-- Supplementary Material --

Longitudinal course of endocannabinoids and *N*-acylethanolamines in hair of mothers and their children in the first year postpartum: Investigating the relevance of maternal childhood maltreatment experiences

Melissa Hitzler^{1*}, Lynn Matits^{1,2}, Anja M. Gumpp¹, Alexandra M. Bach¹, Ute Ziegenhain³, Wei Gao⁴, Iris-Tatjana Kolassa¹, Alexander Behnke¹

¹Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany

²Division of Sports and Rehabilitation Medicine, Department of Medicine, Ulm University Hospital, Ulm, Germany

³Department of Child and Adolescent Psychiatry, Ulm University Hospital, Ulm, Germany

⁴Department of Biopsychology, Technische Universität Dresden, Dresden, Germany

* Corresponding author: M.Sc.-Psych. Melissa Hitzler Melissa.hitzler@uni-ulm.de

<u>Content:</u> Study Flow Study Flow Hair Sampling Description Hair Processing and Endocannabinoid Analysis Supplementary Descriptive Data Supplementary Statistical Analyses

Study Flow

Supplementary Figure S1. Study Flow. Flow chart representing the procedures of recruitment, withdrawal rates, characterization and analyses of the study cohort in the project "My Childhood – Your Childhood". The exclusion of preterm births was chosen as further exclusion criteria at t_1 as child development should be analyzed. At t_1 mothers with and without CM were matched. Thus, N = 56 women without CM experiences were not contacted at t_1 due to this matching process.

Grey depicted points of measurement are included in the current study and the novel longitudinal analyses of t_0 and t_2 data.

Study Flow Hair Sampling Procedure

Supplementary Figure 2. Study flow and drop-out rates of hair sampling. Overview of recruitment and hair specimen collection after applying exclusion criteria and removal of missing values and values under technical detection limit.

Note. At $t_0 n = 59$ mother-child-dyads rejected hair sampling; n = 143 newborns had to spares hair or were too fidgety for sampling. At $t_2 n = 26$ mothers-child-dyads rejected hair sampling; n = 7 children had to spares hair or were too fidgety for hair sampling. For general drop-out rates and reasons between t_0 , t_1 and t_2 see Supplementary Figure S1. Note that due to its low abundance in hair, the measurement of AEA led to many values below the detection limit and thus missing values for analysis. Except for AEA, full eCB/NAE data at both measurement points in time was available from n = 63 mothers and n = 45 children enabling longitudinal analyses.

* to eCB data was previously published in Koenig et al., 2018. For reasons of comparability, the same cohort was considered in the current study using a different statistical approach; Results from Koenig et al., 2018 were replicated within the current study. t₂ eCB data and longitudinal analyses were considered for the first time in the current study. AEA anandamide; 2-AG/1-AG 2-arachidonoylglycerol; SEA stearoylethanolamide; OEA oleoylethanolamide; PEA palmitoylethanolamide.

Supplementary Information: Hair Processing and Endocannabinoid Analysis

While circulating eCB concentrations mirror a state and can fluctuate depending on circadian rhythmicity and acute stress (Vaughn et al., 2010), hair analyses provide the more reliable and stable measurement of eCB (Krumbholz et al., 2013), especially in the time around childbirth. Thus they allow for a retrospective measure of long-term eCB accumulation over weeks and months. Hair sampling took place directly after the psychodiagnostic interviews at t_0 and t_2 in mother-child-dyads that gave informed consent in sampling of biological specimen.

In total, hair was collected from N = 474 mothers and N = 331 children at t₀ and N = 244 mothers and N = 237 children at t₂. At t₀ 59 mother-child-dyads rejected hair sampling. In n = 143mothers declined hair sampling in their infants, the newborns hair was to spares for sampling or infants were too fidgety. At t₂ 26 mother-child-dyads rejected hair sampling; n = 7 children had to spares hair or were too fidgety for hair sampling (for general drop out reasons between t₀, t₁ and t₂ see Figure S1). Upon limited material, the analysis of the primary hair-based biological marker, steroid hormones, was prioritized (data not shown here). At both times of measurement eCB and NAE were quantified in all remaining hair specimen with sufficient material. At t₀, sufficient material for additional eCB and NAE quantification was available for 150 mothers and 92 children; and at t₂, eCB and NAE were measured in the hair of 148 mothers and 170 children. However, due to study drop outs, reduced available hair samples for eCB analysis and eCB values under technical detection limit only a subsample of N = 63 mothers and N = 45 children presented complete eCB and NAE data at both measurement points in time (see Figure S2 for details).

Hair collection. At t₀ and t₂, hair samples were collected and processed by trained academic staff, using laboratory gloves to avoid contamination of the hair with skin moisture. In mothers, optimally three hair strands (~3mm diameter each) were cut close to the scalp from the posterior vertex position. When this sampling location was not possible for the children due to sparse hair, infant hair samples were cut from locations with most hair, usually at the hairline beneath the ear. After parturition (t₀), newborns' hair was washed with clear water to preclude contamination with blood or amniotic fluid. Hair samples were wrapped in aluminum foil and stored at -20 °C to minimize possible degradation effects and loss of biochemical compounds due to long-term storage and humidity. To avoid contamination of the hair with skin moisture, hair samples were collected and processed using laboratory gloves.

Pre-processing. Before shipment to the laboratory of Prof. Kirschbaum at TU Dresden for LC-MS/MS mass spectrometry analyses, the preprocessing of all hair samples was performed in the laboratory of Prof. Kolassa at Ulm University. First, hair strands of the same subject were pooled. In a standardized procedure, the 3cm-hair segment proximal to the scalp was cut. Due to an approximate adult hair growth of ~1 cm/month (Wennig, 2000), the 3cm-hair segment proximal to the scalp reflects maternal cumulative eCB concentration incorporated in the last three months. However, fetal/neonatal hair grows slower than in adults with ~1cm in during the three months of the third trimester of pregnancy (cf. Gareri & Koren, 2010). Thus, to display the metabolic activity during the last three months of prenatal development, hair of newborns collected at t₀ was cut to 1 cm segments. At t₂ both, the proximal 3cm-hair segment of mothers and children was used for analyses, reflecting month 10 to 12 postpartum. To our knowledge, studies of children's hair growth velocity, in particular for children aged around 12 months, are spares. First evidence suggests, that hair growth velocity increases over the first year after birth and aligns to the growth rate of adults (Pecoraro et al., 1964; de Kruiff et al., 2020): In a small sample of children aged 6 to 12 months hair growth velocity was around ~6.7 mm/ per month and with 12 to 24 months ~9.4 mm/ per month (c.f., de Kruiff et al., 2020). Thus, for eCB analysis one year after birth, for mothers and children likewise, the 3cm-hair segment proximal to the scalp was used to reflect eCB levels of the same time period allowing to take a look into the first year postpartum. Cut hair of mothers and children was weighed (range 4–6mg) and placed into Falcon tubes. The non-pulverized hair of mothers had an average weight of 5.2 mg (SD=0.9) at t₀ and 5.2 mg (SD = 0.7) at t₂. Infant hair had an average weight of 2.4 mg (SD=1.7) at t₀ and 5.3 (SD = 0.5) at t₂. For further sample details and missing data see Figure 1 in the main manuscript.

Supplementary Descriptive Data

			Mothers t ₀			Mothers t ₂	
	-	Whole Sample	CM+	CM-	Whole Sample	CM+	CM-
		N = 150	<i>n</i> = 76	<i>n</i> = 74	N = 148	<i>n</i> = 74	<i>n</i> = 74
AEA	Med (IQR)		$0.52 (0.38)^{a}$		0.41 (0.29) ^b	0.46 (0.28) ^c	0.39 (0.24) ^d
	M (SD) †		0.53 (0.32)		0.49 (0.36)	0.47 (0.20)	0.53 (0.47)
	Min				0.12	0.12	0.17
	Max		1.97		2.62	0.87	2.62
2-AG/1-	Med (IQR)	17.73 (18.19)	21.86 (25.82)	15.14 (15.50)	24.17 (25.66)	26.75 (29.06)	22.10 (50.59)
AG	M (SD) †	23.73 (21.43)	27.99 (24.42)	19.35 (16.93)	29.02 (20.29)	30.68 (21.62)	27.36(18.87)
	Min	1.13	1.50	1.13	3.47	5.73	3.47
	Max	163.01	163.01	92.54	104.63	104.63	95.25
OEA	Med (IQR)	1687.52 (3124.05)	1685.82 (3110.54)	1687.52 (3474.40)	1097.90 (2573.43)	1108.46 (2520.21)	1096.89 (2783.47)
	M (SD) †	3163.32 (4078.56)	2885.19 (3669.16)	3448.96 (4467.44)	2197.41 (2747.61)	2271.74 (3219.87)	2123.09 (2196.23)
	Min	139.44	144.51	139.44	78.52	78.52	112.30
	Max	22323.53	21756.43	22323.53	21283.02	21283.02	9479.25
SEA	Med (IQR)	974.01 (1318.88)	623.94 (791.21)	1297.11 (1431.19)	375.61 (643.51)	397.64 (650.52)	344.24 (625.55)
	$M(SD^{\dagger})$	1731.60 (2761.85)	1179.34 (1611.24)	2298.78 (3501.17)	663.81 (885.46)	655.77 (793.98)	671.84 (973.80)
	Min	91.54	91.54	105.43	19.38	37.93	19.38
	Max	21768.91	10620.49	21768.91	5194.78	3507.43	5194.78
PEA	Med (IQR)	1934.14 (3006.46)	1529.50 (2734.35)	2103.40 (3189.15)	1473.98 (2942.41)	1509.36 (2784.92)	1343.32 (3040.59
	M (SD) †	3352.48 (4379.27)	2836.66 (3515.97)	3882.234(5087.43)	2527.90 (2869.33)	2676.39 (3207.29)	2469.41 (2504.09
	Min	59.66	59.66	192.86	263.70	263.70	264.62
	Max	29949.58	23215.63	29949.58	17660.38	17660.38	12679.25

			Children to			Children t ₂	
	-	Whole Sample	CM+	CM-	Whole Sample	CM+	CM-
		N = 92	<i>n</i> = 37	<i>n</i> = 55	N = 170	<i>n</i> = 76	<i>n</i> = 94
AEA	Med (IQR)				0.28 (0.15) ^e	$0.25 (0.17)^{\rm f}$	$0.28 (0.14)^{g}$
	<i>M (SD)</i> [†]				0.30 (0.13)	0.30 (0.14)	0.29 (0.12)
	Min				0.08	0.08	0.11
	Max				0.75	0.75	0.63
2-AG/1-	Med (IQR)	72.62 (101.67)	100.05 (114.00)	62.72 (95.63)	30.66 (44.81)	33.43 (50.22)	27.54 (35.90)
AG	M (SD) †	151.6 (280.55)	162.15 (237.97)	143.79 (307.81)	38.42 (34.74)	41.29(34.89)	35.89 (34.72)
	Min	4.27	11.20	4.27	0.85	1.80	0.85
	Max	1810.29	1414.29	1810.29	196.08	179.26	196.08
OEA	Med (IQR)	74.64 (89.74)	91.32 (100.63)	61.66 (90.89)	641.72 (410.31)	614.81 (534.86)	657.12 (376.28)
	M (SD) †	118.01 (173.88)	133.12 (136.64)	107.84 (195.55)	674.37 (427.96)	652.33 (386.03)	691.89 (462.11)
	Min	0.82	12.08	.82	104.44	104.44	127.02
	Max	1371.86	682.63	1371.86	3923.08	2429.63	3923.08
SEA	Med (IQR)	522.62 (582.29)	562.89 (754.00)	497.53 (595.41)	461.25 (346.15)	443.70 (325.19)	485.90 (416.06)
	M (SD) †	786.24 (748.00)	790.89 (606.89)	783.11 (835.05)	542.18 (314.76)	521.00 (352.21)	559.94 (283.86)
	Min	94.35	128.33	94.35	157.33	157.33	202.96
	Max	3733.71	2559.86	3733.71	2479.16	2479.16	1703.70
PEA	Med (IQR)	151.36 (219.20)	162.38 (218.21)	139.76 (220.18)	610.88 (349.51)	620.11 (429.01)	608.65 (30.41)
	M (SD) †	247.33 (344.57)	245.26 (251.70)	248.73 (397.29)	738.28 (497.71)	759.15 (513.30)	719.69 (489.33)
	Min	0.25	2.23	0.25	142.28	142.28	200.53
	Max	2833.29	1159.71	2833.29	4400.00	2740.74	4400.00

Note: At t_0 , AEA was analyzed in a subsample of mothers only, due to its low abundance in hair AEA measures of many cases were below the technical detection limit. The maximal number of available cases varies: ${}^an = 39$; ${}^bn = 98$; ${}^cn = 53$; ${}^dn = 44$; ${}^en = 89$; ${}^fn = 43$; ${}^gn = 45$.

[†]As endocannabinoid data is skewed and not normal distributed, *M* and *SD* are no reliable measures and are only reported for reasons of comparability. For analysis and interpretation *Med* and *IQR* are used exclusively. According to the mild cut-off criterion of the CTQ (Bernstein & Fink, 1998), women without any CM experiences were classified as CM– and those with at least mild CM experiences in at least one CTQ subscale were categorized as CM+. CM Childhood Maltreatment; CTQ Childhood Trauma Questionnaire AEA anandamide, 2-AG/1-AG 2/1-arachidonoylglycerol; OEA N-oleoylethanolamide; SEA N-stearoylethanolamide.

			Mothers to			Mothers t ₂	
		Whole Sample	CM+	CM-	Whole Sample	CM+	CM-
		(N = 63)	N = 37	N = 26	(N = 63)	N = 37	N = 26
2-AG/1-	Med (IQR)	20.73 (18.43)	21.77 (24.50)	14.04 (19.36)	27.78 (25.85)	30.81 (37.37)	24.85 (21.09)
AG	M (SD) †	25.09 (26.01)	28.16 (28.79)	20.73(21.24)	33.22 (22.11)	36.09 (24.12)	29.13 (18.56)
	Min	1.50	1.50	1.61	3.47	5.73	3.47
	Max	163.01	163.01	92.54	104.63	104.63	79.91
OEA	Med (IQR)	1805.63 (3115.71)	1805.63 (2616.89)	1883.03 (3265.46)	1015.93 (3034.79)	1002.38 (2897.88)	1075.10 (3277.85)
	M (SD) †	2944.00 (3826.27)	2423.30 (2499.37)	3684.99 (5132.27)	2395.73 (3435.95)	2436.83 (4010.14)	2337.23 (2472.90)
	Min	139.44	144.51	139.44	130.460	130.46	166.41
	Max	22323.53	10711.90	22323.53	21283.02	21283.02	8459.03
SEA	Med (IQR)	907.88 (1309.06)	677.23 (559.81)	1297.11 (1602.96)	479.25 (944.74)	479.25 (753.50)	514.65 (899.65)
	M (SD [†])	1672.31 (2917.95)	1070.97 (1197.24)	2528.06 (4213.66)	943.64 (1120.17)	833.44 (955.28)	1100.47 (1324.47)
	Min	91.54	91.54	253.69	43.61	43.61	216.58
	Max	21768.91	6102.38	21768.91	5194.78	3507.43	5194.78
PEA	Med (IQR)	2027.14 (2718.37)	1495.13 (2575.54)	2504.12 (4424.66)	1343.57 (3479.15)	1535.38 (3526.70)	1334.58 (4127.04)
	M (SD) †	3178.00 (4378.29)	2408.12 (2568.27)	4273.61 (5993.03)	2731.58 (3188.12)	2740.06 (3548.94)	2719.51 (2658.95)
	Min	59.66	59.66	531.08	311.14	325.79	311.140
	Max	29949.58	12247.71	29949.58	17660.38	17660.38	10688.74
			Children t ₀			Children t ₂	
		Whole Sample $(N = 45)$	CM+ $N=21$	CM- N = 24	Whole Sample $(N = 45)$	CM+ $N=21$	CM- $N=24$
2-AG/1-	Med (IQR)	62.72 (129.95)	74.30 (154.70)	60.89 (120.24)	11.31 (15.48)	10.69 (14.09)	12.29 (19.73)
AG	M (SD) †	135.35 (219.30)	178.35 (299.95)	97.72 (102.99)	15.05 (12.28)	12.95 (9.05)	16.88 (14.48)
	Min	6.84	18.70	6.84	0.85	2.14	0.85
	Max	1414.29	1414.29	377.51	59.51	32.48	59.51

Supplementary Table S2. Raw data of endocannabinoid hair concentration in pg/mg for N = 63 mothers and N = 45 children with hair data at both points of measurement

OEA	Med (IQR)	70.71 (83.53)	91.32 (97.36)	57.59 (67.60)	429.52 (352.68)	407.65 (416.31)	504.08 (367.16)
	M (SD) †	106.69(117.90)	140.67 (1571.66)	76.96(54.79)	511.99 (265.75)	487.86 (291.91)	540.97 (243.18)
	Min	8.34	22.28	8.34	104.44	104.44	186.49
	Max	682.63	682.63	204.53	1176.89	1123.27	1176.89
SEA	Med (IQR)	461.21 (408.83)	474.20 (610.03)	378.31(426.23)	595.07 (358.82)	553. 73 (288.82)	597.46 (420.17)
	M (SD) †	577.24 (439.43)	671.68 (547.39)	494.61 (305.90)	639.00 (349.82)	626.39 (450.62)	650.04 (239.29)
	Min	122.82	128.33	122.82	226.29	280.19	226.29
	Max	2219.34	2219.34	1319.33	2479.16	2479.16	1065.95
PEA	Med (IQR)	143.79 (191.76)	153.21 (205.88)	132.18 (180.13)	503.16 (259.14)	508.18 (304.40)	499.70 (234.09)
	M (SD) †	207.03 (198.70)	243.07 (261.30)	175.49 (118.05)	558.85 (371.40)	589.91 (500.87)	531.67 (209.95)
	Min	20.07	32.29	20.07	216.70	225.74	216.70
	Max	1159.71	1159.71	527.33	2653.87	2653.87	1139.75

Note: At t₀, AEA was analyzed in a subsample of mothers only, due to its low abundance in hair AEA measures of many cases were below the technical detection limit.

[†]As endocannabinoid data is skewed and not normal distributed, *M* and *SD* are no reliable measures and are only reported for reasons of comparability. For analysis and interpretation *Med* and *IQR* are used exclusively. According to the mild cut-off criterion of the CTQ (Bernstein & Fink, 1998), women without any CM experiences were classified as CM– and those with at least mild CM experiences in at least one CTQ subscale were categorized as CM+.

CM Childhood Maltreatment; CTQ Childhood Trauma Questionnaire AEA anandamide, 2-AG/1-AG 2/1-arachidonoylglycerol; OEA N-oleoylethanolamide; SEA N-stearoylethanolamide; PEA N-palmitoylethanolamide.

		Mothers to	(N = 150)			Children t	$t_0 (N = 92)$				Intergene	rational con	rrelation to ^f	₩
	AEA ^a	2- AG/1- AG	OEA	SEA	AEA	2- AG/1- AG	OEA	SEA		AEA	2- AG/1- AG	OEA	SEA	PEA
2-AG/1- AG OEA	.12	01*				.72***			2-AG/1- AG		.02	.07	.01	.09
OEA SEA PEA	.12 .21 .16	.21* 03 .17	 .78*** .94***	 .86***		.72*** .38*** .48***	.56*** .77***	.74***	OEA SEA PEA		08 14 .13	.17 .12 .17	08 15 02	.12 .06 .17
		Mothers t	2 (N=148)			Children t	$_{2}(N=170)$		·	·	Intergene	rational con	relation t2 ^g	<u></u> ;#
	AEA ^b	2- AG/1- AG	OEA	SEA	AEA°	2- AG/1- AG	OEA	SEA		AEA	2- AG/1- AG	OEA	SEA	PEA
AEA 2-AG/1- AG	 .28*				 .09				AEA 2-AG/1- AG	.10 ^e .15 ^d	.15 13	.11 .05	.07 .09	01 03
OEA SEA PEA	.11 .02 .03	.16 .14 .08	.66*** .93***	.77***	.27 * 01 01	.46** 22* .45***	.31*** .74***	.37***	OEA SEA PEA	02 ^d 07 ^d 02 ^d	05 44** 09	.06 18 01	.05 .20 .06	.07 18 .08

Supplementary T	able S3. 1	Intercor	relations of	endocanı	nabinoids at	each poin	t of me	easuren	nent.
D' ' C	1	1 .*	()1,	1	1 * * 1		•	.1	1 1 1 1 1

Bivariate Spearman rank correlations (r_s) between endocannabinoid concentrations in mothers and children

Note: p < .050, p < .010, p < .001, two-tailed. All *p*-values were adjusted for multiple comparisons using the false discovery rate (FDR). Note that at t₀, AEA was analyzed in a subsample of mothers only. Due to its low abundance in hair the AEA measures of many cases were below the technical detection limit. The maximal number of available cases varies: $a_n = 39$; $b_n = 98$; $c_n = 89$; $d_n = 62$ mother-child-dyads; $e_n = 58$ mother-child-dyads; $f_n = 62$ mother-child-dyads; $g_n = 107$ mother-child-dyads; $f_n = 62$ mother-child-dyad

AEA anandamide; 2-AG/1-AG 2/1-arachidonoylglycerol; OEA N-oleoylethanolamide; SEA N-stearoylethanolamide; PEA N-palmitoylethanolamide.

				Mothers					Children		
				t ₂					t ₂		
		AEA	2- AG/1- AG	OEA	SEA	PEA	AEA	2- AG/1- AG	OEA	SEA	PEA
	AEA	.29ª	.05ª	.36ª	11ª	.20ª					
	2-AG/1- AG	37 ^b	.09	.03	30	.04		12	08	06	16
to	OEA	.25 ^b	02	.41**	.25	.34*		.00	.06	04	.02
	SEA	.41 ^b	.03	39**	.43*	.35*		.09	02	01	03
	PEA	.29 ^b	.02	.41**	.25	.35*		.08	01	.06	.07

Supplementary Table S4 Bivariate Spearman rank correlations (rs) between endocannabinoid concentrations in hair sampled at to and t_2 in N = 63 mothers and N = 45 children

Note: * p < .050, ** p < .010, *** p < .001, two-tailed. All p-values were adjusted for multiple comparisons with the false discovery rate (FDR). data: ^a N = 17 mothers; ^b N = 23; no AEA data available for children.

infant nan		1	s collected sh ting the last t	<i>•</i> 1	arturition (t ₀) pregnancy		Hair samples collected 12 months postpartum (t ₂) representing 10-12 months postpartum					
			Mothers	N = 150				representing 10-12 months postpartum Mothers $N = 148$ CM load Emotional abuse Physical abuse Sexual abuse Emotional neglect Physica neglect .081 .140 .046 .011 .062 006 .008 .119 .134 084 006 089 .008 .119 .134 084 006 089 .008 .119 .134 084 006 089 .008 .119 .134 084 006 089 .008 .119 .134 084 006 089 .098 178* 041 039 018 101 .089 118 135 042 012 039 CM load Emotional abuse Physical abuse Sexual emotional neglect Physica neglect .023 .095 043 .071 029 .019 .086 023 .062 .034 .07				
	CM load	Emotional abuse	Physical abuse	Sexual abuse	Emotional neglect	Physical neglect	CM load		•			Physical neglect
AEA	.005	007	170	153	.269	132	.081	.140	.046	.011	.062	006
2-AG/1-AG	.158	.115	.067	.054	.134	.037	.008	.119	.134	084	006	089
OEA	045	055	015	118	068	048	.008	.119	.134	084	006	089
SEA	<u>313***</u>	224**	<u>143</u>	<u>156</u>	271 **	<u>191*</u>	098	178*	041	039	018	101
PEA	113	077	038	126	117	077	089	118	135	042	012	039
			Children	N = 92			Children $N = 170$					
	CM load	Emotional abuse	Physical abuse	Sexual abuse	Emotional neglect	Physical neglect	CM load		•			Physical neglect
AEA							023	.095	043	.071	029	.019
2-AG/1-AG	.147	.152	.057	046	.205 ^{* b}	.041	.086	023	062	.034	.079	.124
OEA	.134	.075	.037	122	.268**	.014	046	037	030	.021	040	.047
SEA	.028	.001	.018	116	.161	012	151*	143	058	013	104	150
PEA	.012	034	.003	202	.184	068	044	080	096	.075	003	.058

Supplementary Table S5 Bivariate Spearman rank correlations of maternal childhood maltreatment exposure with endocannabinoids measured in maternal hair and infant hair

Note: * p < .050, ** p < .010, *** p < .001, two-tailed. Underlined p-values are significant after correction with false discovery rate (FDR). Bivariate correlations were computed with the maximal number of cases available: ^an = 39; ^bn = 97; ^cn = 88. Note that no AEA levels were detectable in the hair of children at t₀. Exposure to childhood maltreatment (CM) was assessed with the Childhood Trauma Questionnaire (CTQ, Bader et al., 2009).

Supplementary Table S6 Bivariate Spearman rank correlations (r_s) between endocannabinoid concentrations in hair and covariates in N = 45 children

			Childre	en to	
		2-AG/1- AG	OEA	SEA	PEA
Gestational age	rs	.290	.174	.015	.104
C	р	.054	.253	.922	.496
Birth weight	rs	.016	029	184	227
	р	.917	.850	.227	.133
Sex	rs	.083	010	010	080
	р	.587	.946	.946	.603
Hair weight	rs	.287	107	407**	369*
C	р	.056	.484	.005	.013
Hair color	rs	.125	.058	.141	075
	р	.415	.705	.355	.626

			Childre	n t ₂	
		2-AG/1- AG	OEA	SEA	PEA
Age in days	rs	285	113	278	246
	р	.058	.460	.064	.103
Weight	rs	007	.034	034	.102
	р	.964	.826	.825	.505
Sex	rs	.118	.208	.118	038
	р	.441	.171	.441	.804
Serious somatic	rs	066	.100	.174	.050
illness since birth	р	.665	.515	.252	.745
Regular	rs	022	130	054	175
medication since birth	р	.884	.395	.726	.251
Hair weight	rs	177	.083	.114	057
	р	.245	.588	.456	.711
Hair color	rs	116	.249	158	.017
	р	.447	.099	.301	.914

Note: * p < .050, ** p < .010, *** p < .001, two-tailed. Italic *p*-values indicate a trend for significance (p < .100). Underlined *p*-values are significant after correction with false discovery rate (FDR). data: ^a Due to many AEA measures under technical detection limit, there is not sufficient AEA data in children available for analyses.

Supplementary Table S7 Bivariate Spearman rank correlations (r_S) between endocannabinoid concentrations in hair and covariates in N = 63 mothers

			Mo	others to		
		AEA ^a	2- AG/1 -AG	OEA	SEA	PEA
Age	rs	.177	073	.064	.065	.046
	р	.496	.569	.616	.615	.718
Perceived Stress	rs	.322	.056	070	070	003
(PSS4)	р	.208	.663	.585	.585	.983
Psychiatric	rs	201	.030	218	253*	200
diagnose lifetime	р	.439	.815	.086	.045	.116
Psychotropic	rs	.311	.087	.064	053	.031
medication lifetime	р	.224	.497	.616	.683	.809
Weekly hair	rs	168	.028	.282*	.248	.221
washing frequency	р	.549	.831	.029	.056	.089
Hair treatment	rs	<u>.640**</u>	.055	.116	.173	.100
	р	.006	.673	.371	.178	.441
Hair weight	rs	-	- .266*	.010	.090	.032
	р	-	.035	.940	.483	.801
Smoking	rs	102	.012	.020	053	.025
pregnancy	р	.697	.924	.873	.678	.848
			Mo	others t ₂		
			Mo 2-	others t	2	2

		_	2-			
		AEA ^b	AG/1	OEA	SEA	PEA
Age	rs	048	-AG 007	061	130	053
	p	.830	.959	.632	.310	.679
Perceived stress	rs	.074	.206	.126	005	.043
(PSS14) ^c	р	.742	.112	.333	.969	.744
Psychiatric	rs	.180	.041	288*	220	250
diagnosis lifetime ^d	р	.422	.762	.028	.098	.059
Psychotropic	rs	.081	129	.069	.151	.065
medication intake since birth ^c	р	.715	.321	.598	.246	.621
Weekly hair	rs	095	.036	.324*	.296*	<u>.373**</u>
washing frequency ^c	р	.683	.785	.012	.021	.003
Hair treatment	rs	398	142	.060	313	.055
	р	.082	.539	.797	.167	.814
Sport frequency	rs	044	.079	.474**	.146	.386*
per week ^c	р	.905	.674	.007	.432	.032
BMI (kg/m ²) ^c	rs	209	.107	040	054	.028
	р	.362	.421	.763	.686	.836
Currently Smoking ^c	rs	165	056	.141	.088	.141

	р	.453	.667	.279	.502	.279
Current	rs	141	.081	.030	.037	.028
Medication intake ^b	р	.520	.533	.819	.775	.830

Note: * p < .050, ** p < .010, *** p < .001, two-tailed. Italic p-values indicate a trend for significance (p < .100). Underlined *p*-values are significant after correction with false discovery rate (FDR).

data: ^a N = 17; ^b N = 23

 $^{\circ}N = 61$ for 2-AG/1-AG, OEA, SEA & PEA and N = 21 for AEA;

^c N = 58 for 2-AG/1-AG, OEA, SEA & PEA and N = 21 for AEA; ^c N = 31 for 2-AG/1-AG, OEA, SEA & PEA and N = 10 for AEA;

PSS-4/-14 4-/ 14-Item Perceived Stress Scale

Supplementary Statistical Analyses

1. Group differences in endocannabinoid hair concentrations depending on exposure to childhood maltreatment during pregnancy and one year postpartum

In accordance with our preceding study (Koenig et al., 2018) and for reasons of completeness we report supplementary analyses on CM-related group differences in eCB and NAE in mothers and children.

The following results can be found in Table S6 and Figure S2 and S3 for the sample of N=63 mothers and N=45 children with complete hair data at t₀ and t₂ who were included in the longitudinal analyses. Supplementary Table S7 and Figure S4 report the results using the complete available sample at t₀ ($N_m = 150$; $N_c = 92$) and t₂ ($N_m = 148$; $N_c = 170$), respectively.

Maternal hair. Partially confirming our prior results from a bigger study cohort within the "My Childhood – Your Childhood" study (see Koenig et al., 2018), in N=63 mothers at t₀ maternal SEA concentrations were significantly lower in CM+ as compared to CM- women. 2-AG/1-AG was descriptively higher in CM+ women as compared to CM- women, but failed to reach significance. OEA and PEA were descriptively lower in CM+ women as compared to CM- women, but failed to reach significance. At 12 months postpartum (t₂) these effects vanished: eCB and NAE hair concentrations did neither differ between mothers with and without a history of CM.

Infant hair. eCB levels in N = 45 newborn's hair were analyzed with respect to a maternal history of CM. At t₀, in newborns with CM+ mothers, OEA hair concentrations were significantly higher than in newborns without maternal CM, whereas 2-AG/1-AG hair concentrations were descriptively higher in newborns with CM+ mothers than in newborns of CM- mothers. For SEA and PEA no statistical differences were found regarding maternal CM status. At 12 months postpartum (t₂) these effects vanished: eCB and NAE hair concentrations did neither differ between children with and without a maternal history of CM

Supplementary Table S8. Wilcoxon rank-sum test on differences in endocannabinoid concentrations in N = 63 mothers and N = 45 children with complete data at both points of measurement depending on maternal CM load

	representing the last trimester of pregnancy										
		Mothers			Children						
	CM+ (n = 37)	CM- (n = 26)			CM+ (n = 21)	CM- (n = 24)					
	Med (IQR)	Med (IQR)	Ζ	р	Med (IQR)	Med (IQR)	Ζ	р			
2-AG/1- AG	21.77 (24.50)	14.04 (19.36)	-1.480	.139	74.30 (154.70)	60.89 (120.24)	-1.206	.228			
OEA	1805.63 (2616.89)	1883.03 (3265.46	824	.410	91.32 (97.36)	57.59 (67.60)	-1.684	.092			
SEA	677.23 (559.81)	1297.11 (1602.96)	-2.862	<u><.004**</u>	474.20 (610.03)	378.31(426.23)	978	.328			
PEA	1495.13 (2575.54	2504.12 (4424.66)	-1.550	.121	153.21 (205.88)	132.18 (180.13)	466	.641			

t₂ hair samples representing 10-12 months postpartum

to hair samples

		Mothers			Children				
	CM+ (n = 37)	CM- (n = 26)			CM+ (n = 21)	CM- (n = 24)			
	Med (IQR)	Med (IQR)	Ζ	р	Med (IQR)	Med (IQR)	Ζ	р	
2-AG/1- AG	30.81 (37.37)	24.85 (21.09)	-1.061	.289	10.69 (14.09)	12.29 (19.73)	728	.467	
OEA	1002.38 (2897.88)	1075.10 (3277.85)	768	.443	407.65 (416.31)	504.08 (367.16)	-1.069	.285	
SEA	479.25 (753.50)	514.65 (899.65)	-1.384	.167	553. 73 (288.82)	597.46 (420.17)	-1.229	.219	
PEA	1535.38 (3526.70)	1334.58 (4127.04)	600	.548	508.18 (304.40)	499.70 (234.09)	091	.927	

Note: * p < .050, ** p < .010, *** p < .001; Two-sided Wilcoxon rank-sum Test. Italic p values indicate a trend for significance (p < .100). CM + vs. CM-; Underlined p-values are significant after correction with false discovery rate (FDR). According to the mild cut-off criterion of the CTQ (Bernstein & Fink, 1998) women without any CM experiences were classified as CM- and those with at least mild CM experiences in at least one CTQ subscale were categorized as CM+. Wilcoxon tests were computed using all available samples of mother-child-dyads with hair samples collected at t₀ and t₂. Note that at t₀, AEA was analyzed in a subsample of mothers only. As many of the AEA measures were below the technical detection limit, AEA had to be excluded from Wilcoxon rank-sum tests as there was no sufficient data. For analysis and interpretation *Med* and *IQR* are used exclusively. CM Childhood Maltreatment; AEA anandamide, 2-AG/1-AG 2/1-arachidonoylglycerol; OEA N-oleoylethanolamide; SEA N-stearoylethanolamide; PEA N-palmitoylethanolamide.

Supplementary Figure S3. Comparison of N = 63 mothers with (CM+) and without childhood maltreatment (CM-) experiences in late pregnancy (t₀, A-D) and one year after birth (t₂, E-H) regarding their eCB and NAE hair concentrations represented by boxplots with overlying bee-swarms. Endocannabinoids are presented as raw data in pg/mg. CM+, women with CM experiences; CM-, women without CM experiences; 2-AG/1-AG 2/1-arachidonoylglycerol; OEA N-oleoylethanolamide; SEA N-stearoylethanolamide; PEA N-palmitoylethanolamide.

Supplementary Figure S4. Comparison of N = 45 children with (CM+) and without mothers exposed to childhood maltreatment (CM-) experiences in late pregnancy (t₀, A-D) and one year after birth (t₂, E-H) regarding their eCB and NAE hair concentrations represented by boxplots with overlying bee-swarms. Endocannabinoids are presented as raw data in pg/mg. CM+, women with CM experiences; CM-, women without CM experiences; 2-AG/1-AG 2/1-arachidonoylglycerol; OEA N-oleoylethanolamide; SEA N-stearoylethanolamide; PEA N-palmitoylethanolamide.

	·			representi		samples rimester of pregnancy				
_		Mothers $(N = 1)$	50)*			Children (<i>N</i> = 92)*				
	CM+ (n = 76)	CM- (n = 74)				CM+ (n = 37)	CM- (n = 55)			
	Med (IQR)	Med (IQR)	W	р	r	Med (IQR)	Med (IQR)	W	р	r
2-AG/1- AG	21.86 (25.82)	15.14 (15.50)	2097.50	<u>.007**</u>	22	100.05 (114.00)	62.72 (95.63)	770.00	.049*	021
OEA	1685.82 (3110.54)	1687.52 (3474.40)	291.00	.695	32	91.32 (100.63)	61.66 (90.89)	785.00	.064	19
SEA	623.94 (791.21)	1297.11 (1431.19)	3903.50	<u><.000*</u> **	33	562.89 (754.00)	497.53 (595.41)	898.00	.343	99
PEA	1529.50 (2734.35)	2103.40 (3189.15)	3184	.163	12	162.38 (218.21)	139.76 (220.18)	970.50	.711	04
				represer	to hair s nting 10-12	samples months postpartum				
		Mothers $(N = $	148)			Children ($N = 170$)				
	CM+	CM-				CM+	CM-			

Supplementary Table S9. Wilcoxon rank-sum test on differences in endocannabinoid concentrations in mothers and children depending on maternal CM load for the complete available sample

(n = 74)(n = 74)(n = 75)(n = 94)Med (IQR) W Med (IQR) Med (IQR) W Med (IQR) р r р r AEA 0.46 0.39 0.25 0.28 1032.00 .254 -.94 954.00 .913 -.01 (0.28)(0.26)(0.17)(0.14)2-AG/1-26.75 22.10 33.43 27.54 2545.50 .462 3131.50 .214 -.10 -0.06 AG (50.59)(50.22)(35.90)(29.06)OEA 1108.46 1096.89 614.81 657.12 2857.00 .650 -0.04 3714.50 .550 -.05 (534.86)(376.28)(2520.21)(2783.47)SEA 344.24 443.70 397.64 485.90 2665.00 .781 3972.00 .157 -.11 -0.02 (650.52)(625.55) (325.19) (416.06)PEA 1509.36 620.11 608.65 2707.50 .908 -0.01 3522.50 .995 1343.32 (3040.59) -.001 (2784.92)(429.01) (30.41)

Note: * p < .050, ** p < .010, *** p < .001; Two-sided Wilcoxon rank-sum Test. Italic p values indicate a trend for significance (p < .100). CM + vs. CM-; Underlined p-values are significant after correction with false discovery rate (FDR). r effect size measure

According to the mild cut-off criterion of the CTQ (Bernstein & Fink, 1998) women without any CM experiences were classified as CM– and those with at least mild CM experiences in at least one CTQ subscale were categorized as CM+. Wilcoxon tests were computed using all available samples of mother-child-dyads with hair samples collected at t₀ and t₂. Note that at t₀, AEA was analyzed in a subsample of mothers only. As many of the AEA measures were below the technical detection limit, AEA had to be excluded from Wilcoxon rank-sum tests as there was no sufficient data for mothers-child-dyads. For analysis and interpretation *Med* and *IQR* are used exclusively. Abbreviations: CM Childhood Maltreatment; AEA anandamide, 2-AG/1-AG 2/1-arachidonoylglycerol; OEA N-oleoylethanolamide; SEA N-stearoylethanolamide; PEA N-palmitoylethanolamide.

* Results based on the same study cohort were previously published in Koenig et al., 2018, and replicated within the current study, however, using a different statistical approach

Supplementary Figure S5. Comparison of mothers with (CM+) and without childhood maltreatment (CM-) experiences in late pregnancy (t_0 , A-D; N = 150) and one year after birth (t_2 , E-H; N = 148) regarding their eCB and NAE hair concentrations represented by boxplots with overlying bee-swarms. Endocannabinoids are presented as raw data in pg/mg. CM+, women with CM experiences; CM-, women without CM experiences; 2-AG/1-AG 2/1-arachidonoylglycerol; OEA N-oleoylethanolamide; SEA N-stearoylethanolamide; PEA N-palmitoylethanolamide.

Supplementary Figure S6. Comparison of children with mothers with (CM+) and without exposure to childhood maltreatment (CM-) in late pregnancy (t_0 , A-D; n = 92) and one year after birth (t_2 , E-H; n = 170) regarding their eCB and NAE hair concentrations represented by boxplots with overlying bee-swarms. Endocannabinoids are presented as raw data in pg/mg. CM+, women with CM experiences; CM-, women without CM experiences; 2-AG/1-AG 2/1-arachidonoylglycerol; OEA N-oleoylethanolamide; SEA N-stearoylethanolamide; PEA N-palmitoylethanolamide.

2. Longitudinal analyses of eCB and NAE in mothers and children with complete data at both points of measurement

Outcome	Predictor	b	95% CI (b)	β	η^{2}_{p} [95% CI] [#]	t	p
2-AG/1-AG	Intercept	18.44	6.15 - 30.72	-0.34	0.07 [0.01 – 0.17]	2.94	<.001***
	Time	11.50	-5.87 - 28.88	0.38	$0.01 \; [0.00 - 0.08]$	1.30	.004**
	СМ	0.06	-0.24 - 0.37	0.04	$0.00\;[0.00-0.04]$	0.41	.684
	Time x CM	-0.06	-0.49 - 0.38	-0.03	$0.00\;[0.00-0.03]$	-0.26	.793
	Model statistics: c	conditional $R^2 = .06$	68, marginal $R^2 = .068$, σ	$s_{\rm ri} = 17.59$; RMSE = 24.207		
OEA	Intercept	2506.42	1092.50 - 3920.34	-0.13	0.07 [0.01 – 0.17]	2.94	.070
	Time	212.34	-1787.25 - 2211.93	-0.10	$0.01 \; [0.00 - 0.08]$	1.30	.314
	СМ	-8.36	-43.86 - 27.13	-0.03	$0.00\;[0.00-0.04]$	0.41	.644
	Time x CM	-15.75	-65.95 - 34.44	-0.06	$0.00\;[0.00-0.03]$	-0.26	.538
	Model statistics: c	conditional $R^2 = .02$	25, marginal $R^2 = .025$, o	$s_{\rm ri} = 2024;$	RMSE = 684.48		
PEA	Intercept	3045.72	1577.58 - 4513.87	-0.16	0.07 [0.01 – 0.17]	2.94	.028*
	Time	188.17	-1888.09 - 2264.44	-0.04	$0.01 \; [0.00 - 0.08]$	1.30	.688
	СМ	-18.53	-55.39 - 18.32	-0.07	$0.00\;[0.00-0.04]$	0.41	.324
	Time x CM	-9.22	-61.34 - 42.90	-0.03	$0.00\;[0.00-0.03]$	-0.26	.729
	Model statistics: c	conditional $R^2 = .02$	27, marginal $R^2 = .027$, σ	$s_{\rm ri} = 2101;$	RMSE = 3825.75		
SEA	Intercept	1703.25	1143.78 - 2262.71	-0.09	0.23 [0.11 - 0.35]	5.97	.048*
	Time	-521.73	-1312.94 - 269.47	-0.16	$0.03 \; [0.00 - 0.15]$	-1.29	.013*
	СМ	-16.16	-30.202.11	-0.10	0.04 [0.00 - 0.13]	-2.26	.024*
	em	10110			· · [· · · · ·]		

Supplementary Table S10 Results of robust linear mixed effect models for endocannabinoid concentrations in mothers (N = 63)

Model statistics: conditional R^2 = .105, marginal R^2 = .105, σ_{ri} = 800.8; RMSE = 2206.55

Note. * p < .050, ** p < .010, *** p < .001, two-tailed. All models include random intercepts to consider repeated measures within individuals (σ_{ri} standard deviation of random intercepts). Coefficients of determination (*conditional* R^2) present the variance explained by the total model (fixed and random effects) and *marginal* R^2 the variance explained by fixed effects only. σ_{ri} presents the standard deviation of random intercepts across all subjects; RMSE presents the absolute model-to-data-fit by estimating the unexplained variance (quantified deviation of the estimated from the predicted values). Overall model tests cannot be calculated for robust linear mixed effects models. Exposure to childhood maltreatment (CM) was assessed with the sum score of the Childhood Trauma Questionnaire (CTQ, Bader et al., 2009).

Outcome	Predictor	b	95% CI (b)	β	$\eta^2_{\rm p} [95\% {\rm CI}]^{\#}$	t	р
2-AG/1-AG	Intercept	70.12	45.86 - 94.37	-0.02	0.27 [0.13 – 0.41]	5.67	.446
	Time	-52.08	-86.3817.78	-0.34	$0.17 \; [0.02 - 0.37]$	-2.98	<.001***
	CM load	0.03	-0.58 - 0.65	0.00	$0.004 \; [0.00 - 0.03]$	0.11	.913
	Time x CM	-0.12	-0.99 - 0.75	-0.01	$0.00 \; [\; 0.00 - 0.09]$	-0.27	.791
	Model statistics:	conditional R ² =	.424, marginal $R^2 = .4$	424, $\sigma_{ri} = 3$	3.03; RMSE = 159.99		
OEA	Intercept	51.28	-70.63 - 173.19	-0.74	$0.01 \; [0.00 - 0.80]$	0.82	<.001***
	Time	482.70	310.29 - 655.10	1.31	$0.41 \; [0.19 - 0.58]$	5.49	<.001***
	CM load	1.27	-1.82 - 4.36	0.07	$0.01 \; [0.00 - 0.09]$	0.81	.420
	Time x CM	-2.90	-7.27 - 1.47	-0.16	0.04 [0.00 - 0.20]	-1.30	.193
	Model statistics:	conditional R ² =	.571, marginal $R^2 =$	571, $\sigma_{ri} = 1$	66; RMSE = 203.24		
PEA	Intercept	141.18	25.01 - 257.35	-0.59	$0.06 \; [0.00 - 0.18]$	2.38	<.001***
	Time	414.37	250.08 - 578.65	0.94	$0.36\;[0.14-0.54]$	4.94	<.001***
	CM load	1.07	-1.87 - 4.02	0.05	$0.01 \; [0.00 - 0.08]$	0.71	.475
	Time x CM	-2.50	-6.67 - 1.66	-0.12	$0.00 \ [0.00 - 0.19]$	-1.18	.239

Supplementary Table S11 Results of robust linear mixed effect models for endocannabinoid concentrations in children (N = 45)

SEA	Intercept	407.92	208.36 - 607.49	-0.31	0.17 [0.04 - 0.31]	4.01	.003**		
	Time	229.53	-52.70 - 511.75	0.29	$0.06 \; [0.00 - 0.23]$	1.59	.048*		
	CM load	2.17	-2.88 - 7.23	0.09	$0.01 \; [0.00 - 0.09]$	0.84	.400		
	Time x CM	-3.15	-10.30 - 4.01	-0.13	$0.02 \; [0.00 - 0.16]$	-0.86	.388		
	Model statistics: conditional R ² = .053, marginal R ² = .053, σ_{ri} = 271.7; RMSE = 394.73								

Model statistics: conditional R^2 = .519, marginal R^2 = .519, σ_{ri} = 158.2; RSME = 296.5

Note. * p < .050, ** p < .010, *** p < .001, two-tailed. All models include random intercepts to consider repeated measures within individuals (σ_{ri} standard deviation of random intercepts). Coefficients of determination (*conditional* R^2) present the variance explained by the total model (fixed and random effects) and *marginal* R^2 the variance explained by fixed effects only. σ_{ri} presents the standard deviation of random intercepts across all subjects; RMSE presents the absolute model-to-data-fit by estimating the unexplained variance (quantified deviation of the estimated from the predicted values). Overall model tests cannot be calculated for robust linear mixed effects models. Exposure to childhood maltreatment (CM) was assessed with the sum score of the Childhood Trauma Questionnaire (CTQ; Bader et al., 2009).

Figure S7. Course of endocannabinoids depending on maternal CM. Endocannabinoid (eCB) and N-acylethanolamines (NAE) hair concentrations (pg/mg) in mothers (A-D; N = 63) and their children (E-H; N = 45) with lower (CM-) and higher childhood maltreatment (CM+) load representing last trimester of pregnancy and 12 months postpartum. t0 hair sampled shortly after birth, representing the last trimester of pregnancy; t2 hair sampled 12 months postpartum, representing 10 to 12 months postpartum. 2-AG/1-AG 2-arachidonoylglycerol, SEA stearoylethanolamide, OEA oleoylethanolamide, PEA palmitoylethanolamide.

References

Bader, K., Hänny, C., Schäfer, V., Neuckel, A., & Kuhl, C. (2009). Childhood Trauma Questionnaire - Psychometrische Eigenschaften einer deutschsprachigen Version. *Zeitschrift für Klinische Psychologie und Psychotherapie, 38*(4), 223–230. https://doi:10.1026/1616-3443.38.4.223

Bernstein, D. P., & Fink, L. (1998). Childhood Trauma Questionnaire: A retrospective self-report. San Antonio, TX: The Psychological Corporation.

de Kruijff, I., Noppe, G., Kieviet, N., Choenni, V., Lambregtse-van den Berg, M. P., Begijn, D. G., ... & van den Akker, E. L. (2020). LC-MS/MS-based reference intervals for hair cortisol in healthy children. *Psychoneuroendocrinology*, *112*, 104539. https://doi.org/10.1016/j.psyneuen.2019.104539

Gao, W., Walther, A., Wekenborg, M., Penz, M., & Kirschbaum, C. (2020). Determination of endocannabinoids and N-acylethanolamines in human hair with LC-MS/MS and their relation to symptoms of depression, burnout, and anxiety. *Talanta*, *217*, 121006. https://doi.org/10.1016/j.talanta.2020.121006

Gareri, J., & Koren, G. (2010). Prenatal hair development: Implications for drug exposure determination. *Forensic Science International*, *196*(1–3), 27–31. https://doi.org/10.1016/j.forsciint.2009.12.024

Koenig, A. M., Gao, W., Umlauft, M., Schury, K., Reister, F., Kirschbaum, C., ... & Kolassa, I. T. (2018). Altered hair endocannabinoid levels in mothers with childhood maltreatment and their newborns. *Biological Psychology*, *135*, 93-101. https://doi.org/10.1016/j.biopsycho.2018.03.006

Krumbholz, A., Anielski, P., Reisch, N., Schelling, G., & Thieme, D. (2013). Diagnostic value of concentration profiles of glucocorticosteroids and endocannabinoids in hair. *Therapeutic Drug Monitoring*, *35*(5), 600–7. https://doi.org/10.1097/ftd.0b013e3182953e43

Pecoraro, V., Astore, I., Barman, J., & Araujo, C. I. (1964). The normal trichogram in the child before the age of puberty. Journal of Investigative Dermatology, 42(6), 427-430. https://doi.org/10.1038/jid.1964.92

Vaughn, L. K., Denning, G., Stuhr, K. L., de Wit, H., Hill, M. N., & Hillard, C. J. (2010). Endocannabinoid signalling: has it got rhythm?. *British Journal of Pharmacology*, *160*(3), 530-543. https://doi.org/10.1111/j.1476-5381.2010.00790.x

Wennig, R. (2000). Potential problems with the interpretation of hair analysis results. *Forensic Science International*, *107*, 1–3. https://doi.org/10.1016/s0379-0738(99)00146-2