
Online Appendix to Bamboozled by Bonferroni

Conor Mayo-Wilson

In this online appendix, I prove theorem 1 in the body of the article. To ensure this

online appendix is self-contained, some definitions appearing in the body of the article are

reproduced here.

1 Basic model

Suppose N hypotheses are under investigation, and let Θ = {0, 1}N be the set of all binary

strings of length N . A vector θ ∈ Θ specifies which of the N hypotheses are true. For

each k ≤ N , let Hk = {θ ∈ Θ : θk = 0} be the set of vectors that say the kth hypothesis

is true. For each k ≤ N , let Xk be a random variable representing an experiment. For

each θ ∈ Θ, let Pθ(X1, . . . , XN) denote the probability measure that specifies the chances

of various experimental outcomes.

We assume that for all θ ∈ Θ, the N experiments are mutually independent with

respect to Pθ. In symbols, let X⃗ = ⟨Xi1 , Xi2 , . . . , Xik⟩ be a random vector, representing

some subset of the N experiments. Then:

Pθ(X⃗ = x⃗) =
∏
j≤k

Pθ(Xij = xij) (1)
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for all x⃗ = (xi1 , . . . xik). Further, suppose that the truth or falsity of the Hk determines the

probabilities of the possible outcomes of the kth experiment; that is, for all k ≤ N and all

r ∈ {0, 1}, there is a probability distribution Pk,r such that Pθ(Xk = xk) = Pk,θk(Xk = xk).

Together with the assumption of mutual independence, this entails that

Pθ(X⃗ = x⃗) =
∏
j≤k

Pij ,θij
(Xij = xij) for all θ ∈ Θ. (2)

1.1 Decision adjustment

For each k ≤ n, let Ak denote a set of component acts, and define a strategy to be a set

S of component acts such that for all k, either S ∩ Ak is a singleton or empty. That is,

at most, one act can be taken with respect to a hypothesis Hk. A decision rule d maps

subsets of (values of) the observable variables X1, . . . XN to strategies. I require that

d(Xk1 = xk1 , . . . , Xkm = xkm) contains precisely one element from each of the sets Akm .

A decision rule d adjusts for multiplicity if there is some x1 such that

d(x1) ̸∈ d(x1, . . . xN) (3)

for all values x2, . . . xN of X2, . . . XN .

1.2 Maximin and Baye’s rule

Suppose a researcher assigns a utility u(S, θ) to each strategy S and vector θ ∈ Θ specifying

which of the N hypotheses are true. If we fix a vector θ ∈ Θ, then the researcher’s expected

utility (with respect to Pθ) can be defined straightforwardly, whether she decides to observe
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one variable or all N variables:1

E1
θ[d] =

∑
x1∈X1

Pθ(X1 = x1) · u(d(x1), θ)

EN
θ [d] =

∑
x⃗∈X

Pθ(X⃗ = x⃗) · u(d(x⃗), θ).

Here, X1 is the range of X1, and X is the range of the random vector X⃗ = (X1, . . . , XN).

A decision rule d is called maximin if minθ∈θ Ej
θ[d] ≥ minθ∈θ Ej

θ[e] for all decision rules

e, where j = 1 or j = N .

Recall that the subjective expected utility of a strategy S with respect to a measure

P is given by the following:

EP [S] :=
∑
θ∈Θ

P (θ) · u(S, θ). (4)

Thus, there is a Bayesian who will adjust for multiplicity if there is a probability measure

P , utility function u, and experimental outcomes x⃗ = (x1, . . . , xN) ∈ X such that three

conditions hold:

1. P (X⃗ = x⃗) > 0;

2. a1 maximizes EP (·|X1=x1)[a] over all a ∈ A1; and

3. a1 ̸∈ S for some S that maximizes EP (·|X⃗=x⃗)[T ], where T ranges over strategies

1For simplicity, I assume all of the sets in this article are finite, including Θ, the ranges

of the random variables X1, . . . Xn, and the range of all decision rules. Under appropriate

measure-theoretic assumptions, the sums in the article can be replaced with integrals if

one is interested in extending these ideas to continuous spaces.
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containing a component act in every Ak.

For simplicity, assume that a decision-maker’s utilities are separable across component

acts in the following sense. Assume that for each hypothesis Hk, there is a “component”

utility function uk : Ak×{0, 1} → R that specifies the utilities u(a, 0) and u(a, 1) of taking

action a ∈ Ak when Hk is true and false, respectively. Further, suppose that the utility of

a strategy u(S, θ) in state θ is the sum of the utilities of component acts, that is:

u(S, θ) =
∑
k≤N

∑
a∈S∩Ak

uk(a, θk). (5)

2 Theorem and proof

Theorem 1. Suppose utilities are separable in the sense of equation (5). Then there are

maximin rules that do not adjust for multiplicity. If in addition, the hypotheses of Θ are

mutually independent with respect to P , then one can maximize (subjective) expected

utility with respect to P without adjusting. It follows that if the maximin rule is unique,

then no decision rule that adjusts is maximin. Similar remarks apply to expected-utility

maximization.

Before proving the theorem, we introduce some notation. Given any decision rule d

and k ≤ N , we define a function dk : X → Ak by dk(y⃗) := Ak ∩ d(y⃗). In other words, dk
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picks out the kth component act from each strategy recommended by d.

EN
θ [d] =

∑
y⃗∈X

Pθ(y⃗) · u(d(y⃗), θ)

= (Pθ(x⃗) · u(d(x⃗), θ)) +

∑
y⃗ ̸=x⃗

Pθ(y⃗) · u(d(y⃗), θ)


=

( ∑
1≤k≤N

Pθ(x⃗) · uk(dk(x⃗), θ)

)
+

∑
y⃗ ̸=x⃗

Pθ(y⃗) · u(d(y⃗), θ)


by separability,

= (Pθ(x⃗) · u1(d1(x⃗), θ)) +

( ∑
1<k≤N

Pθ(x⃗) · uk(dk(x⃗), θ)

)
+

∑
y⃗ ̸=x⃗

Pθ(y⃗) · u(d(y⃗), θ)

 .

Call the first, second, and third summands in the previous equation T1(θ, x⃗, d), T2(θ, x⃗, d),

and T3(θ, x⃗, d), respectively.

Proof of Theorem 1: The outline of the proof is identical for both maximin and subjective

expected-utility (SEU) maximization. We first pick any decision rule d that is maximin

(or maximizes SEU). Such a rule exists because we have assumed all the relevant sets to

be finite. If d does not adjust for multiplicity, we’re done. Otherwise, there is some vector

x⃗ = (x1, . . . xN) such that d(x1) ̸∈ d(x⃗). Define a new decision rule—call it e—such that

e is like d in all respects except the following. Let a1 ∈ A1 be such that d(x1) = {a1},

and let b1 be the unique element of A1 ∩ d(x⃗). Define e(x⃗) = (d(x⃗) \ b1) ∪ {a1}. And as

we said, define e(y⃗) = d(y⃗) for all y⃗ ̸= x⃗ (regardless of length). We claim that e is also

maximin (or maximizes SEU). By repeating this process some finite number of times, we’ll

obtain a decision rule that is maximin (or maximizes SEU) and that does not adjust for
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multiplicity.

First, we consider the case in which d is maximin. Because d itself is maximin, to show

that e is maximin, it suffices to show the following:

min
θ∈Θ

E1
θ[e] ≥ min

θ∈Θ
E1

θ[d] and (6)

min
θ∈Θ

EN
θ [e] ≥ min

θ∈Θ
EN

θ [d]. (7)

The first equation follows immediately from the definition of e because e(x) = d(x) for all

x ∈ X1; that is, the values of e and d do not differ on vectors of length 1. So we need to

show only that minθ∈Θ EN
θ [e] ≥ minθ∈Θ EN

θ [d].

Using the decomposition described previously, we first show that T2(θ, x⃗, d) = T2(θ, x⃗, e)

and that T3(θ, x⃗, d) = T3(θ, x⃗, e) for all θ and x⃗.

To show T2(θ, x⃗, d) = T2(θ, x⃗, e) for all θ, let θ be arbitrary. Notice first that by the

definition of e, we know that dk(y⃗) = ek(y⃗) for all k > 1 and for all y⃗ (including x⃗). It

follows that for all θ and all y⃗,

∑
1<k≤N

Pθ(y⃗) · uk(dk(y⃗), θ) =
∑

1<k≤N

Pθ(y⃗) · uk(ek(y⃗), θ), (8)

which is exactly what T2(θ, x⃗, d) = T2(θ, x⃗, e) asserts.

To show T3(θ, x⃗, d) = T3(θ, x⃗, e), again note that by definition of e, we know that

d1(y⃗) = e1(y⃗) for all y⃗ ̸= x⃗. It follows that

Pθ(y⃗) · u(d1(y⃗), θ) = Pθ(y⃗) · u(e1(y⃗), θ) for all θ and all y⃗ ̸= x⃗. (9)
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Equations (9) and (8) together entail the following:

∑
1≤k≤n

Pθ(y⃗) · uk(dk(y⃗), θ) =
∑

1≤k≤n

Pθ(y⃗) · uk(ek(y⃗), θ) for all θ and y⃗ ̸= x⃗. (10)

Because u is separable, equation (10) implies that for all y⃗ ̸= x⃗,

Pθ(y⃗) · u(d(y⃗), θ) = Pθ(y⃗) · u(e(y⃗), θ) for all θ and y⃗ ̸= x⃗. (11)

And that immediately entails the following:

∑
y⃗ ̸=x⃗

Pθ(y⃗) · u(d(y⃗), θ) =
∑
y⃗ ̸=x⃗

Pθ(y⃗) · u(e(y⃗), θ) for all θ and y⃗ ̸= x⃗. (12)

Notice that the previous equation asserts T3(θ, x⃗, d) = T3(θ, x⃗, e), as desired.

So to show that e is maximin, it therefore suffices to show that minθ∈Θ T1(θ, x⃗, e) ≥

minθ∈Θ T1(θ, x⃗, d), where we recall the following:

T1(θ, x⃗, e) = Pθ(x⃗) · u1(e1(x⃗), θ), (13)

and similarly for T1(θ, x⃗, d).

For the sake of contradiction, suppose that

min
θ∈Θ

Pθ(x⃗) · u1(e1(x⃗), θ) < min
θ∈Θ

Pθ(x⃗) · u1(d1(x⃗), θ). (14)
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Because the likelihood function factors, by equation (1), it follows that

min
θ∈Θ

(
Pθ(x1) ·

∏
k≥2

Pθ(xk)

)
· u1(e1(x⃗), θ) < min

θ∈Θ

(
Pθ(x1) ·

∏
k≥2

Pθ(xk)

)
· u1(d1(x⃗), θ).

That inequality cannot be strict unless
∏

k≥2 Pθ(xk) > 0 for at least one θ. It follows that

min
θ∈Θ

Pθ(x1) · u1(e1(x⃗), θ) < min
θ∈Θ

Pθ(x1) · u1(d1(x⃗), θ)

. Recall that d1(x⃗) = {b1}, and so the last equation becomes

min
θ∈Θ

Pθ(x1) · u1(e1(x⃗), θ) < min
θ∈Θ

Pθ(x1) · u1(b1, θ)

. By separability, the previous equation entails the following:

min
θ∈Θ

Pθ(x1) · u(e(x1), θ) < min
θ∈Θ

Pθ(x1) · u({b1}, θ)

. And because e(x1) = d(x1), we obtain the following:

min
θ∈Θ

Pθ(x1) · u(d(x1), θ) < min
θ∈Θ

Pθ(x1) · u({b1}, θ)

. Now if we add
∑

y∈X1\{x1} Pθ(y) · u(d(y), θ) under the minimum on both sides of the
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equation, we get

min
θ∈Θ

 ∑
y∈X1\{x1}

Pθ(y) · u(d(y), θ)

+ Pθ(x1) · u(d(x1), θ) <

min
θ∈Θ

 ∑
y∈X1\{x1}

Pθ(y) · u(d(y), θ)

+ Pθ(x1) · u({b1}, θ).

The left-hand side of that inequality is minθ∈Θ E1
θ[d]. And if we let f be the decision rule

that is exactly like d except f(x1) = {b1}, then the right-hand side is minθ∈Θ E1
θ[f ]. So

we’ve shown that

min
θ∈Θ

E1
θ[d] < min

θ ∈Θ
E1

θ[f ], (15)

which contradicts the assumption that d is maximin. That finishes the proof of the claim

about maximin.

Next we prove the claim about expected-utility maximization. Suppose that (I) d

adjusts for multiplicity and maximizes SEU with respect to the probability measure P ,

and (II) the hypotheses (i.e., members of Θ) are mutually independent with respect to P .

To say that d maximizes SEU with respect to P means that

1. EP (·|X1=y)[d(y)] ≥ EP (·|X1=y)[a1] for all a1 ∈ A1 and all y ∈ X1, and

2. EP (·|X⃗=y⃗)[d(y⃗)] ≥ EP (·|X⃗=y⃗)[S] for all for all strategies S ⊂
⋃

k≤N Ak and all y⃗ ∈ X .

As earlier, let x⃗ be the vector witnessing the fact that d adjusts for multiplicity, and

define a decision rule e as in the first half of the proof.

Because e(y) = d(y) for all y ∈ X1, it follows immediately that e(y) maximizes SEU

with respect to P (·|X1 = y) for all y ∈ X1 (because d(y) is a maximizer!).
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So it remains to be shown that e(y⃗) maximizes SEU with respect to P (·|X⃗ = y⃗) for all

y⃗ ∈ X . Because e(y⃗) = d(y⃗) for all y⃗ ̸= x⃗ and because d is an SEU maximizer, it suffices

to show that

EP (·|X⃗]=x⃗)[e(x⃗)] ≥ EP (·|X⃗=x⃗)[d(x⃗)].

To show this, notice that we can decompose EP (·|X⃗=x⃗)[e(x⃗)] as follows:

EP (·|X⃗=x⃗)[e(x⃗)] =
∑
θ∈Θ

P (θ|X⃗ = x⃗) · u(e(x⃗), θ)

=
∑
θ∈Θ

∑
k≤N

P (θ|X⃗ = x⃗) · uk(ek(x⃗), θk) by separability

=
∑
θ∈Θ

P (θ|X⃗ = x⃗) · u1(e1(x⃗), θ1) +
∑
θ∈Θ

∑
1<k≤N

P (θ|X⃗ = x⃗) · uk(ek(x⃗), θk).

Now notice that because ek(y⃗) = dk(y⃗) for all k > 1, the second summand—that is, the

double sum—is equal to the same term in which dk is substituted for ek. So it suffices to

show that

∑
θ∈Θ

P (θ|X⃗ = x⃗) · u1(e1(x⃗), θ1) ≥
∑
θ∈Θ

P (θ|X⃗ = x⃗) · u1(d1(x⃗), θ1). (16)

By Bayes’s rule and our assumptions about mutual independence of the hypotheses (and
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of the random variables), we have that for all θ:

P (θ|X⃗ = x⃗) =
Pθ(X⃗ = x⃗) · P (θ)

P (X⃗ = x⃗)

=

∏
k≤N Pθk(Xk = xk) · P (θk)

P (X⃗ = x⃗)

=

∏
k≤N P (Xk = xk|θk) · P (θk)

P (X⃗ = x⃗)

=

∏
k≤N P (θk|Xk = xk) · P (Xk = xk)

P (X⃗ = x⃗)

=

∏
k≤N P (θk|Xk = xk) ·

∏
k≤N P (Xk = xk)

P (X⃗ = x⃗)

=

∏
k≤N P (Xk = xk)

P (X⃗ = x⃗)
·
∏
k≤N

P (θk|Xk = xk).

It follows that equation (16) holds if and only if:

∑
θ∈Θ

∏
k≤N

P (θk|Xk = xk) · u1(e1(x⃗), θ1) ≥
∑
θ∈Θ

∏
k≤N

P (θk|Xk = xk) · u1(d1(x⃗), θ1). (17)

Recall that e1(x⃗) = d(x1) by construction, and so the last inequality holds if and only if

∑
θ∈Θ

∏
k≤N

P (θk|Xk = xk) · u(d(x1), θ1) ≥
∑
θ∈Θ

∏
k≤N

P (θk|Xk = xk) · u1(b1, θ1). (18)

Now rewrite the term on the left-hand side of equation (18). To do so, perform the outside

sum in two steps, by first summing over values of θ1 and then by summing over the values

of θ2, . . . , θN . In other words, observe that we can rewrite the left-hand side of the equation
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as follows:

∑
θ∈Θ

∏
k≤N

P (θk|Xk = xk) · u1(d(x1), θ1)

=
∑
θ1

∑
θ2,...θN

∏
k≤N

P (θk|Xk = xk) · u1(d(x1), θ1)

=
∑
θ1

∑
θ2,...θN

(P (θ1|X1 = x1) · u1(d(x1), θ1)) ·

( ∏
1<k≤N

P (θk|Xk = xk)

)

=
∑

θ2,...θN

∑
θ1

(P (θ1|X1 = x1) · u1(d(x1), θ1)) ·

( ∏
1<k≤N

P (θk|Xk = xk)

)
,

by reordering the sums,

=
∑

θ2,...θN

( ∏
1<k≤N

P (θk|Xk = xk) ·

(∑
θ1

P (θ1|X1 = x1) · u1(d(x1), θ1)

))

=
∑

θ2,...θN

( ∏
1<k≤N

P (θk|Xk = xk) ·

( ∑
υ∈Θ:υ1=θ1

P (υ|X1 = x1) · u(d(x1), υ)

))
,

as u(d(x1), θ1)) = u1(d(x1), υ) if υ1 = θ1 by separability,

=
∑

θ2,...θN

∏
1<k≤N

P (θk|Xk = xk) · EP (·|X1=x1)[d(x1)]

= EP (·|X1=x1)[d(x1)] ·
∑

θ2,...θN

∏
1<k≤N

P (θk|Xk = xk).
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