119728 (p=1.081e-07);
rs864736 is located near KCNK2 (also known as TREK1), the eQTL for the KCNK2 gene. This gene regulates the entry of immune cells into the central nervous system (CNS) and controls CNS inflammation, which is associated with cortical atrophy and cognitive decline. Significantly associated with posterior margin of the left corpus callosum, intraparietal and central sulcus sulci and grey matter thickness.
The gene in which rs12650174 is located is GRID2, which encodes a protein that is a member of the family of ionotropic glutamate receptors, the major excitatory neurotransmitter receptors in the mammalian brain.
The gene nearest to rs12146713 on chromosome 12 (associated with medial nuclei volume) is NUAK1, which regulates the Tau protein level. Cerebral Tau accumulation is a defining characteristic of Alzheimer’s disease (AD) and other neurodegenerative disorders. 

[bookmark: _Toc136284710]Sample relatedness in UK-biobank dataset
[bookmark: _Hlk135121894]Given the nested nature of the data and the fact that many related samples were included in the UKB, we adjusted BAG prediction and association analysis for sample relatedness (the first 5 principal from components genetic ancestry analysis) which could measure the independence of the family members. Specifically, the gray matter of images were segmented after the common preprocessing procedure and partitioned into 166 regions of interest based on the automated anatomical labeling 3 (AAL3) atlas, which further were residualized for sex, ethnicity, handedness, BMI, scanning site, alcohol consumption, TIV and sample relatedness using linear regression models and then input to XGBoost predictor. And in the association analysis, sample relatedness was added to the covariates to correct for confound effect. All this adjustment only had a small effect on our results. In the Brain Age Gap prediction(Table S10, Figure S13-S15), the brain age predicted by considering sample relatedness was highly correlated with age without considering sample relatedness (r= 0.9636619, p < 2.2e-16 in test data, Figure S15).
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[bookmark: _Toc136284711]Tables
Table S1. Demographic variables
	
	Non-smoker
(n = 14667)
	Smoker
(n = 18626)
	p-value

	Age (mean (SD))
	63.12 (7.52)
	64.20 (7.51)
	<0.001

	Male (%)
	6418 (43.8)
	9233 (49.6)
	<0.001

	Handedness: right (%)
	13087 (89.2)
	16535 (88.8)
	0.195

	BMI (mean (SD))
	26.33 (4.19)
	26.62 (4.18)
	<0.001

	Alcohol consumption (mean (SD))
	27.06 (29.74)
	40.03 (38.59)
	<0.001

	Pack year (mean (SD))
	/
	18.62 (15.06)
	/

	TIV (mean (SD))
Education (mean (SD))
	1549.29 (152.67)
	1564.88 (151.82)
	<0.001

	
	4.40 (1.89)
	4.35 (1.94)
	0.027


Note: TIV was calculated as the sum of grey matter, white matter, and cerebrospinal fluid volumes in natural space. Education was the top qualification participants ,encoded using Data-Coding 100305 (https://biobank.ndph.ox.ac.uk/showcase/coding.cgi?id=100305).



[bookmark: _Toc136284712]Table S2. Demographic variables of subgroups of smokers
	
	Current Smoker
(n = 1254)
	Ex-smoker1
(n = 240)
	Ex-smoker2
(n = 6749)
	Light Smoker1
(n = 418)
	Light Smoker2
(n = 3751)
	Other Smoker
(n = 6214)

	Age (mean (SD))
	61.84 (7.29)
	62.59 (7.37)
	65.64 (7.21)
	61.72 (7.64)
	64.36 (7.48)
	63.25 (7.58)

	Male (%)
	644 (51.4)
	130 (54.2)
	3557 (52.7)
	259 (62.0)
	1918 (51.1)
	2725 (43.9)

	Handedness: right (%)
	1108 (88.4)
	212 (88.3)
	5966 (88.4)
	379 (90.7)
	3311 (88.3)
	5559 (89.5)

	BMI (mean (SD))
	26.34 (4.17)
	26.76 (4.64)
	27.37 (4.24)
	26.57 (3.52)
	26.33 (3.90)
	26.04 (4.19)

	Alcohol consumption (mean (SD))
	47.89 (51.16)
	47.67 (43.01)
	45.83 (42.27)
	51.44 (37.86)
	39.36 (34.96)
	31.50 (30.96)

	Pack year (mean (SD))
	24.08 (15.91)
	17.38 (13.93)
	17.65 (14.72)
	/
	/
	/

	TIV (mean (SD))
	1561.15 (154.18)
	1583.90 (157.65)
	1570.75 (151.42)
	1605.19 (152.20)
	1566.21 (149.63)
	1555.01 (152.04)

	Education (mean (SD))
	4.16 (2.01)
	4.38 (1.87)
	4.27 (2.00)
	4.24 (1.91)
	4.30 (1.97)
	4.52 (1.84)

	Quitting duration (mean (SD))
	/
	19.09 (9.66)
	29.28 (11.50)
	/
	/
	/




[bookmark: _Toc70350809][bookmark: _Toc136284713][bookmark: _Toc86263437]Table S3. Characteristics of smoking subgroups 
	Groups
	N
	Smoking status
	Smoking frequency
	Note

	[bookmark: _Hlk111300234]
	
	Current
	Past
	Regular
	Occasional
	

	Current smoker
	1254
	√
	
	√
	
	

	Ex-smoker1
	240
	
	√
	√
	
	Current smoking occasionally

	Ex-smoker2
	6749
	
	√
	√
	
	

	Light smoker1
	418
	√
	
	
	√
	At least 100 smokes in lifetime

	Light smoker2
	3751
	√
	√
	
	√
	At least 100 smokes in lifetime

	Oher smoker
	6214
	√
	√
	
	√
	Less than 100 smokes in lifetime

	Non-smoker
	14667
	
	
	
	
	Never smoking












[bookmark: _Toc136284714][bookmark: _Hlk111297566][bookmark: _Hlk136507805]Table S4. The anatomical regions defined in each hemisphere and their label in the automated anatomical labeling atlas AAL3.   
	No.
	Anatomical description
	Label
	Possible
	Network

	
	
	aal2.nii.gz
	abbreviation
	

	1,2 
	Precentral gyrus
	Precentral
	PreCG
	Sensorimotor

	3, 4
	Superior frontal gyrus, dorsolateral
	Frontal_Sup
	SFG
	Frontal

	5, 6
	Middle frontal gyrus
	Frontal_Mid
	MFG
	Frontal

	7, 8
	Inferior frontal gyrus, opercular part
	Frontal_Inf_Oper
	IFGoperc
	Frontal

	9, 10
	Inferior frontal gyrus, triangular part
	Frontal_Inf_Tri
	IFGtriang
	Frontal

	11, 12
	IFG pars orbitalis,  
	Frontal_Inf_Orb
	IFGorb
	Frontal

	13, 14
	Rolandic operculum
	Rolandic_Oper
	ROL
	Frontal

	15, 16
	Supplementary motor area
	Supp_Motor_Area
	SMA
	Sensorimotor

	17, 18
	Olfactory cortex
	Olfactory
	OLF
	Frontal

	19, 20
	Superior frontal gyrus, medial
	Frontal_Sup_Med
	SFGmedial
	Frontal

	21, 22
	Superior frontal gyrus, medial orbital
	Frontal_Med_Orb
	PFCventmed
	Frontal

	23, 24
	Gyrus rectus
	Rectus
	REC
	Frontal

	25, 26
	Medial orbital gyrus
	OFCmed
	OFCmed
	Frontal

	27, 28
	Anterior orbital gyrus
	OFCant
	OFCant
	Frontal

	29, 30
	Posterior orbital gyrus
	OFCpost
	OFCpost
	Frontal

	31, 32
	Lateral orbital gyrus
	OFClat
	OFClat
	Frontal

	33, 34
	Insula
	Insula
	INS
	Subcortical

	35, 36
	Anterior cingulate & paracingulate gyri
	Cingulate_Ant
	ACC
	Frontal

	37, 38
	Middle cingulate & paracingulate gyri
	Cingulate_Mid
	MCC
	Frontal

	39, 40
	Posterior cingulate gyrus
	Cingulate_Post
	PCC
	Parietal

	41, 42
	Hippocampus
	Hippocampus
	HIP
	Temporal

	43, 44
	Parahippocampal gyrus
	ParaHippocampal
	PHG
	Temporal

	45, 46
	Amygdala
	Amygdala
	AMYG
	Subcortical

	47, 48
	Calcarine fissure and surrounding cortex
	Calcarine
	CAL
	Occipital

	49, 50
	Cuneus
	Cuneus
	CUN
	Occipital

	51, 52
	Lingual gyrus
	Lingual
	LING
	Occipital

	53, 54
	Superior occipital gyrus
	Occipital_Sup
	SOG
	Occipital

	55, 56
	Middle occipital gyrus
	Occipital_Mid
	MOG
	Occipital

	57, 58
	Inferior occipital gyrus
	Occipital_Inf
	IOG
	Occipital

	59, 60
	Fusiform gyrus
	Fusiform
	FFG
	Temporal

	61, 62
	Postcentral gyrus
	Postcentral
	PoCG
	Sensorimotor

	63, 64
	Superior parietal gyrus
	Parietal_Sup
	SPG
	Parietal

	65, 66
	Inferior parietal gyrus, excluding supramarginal and angular gyri
	Parietal_Inf
	IPG
	Parietal

	67, 68
	SupraMarginal gyrus
	SupraMarginal
	SMG
	Parietal

	69, 70
	Angular gyrus
	Angular
	ANG
	Parietal

	71, 72
	Precuneus
	Precuneus
	PCUN
	Parietal

	73, 74
	Paracentral lobule
	Paracentral_Lobule
	PCL
	Parietal

	75, 76
	Caudate nucleus
	Caudate
	CAU
	Subcortical

	77, 78
	Lenticular nucleus, Putamen
	Putamen
	PUT
	Subcortical

	79, 80
	Lenticular nucleus, Pallidum
	Pallidum
	PAL
	Subcortical

	81, 82
	Thalamus
	Thalamus
	THA
	Subcortical

	83, 84
	Heschl’s gyrus
	Heschl
	HES
	Temporal

	85, 86
	Superior temporal gyrus
	Temporal_Sup
	STG
	Temporal

	87, 88
	Temporal pole: superior temporal gyrus
	Temporal_Pole_Sup
	TPOsup
	Temporal

	89, 90
	Middle temporal gyrus
	Temporal_Mid
	MTG
	Temporal

	91, 92
	Temporal pole: middle temporal gyrus
	Temporal_Pole_Mid
	TPOmid
	Temporal

	93, 94
	Inferior temporal gyrus
	Temporal_Inf
	ITG
	Temporal

	95, 96
	Crus I of cerebellar hemisphere
	Cerebellum_Crus1
	CERCRU1
	Cerebellum

	97, 98
	Crus II of cerebellar hemisphere
	Cerebellum_Crus2
	CERCRU2
	Cerebellum

	99, 100
	Lobule III of cerebellar hemisphere
	Cerebellum_3
	CER3
	Cerebellum

	101, 102
	Lobule IV, V of cerebellar hemisphere
	Cerebellum_4_5
	CER4_5
	Cerebellum

	103, 104
	Lobule VI of cerebellar hemisphere
	Cerebellum_6
	CER6
	Cerebellum

	105, 106
	Lobule VIIB of cerebellar hemisphere
	Cerebellum_7b
	CER7b
	Cerebellum

	107, 108
	Lobule VIII of cerebellar hemisphere
	Cerebellum_8
	CER8
	Cerebellum

	109, 110
	Lobule IX of cerebellar hemisphere
	Cerebellum_9
	CER9
	Cerebellum

	111, 112
	Lobule X of cerebellar hemisphere
	Cerebellum_10
	CER10
	Cerebellum

	113
	Lobule I, II of vermis
	Vermis_1_2
	VER1_2
	Cerebellum

	114
	Lobule III of vermis
	Vermis_3
	VER3
	Cerebellum

	115
	Lobule IV, V of vermis
	Vermis_4_5
	VER4_5
	Cerebellum

	116
	Lobule VI of vermis
	Vermis_6
	VER6
	Cerebellum

	117
	Lobule VII of vermis
	Vermis_7
	VER7
	Cerebellum

	118
	Lobule VIII of vermis
	Vermis_8
	VER8
	Cerebellum

	119
	Lobule IX of vermis
	Vermis_9
	VER9
	Cerebellum

	120
	Lobule X of vermis
	Vermis_10
	VER10
	Cerebellum

	121, 122
	Thalamus, Anteroventral Nucleus
	Thal_AV
	tAV
	Subcortical

	123, 124
	Lateral posterior
	Thal_LP
	tLP
	Subcortical

	125, 126
	Ventral anterior
	Thal_VA
	tVA
	Subcortical

	127, 128
	Ventral lateral
	Thal_VL
	tVL
	Subcortical

	129, 130
	Ventral posterolateral
	Thal_VPL
	tVPL
	Subcortical

	131, 132
	Intralaminar
	Thal_IL
	tIL
	Subcortical

	133, 134
	Reuniens
	Thal_Re
	tRe
	Subcortical

	135, 136
	Mediodorsal medial magnocellular
	Thal_MDm
	tMDm
	Subcortical

	137, 138
	Mediodorsal lateral parvocellular
	Thal_MDl
	tMDl
	Subcortical

	139, 140
	Lateral geniculate
	Thal_LGN
	tLGN
	Subcortical

	141, 142
	Medial Geniculate
	Thal_MGN
	tMGN
	Subcortical

	143, 144
	Pulvinar anterior
	Thal_PuA
	tPuA
	Subcortical

	145, 146
	Pulvinar medial
	Thal_PuM
	tPuM
	Subcortical

	147, 148
	Pulvinar lateral
	Thal_PuL
	tPuL
	Subcortical

	149, 150
	Pulvinar inferior
	Thal_PuI
	tPuI
	Subcortical

	151, 152
	Anterior cingulate cortex, subgenual
	ACC_sub
	ACCsub
	Frontal

	153, 154
	Anterior cingulate cortex, pregenual
	ACC_pre
	ACCpre
	Frontal

	155, 156
	Anterior cingulate cortex, supracallosal
	ACC_sup
	ACCsup
	Frontal

	157, 158
	Nucleus accumbens
	N_Acc
	Nacc
	Brainstem

	159, 160
	Ventral tegmental area
	VTA
	VTA
	Brainstem

	161, 162
	Substantia nigra, pars compacta
	SN_pc
	SNpc
	Brainstem

	163, 164
	Substantia nigra, pars reticulata
	SN_pr
	SNpr
	Brainstem

	165, 166
	Red nucleus
	Red_N
	RedN
	Brainstem

	167, 168
	Locus coeruleus
	LC
	LC
	Brainstem

	169
	Raphe nucleus, dorsal
	Raphe_D
	RapheD
	Brainstem

	170
	Raphe nucleus, median
	Raphe_M
	RapheM
	Brainstem


Note. Column 4 provides a set of possible abbreviations for the anatomical descriptions. The original numbers in AAL2 for the anterior cingulate cortex (35, 36) and thalamus (81, 82) are left empty in AAL3, as those voxels were substituted by the new subdivisions (Thalamic nuclei: 121-151; anterior cingulate cortex: 151-156). Thus, the total number of parcellations in AAL3 is 166, with maximum label number 170. This ensures that most of the numbers used in AAL2 remain the same in AAL3, while AAL3 mainly adds new areas starting at number 121.
















[bookmark: _Toc136284715]Table S5. Results of correlation analysis between PRS and smoking at different PT thresholds.
	PT
	r
	p-value
	PT
	r
	p-value
	PT
	r
	p-value
	PT
	r
	p-value

	5e.08
	0.00422
	0.52702
	0.125
	0.02110
	0.00157
	0.250
	0.01917
	0.00407
	0.375
	0.01892
	0.00459

	0.005
	0.01794
	0.00717
	0.130
	0.02141
	0.00134
	0.255
	0.01912
	0.00418
	0.380
	0.01885
	0.00474

	0.010
	0.01709
	0.01043
	0.135
	0.02050
	0.00213
	0.260
	0.01922
	0.00398
	0.385
	0.01859
	0.00535

	0.015
	0.01827
	0.00619
	0.140
	0.02006
	0.00264
	0.265
	0.01896
	0.00450
	0.390
	0.01850
	0.00557

	0.020
	0.01905
	0.00430
	0.145
	0.02018
	0.00249
	0.270
	0.01884
	0.00476
	0.395
	0.01836
	0.00593

	0.025
	0.02141
	0.00134
	0.150
	0.01997
	0.00276
	0.275
	0.01897
	0.00448
	0.400
	0.01812
	0.00664

	0.030
	0.01994
	0.00281
	0.155
	0.02047
	0.00216
	0.280
	0.01867
	0.00515
	0.405
	0.01812
	0.00661

	0.035
	0.02112
	0.00155
	0.160
	0.02086
	0.00178
	0.285
	0.01883
	0.00478
	0.410
	0.01811
	0.00665

	0.040
	0.02305
	0.00055
	0.165
	0.02107
	0.00159
	0.290
	0.01892
	0.00457
	0.415
	0.01833
	0.00601

	0.045
	0.02276
	0.00065
	0.170
	0.02060
	0.00202
	0.295
	0.01886
	0.00471
	0.420
	0.01830
	0.00610

	0.050
	0.02277
	0.00064
	0.175
	0.02060
	0.00202
	0.300
	0.01884
	0.00475
	0.425
	0.01814
	0.00656

	0.055
	0.02167
	0.00117
	0.180
	0.02061
	0.00201
	0.305
	0.01877
	0.00492
	0.430
	0.01791
	0.00727

	0.060
	0.02106
	0.00160
	0.185
	0.02113
	0.00154
	0.310
	0.01887
	0.00468
	0.435
	0.01781
	0.00761

	0.065
	0.02044
	0.00219
	0.190
	0.02125
	0.00145
	0.315
	0.01910
	0.00422
	0.440
	0.01751
	0.00871

	0.070
	0.01970
	0.00315
	0.195
	0.02106
	0.00160
	0.320
	0.01949
	0.00349
	0.445
	0.01784
	0.00750

	0.075
	0.02110
	0.00157
	0.200
	0.02117
	0.00152
	0.325
	0.01921
	0.00400
	0.450
	0.01787
	0.00741

	0.080
	0.02085
	0.00179
	0.205
	0.02090
	0.00173
	0.330
	0.01888
	0.00468
	0.455
	0.01770
	0.00798

	0.085
	0.02054
	0.00208
	0.210
	0.02093
	0.00171
	0.335
	0.01909
	0.00422
	0.460
	0.01753
	0.00862

	0.090
	0.02071
	0.00191
	0.215
	0.02039
	0.00224
	0.340
	0.01891
	0.00460
	0.465
	0.01757
	0.00846

	0.095
	0.02006
	0.00265
	0.220
	0.02045
	0.00218
	0.345
	0.01900
	0.00442
	0.470
	0.01739
	0.00916

	0.100
	0.02042
	0.00222
	0.225
	0.02067
	0.00195
	0.350
	0.01885
	0.00472
	0.475
	0.01748
	0.00883

	0.105
	0.01985
	0.00294
	0.230
	0.01992
	0.00284
	0.355
	0.01898
	0.00444
	0.480
	0.01732
	0.00947

	0.110
	0.02057
	0.00205
	0.235
	0.01947
	0.00353
	0.360
	0.01906
	0.00428
	0.485
	0.01745
	0.00892

	0.115
	0.02113
	0.00154
	0.240
	0.01959
	0.00333
	0.365
	0.01891
	0.00461
	0.490
	0.01749
	0.00875

	0.120
	0.02132
	0.00140
	0.245
	0.01920
	0.00400
	0.370
	0.01897
	0.00448
	0.495
	0.01747
	0.00885







[bookmark: _Toc136284716]Table S6. Results of partial correlation analysis between PRS and Pack-year under TOP10 threshold
	PT
	r
	p-value
	n

	0.040 
	0.02305 
	0.00055 
	16363

	0.050 
	0.02277 
	0.00064 
	16363

	0.045 
	0.02276 
	0.00065 
	16363

	0.055 
	0.02167 
	0.00117 
	16363

	0.130 
	0.02141 
	0.00134 
	16363

	0.025 
	0.02141 
	0.00134 
	16363

	0.120 
	0.02132 
	0.00140 
	16363

	0.190 
	0.02125 
	0.00145 
	16363

	0.200 
	0.02117 
	0.00152 
	16363

	0.115 
	0.02113 
	0.00154 
	16363
















[bookmark: _Toc136284717]Table S7. Results of correlation analysis between PRS and GM of brain regions (PT=0.41).
	NO.in AAL3
	LABEL in AAL3
	r
	p

	134
	Thal_Re_R
	-0.02926
	1.16E-05

	122
	Thal_AV_R
	-0.02873
	1.67E-05

	12
	Frontal_Inf_Orb_2_R
	-0.028
	2.72E-05

	6
	Frontal_Mid_2_R
	-0.02668
	6.39E-05

	32
	OFClat_R
	-0.02604
	9.54E-05

	46
	Amygdala_R
	-0.02583
	0.000108

	31
	OFClat_L
	-0.02414
	0.000298

	22
	Frontal_Med_Orb_R
	-0.02399
	0.000325

	86
	Temporal_Sup_R
	-0.02397
	0.000328

	45
	Amygdala_L
	-0.02328
	0.000485

	90
	Temporal_Mid_R
	-0.02237
	0.000803

	24
	Rectus_R
	-0.02215
	0.0009

	126
	Thal_VA_R
	-0.02184
	0.001066

	66
	Parietal_Inf_R
	-0.02124
	0.001461

	153
	ACC_pre_L
	-0.02107
	0.001592

	11
	Frontal_Inf_Orb_2_L
	-0.02087
	0.001765

	89
	Temporal_Mid_L
	-0.02066
	0.001963

	5
	Frontal_Mid_2_L
	-0.02026
	0.002397

	44
	ParaHippocampal_R
	-0.02009
	0.002606

	18
	Olfactory_R
	-0.01995
	0.00279

	154
	ACC_pre_R
	-0.01994
	0.002813

	136
	Thal_MDm_R
	-0.0199
	0.002865

	133
	Thal_Re_L
	-0.01985
	0.002939

	10
	Frontal_Inf_Tri_R
	-0.01979
	0.003028

	33
	Insula_L
	-0.01972
	0.003125

	138
	Thal_MDl_R
	-0.0194
	0.003649

	65
	Parietal_Inf_L
	-0.01884
	0.004755

	9
	Frontal_Inf_Tri_L
	-0.01884
	0.004765

	26
	OFCmed_R
	-0.01878
	0.004886

	135
	Thal_MDm_L
	-0.01874
	0.004977

	34
	Insula_R
	-0.01819
	0.006409

	55
	Occipital_Mid_L
	-0.01809
	0.006721

	139
	Thal_LGN_L
	-0.01804
	0.006867

	94
	Temporal_Inf_R
	-0.01802
	0.006919

	152
	ACC_sub_R
	-0.0177
	0.008008

	29
	OFCpost_L
	-0.01768
	0.008054

	21
	Frontal_Med_Orb_L
	-0.01765
	0.008165

	141
	Thal_MGN_L
	-0.01762
	0.008294

	128
	Thal_VL_R
	-0.01751
	0.008682


[bookmark: _Toc136284718]Table S8. The difference in BrainAge Gap between the smoker subgroups and the non-smoker group   
	
	Mean difference (CI)
	t-value
	p-value
	Cohen’s d

	All Smoker - Non-smoker
	0.296 [0.216, 0.377]
	7.227
	5.06×10-13
	0.074

	Current - Non-smoker
	1.010 [0.799, 1.223]
	9.338
	1.04×10-20
	0.307

	Ex1 - Non-smoker
	0.706 [0.240, 1.173]
	2.966
	3.02×10-03
	0.219

	Ex2 - Non-smoker
	0.384 [0.276, 0.493]
	6.941
	3.98×10-12
	0.133

	Light1 - Non-smoker
	0.288 [-0.068, 0.645]
	1.585
	1.13×10-01
	0.100

	Light2 - Non-smoker
	-0.011 [-0.143, 0.121]
	-0.157
	8.75×10-01
	0.016

	Other - Non-smoker
	-0.090 [-0.198, 0.019]
	-1.621
	1.05×10+
	-0.012


[bookmark: _Hlk133915015]Note: As illustrated in Table S7, smokers had a bigger BrainAge Gap than non-smokers, with a mean difference (MD) of 0.296 years, p < 0.001, CI = 0.598–0.646, and Cohen’s d = 0.074. To further quantify the difference in the BrainAge Gap of smokers and non-smokers, each smoking subgroup was compared with the non-smoking group. urrent smokers had the largest BrainAge Gap, with MD = 1.101 years, p < 0.001, and Cohen’s d = 0.307, followed by the Ex-smoker1 group (MD = 0.706 years, p < 0.001, and Cohen’s d = 0.219), and Ex-smoker2 group (MD = 0.384 years, p < 0.001, and Cohen’s d = 0.133). There were no significant differences in the BrainAge Gap between the Light smoker1, Light smoker2 group and Other smoker group and the non-smokers.






[bookmark: _Toc136284719]Table S9. The difference in PRS between the smoker subgroups and the non-smoker group
	
	Mean difference (CI)
	t-value
	p-value
	Cohen’s d

	All Smoker - Non-smoker
	0.622 [0.598,0.646]
	50.381
	0
	0.633

	Current - Non-smoker
	1.023 [0.960, 1.086]
	31.923
	5.2×10-219
	1.138

	Ex1 - Non-smoker
	1.000 [0.867, 1.142]
	14.333
	2.13×10-46
	1.095

	Ex2 - Non-smoker
	0.941 [0.910, 0.972]
	59.230
	0
	0.999

	Light1 - Non-smoker
	0.890 [0.784, 0.995]
	16.516
	6.11×10-61
	0.969

	Light2 - Non-smoker
	0.851 [0.813, 0.889]
	43.890
	0
	0.907

	Other - Non-smoker
	0.057 [0.027, 0.088]
	3.652
	2.61×10-4
	0.059


Note: As illustrated in Table S8, smokers had a bigger PRS than non-smokers, with a mean difference (MD) of 0.622, p < 0.001, CI = 0.598–0.646, and Cohen’s d = 0.633. To further quantify the difference in the PRS of smokers and non-smokers, each smoking subgroup was compared with the non-smoking group. Current smokers had the largest PRS, with MD = 1.1023, p < 0.001, and Cohen’s d = 1.138, followed by the Ex-smoker1 group (MD = 1.000, p < 0.001, and Cohen’s d = 1.095), Ex-smoker2 group (MD = 0.941, p < 0.001, and Cohen’s d = 0.999), Light smoker1 (MD = 0.890，p < 0.001，Cohen’s d = 0.969) and Light smoker2 (MD = 0.851，p < 0.001，Cohen’s d = 0.907). 











[bookmark: _Toc136284720]Table S10. Sequence variants associated with Pack-year   
	
	RsNumber
	Position (GRCh38)
	Allele
	MAF (%)
	Effect(β)
	p-value

	exome-wide significance
	rs199533
	chr17:46751565
	A/G
	21.25
	0.362
	8.825e-19

	
	rs7542
	chr16:30114519
	C/G
	43.98
	-0.2287
	1.689e-11

	suggestive significance
	rs864736
	chr1:214976917
	C/A
	45.19
	0.1794
	9.715e-08

	
	rs12650174
	chr4:93308358
	G/A
	7.1
	0.3203
	9.475e-07

	
	rs75298305
	chr7:131471760
	T/G
	6.919
	0.3259
	8.422e-07

	
	rs12146713
	chr12:106083027
	C/T
	9.544
	0.2868
	5.368e-07

	
	rs11618612
	chr13:109710128
	T/C
	26.1
	-0.1894
	7.590e-07

	
	rs6119728
	chr20:31825318
	A/G
	29.21
	-0.196
	1.081e-07




Table S11. Association of PRS (PT=0.04) with BAG, tGMV and smoking parameter with more adjusting for sample relatedness.
	Group
	Model1
	Model2

	
	β(SE)
	t-value
	p-value
	β(SE)
	t-value
	p-value

	
	BAG

	Smoking group
(unadjusted Pack.year)
	0.09(0.032)
	2.686
	0.0072
	0.08(0.032)
	2.563
	0.0104

	Smoking group
(adjust Pack.year)
	0.04(0.049)
	0.890
	0.374
	0.04(0.049)
	0.785
	0.433

	Smoking and control group
	0.08(0.025)
	3.464
	5.33×10-4
	0.08(0.025)
	3.453
	5.55×10-4

	
	tGMV

	Smoking and control group
(unadjusted Pack.year)
	-350.90(74.371)
	-4.718
	2.39×10-6
	-161.2(49.47)
	-3.258
	0.0011

	Smoking and control group
(adjusted Pack.year)
	-256.48(89.838)
	-2.855
	0.00431
	-136.11(59.777)
	-2.277
	0.0228

	
	Quitting duration

	Unadjusted Pack.year
	-0.76(0.179)
	-4.222
	2.46×10-5
	-0.75(0.179)
	-4.182
	2.94×10-5

	Adjusting Pack.year
	-0.31(0.151)
	-2.071
	0.0383
	-0.36(0.151)
	-2.357
	0.0185


[bookmark: _Hlk135122489]Note: In this association analysis, the predictor variable was PRS and response variables were shown in the table. Model 1: Adjusted for sex, age and sample relatedness (the first 5 principal from components genetic ancestry analysis). Model 2: Adjusted for sex, age, TIV, handedness, BMI, alcohol status, site, education and sample relatedness (the first 5 principal from components genetic ancestry analysis)
[bookmark: _Toc136284721]

[bookmark: _Toc136284722][image: ]Figures
[bookmark: _Toc136284723]Figure S1. The XGBoost predictor’s performance of BAG in the non-smokers
The brain age prediction models that were run on the control group using XGBoost implemented in a nested five-fold CV framework showed a prediction accuracy of r = 0.712, CI = 0.703–0.719 (Fig. A), RMSE = 5.280, and MAE = 4.220. The BrainAge Gap for every non-smokers (Fig. B) showed a negative association with chronological age, as expected (r = − 0.707). After bias adjusting using linear regression with the formula BrainAge = 51.68 + 0.151× age + 0.005 × age2, the corrected BrainAge of non-smokers was correlated more with chronological age (r = 0.896, CI = 0.893–0. 899 [Fig. C], RMSE = 3.722, and MAE = 2.997), and the corrected BrainAge Gap was orthogonal to the chronological age (r ≈ 0; Fig. D). 

[bookmark: _Toc136284724][image: ]Figure S2. Correlation between the Chronological Age (X-axis) and the BrainAge (Y-axis) with age bias adjustment in all smoker subgroups. 
Correlation between the corrected predicted age (i.e., BrainAge) and chronological age in the six smoking groups with r = 0.90, p < 0.001. The slope of the black dotted line is 1. The red line is the fitted curve with the linear effect of chronological age. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 





[bookmark: _Toc136284725][image: ]Figure S3. Difference between each smoker subgroup and non-smokers in the mean corrected BrainAge Gap. The error bar shows the 95% confidence interval. The statistical significance level is shown above each bar (****, p < 0.0001, ***, p < 0.001, **, p < 0.01, *, p < 0.5, NS, non-significant).








[image: ]Figure S4. Difference between each smoker subgroup and non-smokers in the PRS. The error bar shows the 95% confidence interval. The statistical significance level is shown above each bar (****, p < 0.0001, ***, p < 0.001, **, p < 0.01, *, p < 0.5, NS, non-significant).
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[bookmark: _Toc136284727]Figure S5. The Q-Q plot of GWAS


Figure S6.  The manhattan plot of GWAS
[image: ]


[image: ]Figure S7. LocusZoom plot showing the GWAS results for the neighborhood of rs199533. r2: a measure of the linkage disequilibrium between rs199533 and SNPs 







[image: ]Figure S8. LocusZoom plot showing the GWAS results for the neighborhood of rs7542. r2: a measure of the linkage disequilibrium between rs7542 and SNPs




[image: C:\Users\yang\AppData\Local\Temp\1647841825(1).png]Figure S9. LocusZoom plot showing the GWAS results for the neighborhood of rs864736. r2: a measure of the linkage disequilibrium between rs864736 and SNPs





[image: C:\Users\yang\AppData\Local\Temp\1647841872(1).png]Figure S10. LocusZoom plot showing the GWAS results for the neighborhood of rs199533. r2: a measure of the linkage disequilibrium between rs199533 and SNPs







[image: C:\Users\yang\AppData\Local\Temp\1647841912(1).png]
Figure S11. LocusZoom plot showing the GWAS results for the neighborhood of rs12146713. r2: a measure of the linkage disequilibrium between rs12146713 and SNPs


[image: ]Figure S12. The XGBoost predictor’s performance of BAG in the non-smokers after adjusting for sample relatedness

[bookmark: _Toc136284728][image: ] Figure S13. Correlation between prediction results with and without adjusting sample correlation in train data




[bookmark: _Toc136284729][image: ]Figure S14. Correlation between prediction results with and without adjusting sample correlation in test data 
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