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Appendix
A. Remark
In the following remark, we gather some useful results about maximal support, △q, and Fp. These will
be used in the proofs in the next section. Recall that ri(X) is the relative interior of X (⊆Rm). Proofs are
omitted but can be easily checked.

Remark. Let q∈△M and MSupp(q) = {w1, . . . , wk}.
(i) There is a weighting vector (λi)i≤k ∈ (0, 1]k such that q = ∑

k
i=1 λivwi .

(ii) If q∈ ri(△M), then MSupp(q) =W and△q =△M .
(iii) ri(△q) = {p∈△M |MSupp(p) = MSupp(q)}.
(iv) q∈ ri(△q).
(v) MSupp(p)⊆MSupp(q) if and only if (iff) p∈△q iff q∈ Fp.

(vi) If MSupp(p)⊆MSupp(q), then Fq ⊆ Fp.

B. Proofs
Lemma 1 (Invariance under the same ouput representation (IOR)). Let B and B′ be non-empty subsets of
W. If the corresponding points in△F are the same, i.e., b = b′, then, for all A∈F ,

(i) B⊆ A iff bA = 1 and B⊆ Ac iff bA = 0, and thus
(ii) B⊆ A iff B′ ⊆ A and B⊆ Ac iff B′ ⊆ Ac, where Ac is the complement of A.

Proof. In△F , w∈ A iff (vw)A = 1 for all w∈W and for all A∈F . Thus, B⊆ A means that for all w′ ∈ B,
(vw′ )A = 1, which is equivalent to bA

(
= ∑w′∈B 1/|B|(vw′ )A

)
= 1. Similarly, w∈ Ac iff (vw)A = 0 for all

w∈W and for all A∈F . Thus, B⊆ Ac means that for all w′ ∈ B, (vw′ )A = 0, which is equivalent to bA = 0.1

Since b = b′ means that for all A∈F , bA = b′A, the rest of the claim follows.

Theorem 1 (Characterization of DM rule). A binarization rule (BR) G is a distance minimization (DM)
rule in△M iff

(i) G satisfies invariance under the same input representation (IIR) in△M , and
(ii) G satisfies the suspension principle.

1The following is another proof for the first part of Lemma 1. If B⊆ A, then bA =

U(B)(A) = ∑w∈A U(B)(w) = ∑w∈A∩B U(B)(w) = ∑w∈B U(B)(w) = 1. If B ⊈ A, then ∑w∈A∩B U(B)(w) ̸=
∑w∈B U(B)(w). Thus, bA ̸= 1.

© The Author(s) 2021, Published by Cambridge University Press on behalf of the Philosophy of Science Association.

https://doi.org/
mailto:minkyungwang@gmail.com


2 Credence and Belief: Distance- and Utility-Based Approaches

Proof. (→) Since G has the form G(P) = argminb d(p, b) for some divergence d, (i) and (ii) hold.
(←) Define d as follows: For b∈UM ,

d(p, b) :=


0 if b∈G(P) and p = b,
1 if b∈G(P) and p ̸= b,
2 if b /∈G(P),

and for q∈△M \UM , d(p, q) = 0 if p = q, otherwise d(p, q) = 1. This is well defined thanks to IIR. And
d is a divergence: If p = b∈UM then G(P) = b by the suspension principle and thus d(p, b) = 0. If p ̸= b,
then d(p, b) = 1 if b∈G(P), otherwise d(p, b) = 2, and thus d(p, b)> 0. For q∈△M \UM , d(p, q) = 0
iff p = q. Furthermore, we have G(P) = argminb d(p, b): If p = b, argminb d(p, b) = {b}= G(P) by the
definition of d and the suspension principle. If p ̸= b, argminb d(p, b) = {b | d(p, b) = 1}= G(P).

To prove Theorem 2, we need the following lemma, which shows that the directional derivative of a
convex function is linear, if it exists and is finite.

Lemma 2 (Linearity of directional derivative). Let Φ : △M→R be a convex function. The following
statements are equivalent:

(i) For all p∈△M and q∈ Fp, the directional derivative ∇p−qΦ(q) exists and is finite.
(ii) For all q∈△M there exists f ∈Rm such that, for all p∈△q, ∇p−qΦ(q) = f · (p− q).

Proof. (ii)→ (i) is straightforward.
(i)→ (ii): Suppose that f is a subgradient of Φ at q. As q∈ ri(△q), the existence of a subgradient is

guaranteed by the convexity of Φ. For h > 0, from the definition of subgradient we have that Φ(q + h(p−
q))≥Φ(q) + f · h(p− q) for all p∈△q, that is,

Φ(q + h(p− q))−Φ(q)
h

≥ f · (p− q).

For h > 0 small enough that q− h(p− q)∈△q (such an h exists since q∈ ri(△q)), we have that Φ(q−
h(p− q))≥Φ(q)− f · h(p− q) for all p∈△q, that is,

Φ(q)−Φ(q− h(p− q))
h

≤ f · (p− q).

Since Φ has a finite directional derivative at q in the direction of p− q, with h→ 0 we get ∇p−qΦ(q) =
f · (p− q).2

Theorem 2 (Representation of DM(Bregman) by strictly proper expected (epistemic) utility maximization
(EUM(SP))). Let D be a Bregman divergence in△M . Then, for all p, q∈△M and any probability function
P∈ P(W ) represented by p,

D(p, q) =Ew∼P[D(vw, q)]−Ew∼P[D(vw, p)],

and thus argminb D(p, b) = argminb Ew∼P[D(vw, b)].

Proof. First, assume that q∈ Fp. Then, not only the left-hand side but also the right-hand side is finite
because

Ew∼P[D(vw, q)]−Ew∼P[D(vw, p)] = ∑
w∈Supp(P)

P(w)D(vw, q)− ∑
w∈Supp(P)

P(w)D(vw, p)

and, for all w∈ Supp(P) (⊆MSupp(p)⊆MSupp(q)), D(vw, q) and D(vw, p) are finite. Let D(p, q) =
Φ(p)−Φ(q)−∇p−qΦ(q). Then

Ew∼P[D(vw, q)]−Ew∼P[D(vw, p)] =Ew∼P[Φ(vw)−Φ(q)−∇vw−qΦ(q)]

−Ew∼P[Φ(vw)−Φ(p)−∇vw−pΦ(p)]

= Φ(p)−Φ(q)−Ew∼P[∇vw−qΦ(q)] +Ew∼P[∇vw−pΦ(p)]

= Φ(p)−Φ(q)−∇p−qΦ(q).

2Notice that for any subgradients f and f ′ of Φ at q, we have f · (p− q) = f ′ · (p− q) for all p∈△q.
This shows the uniqueness of the subgradient of Φ ↾△q at q, which indicates differentiability at q.
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The last equality follows from the fact that

Ew∼P[∇vw−qΦ(q)] =Ew∼P[ f · (vw − q)] = f ·Ew∼P[(vw − q)] = f · (Ew∼P[vw]− q),

where f is a (sub)gradient at q and Ew∼P [⃗g(w)] = (Ew∼P[gi(w)])i≤m for g⃗ : W →Rm. Since w∈MSupp(q)
for all w∈ Supp(P), this holds by the linearity of expectation and the linearity of the directional derivative
of a convex function, which is proved by Lemma 2. Our claim holds from Ew∼P[vw] = ∑w∈W P(w)vw = p.

Next, assume that q /∈ Fp. Then

D(p, q) = lim
x→q

: x∈Fp

D(p, x) = lim
x→q

: x∈Fp

(Ew∼P[D(vw, x)]−Ew∼P[D(vw, p)])

= lim
x→q

: x∈Fp

∑
w

P(w)D(vw, x)−Ew∼P[D(vw, p)]

= ∑
w∈Supp(P)

P(w) lim
x→q

: MSupp(p)⊆MSupp(x)

D(vw, x)−Ew∼P[D(vw, p)]

=Ew∼P[D(vw, q)]−Ew∼P[D(vw, p)].

The fourth equality holds since P(w), D(vw, x)≥ 0. Let us explain why the last equality holds: For any
w∈ Supp(P), thus for any w such that {w}= MSupp(vw)⊆MSupp(p), limx→q: MSupp(p)⊆MSupp(x) D(vw, x)
exists because {x∈△M |MSupp(p)⊆MSupp(x)} ⊆ {x∈△M |MSupp(vw)⊆MSupp(x)}.3 Moreover,
limx→q: MSupp(p)⊆MSupp(x) D(vw, x) = D(vw, q) since limx→q: MSupp(vw)⊆MSupp(x) D(vw, x) = D(vw, q).

Lemma 3. Let I : W ×△M→ [0, ∞] be a strictly proper score. Then I(w, ·) is finite in Fvw .

Proof. Since Ew∼P[I(w, p)]<Ew∼P[I(w, q)] for all q ̸= p, Ew∼P[I(w, p)] should be finite for all P∈ P(W )

and p∈△M such that p is a representation point P. Thus, for all w∈ Supp(P), I(w, p) is finite for all P
represented by p. Therefore, for all w∈MSupp(p), I(w, p) is finite.

Lemma 4. A function I : W ×△F → [0, ∞] satisfies invariant expectation under the same representa-
tion (IER) if I is a partition-wise score, i.e., there is a partition of W, say W = A1 ∪ · · · ∪ Ak , such that
(i) A1, . . . , Ak ∈F and (ii) for all i≤ k we have, for all w, w′ ∈ Ai and q∈△F , I(w, q) = I(w′, q).

Proof. Since Ew∼P[I(w, q)] = ∑w∈W P(w)I(w, q) = ∑i≤k P(Ai)I(wi, q), where wi is any world in Ai, we
have Ew∼P[I(w, q)] = ∑i≤m pAi I(wi, q) =Ew∼P′ [I(w, q)].

Lemma 5. Let I : W ×△F → [0, ∞] be additive, i.e., for all w∈W and p∈△F ,

I(w, p) = ∑
A∈F

IA((vw)A, pA),

where IA : {0, 1} × [0, 1]→ [0, ∞] for all A∈F .
(i) I satisfies IER.

(ii) If I is event-wise strictly proper (E-SP), i.e.,

argmin
qA∈[0,1]

(
pAIA(1, qA) + (1− pA)IA(0, qA)

)
= {pA}

for all A∈F and pA ∈ [0, 1], then I is strictly proper.

Proof. (i) We compute the following:

Ew∼P[I(w, q)] = ∑
w∈W

P(w)I(w, q) = ∑
w∈W

P(w) ∑
A∈F

IA((vw)A, qA)

= ∑
A∈F

(
∑

w∈A
P(w)IA(1, qA) + ∑

w/∈A
P(w)IA(0, qA)

)
= ∑

A∈F

(
pAIA(1, qA) + (1− pA)IA(0, qA)

)
. (B1)

3For any r ∈△M , in the case where MSupp(r)⊈ MSupp(q), limx→q D(r, x) might not exist if we do not
impose the condition about the sequence that MSupp(r)⊆MSupp(x), under which D(r, x) can be defined
without using a limit.
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Figure B1: L and f such that L( f (p)) = p.

Thus, if p = p′, then Ew∼P[I(w, q)] =Ew∼P′ [I(w, q)].
(ii) The claim follows from B1.

To prove Theorem 3, we need the following lemmas. Note that we are dealing with continuity not only in
△W but also in△F . The following lemma enables one to find a continuous function assigning a P∈ P(W )
to p∈△F .

Lemma A (Continuous selection). There is a continuous function taking any p∈△F and giving a P∈
P(W ) that is represented by p.

Proof. Let |F |= m and |W |= n. First, observe that we have a linear function L : △W →△F that can be
represented by an m× n binary matrix as follows:

(vw1 )1 (vw2 )1 · · · (vwn )1
(vw1 )2 (vw2 )2 · · · (vwn )2

...
...

. . .
...

(vw1 )m (vw2 )m · · · (vwn )m




P(w1)

P(w2)
...

P(wn)

=


p1
p2
...

pm

 .

Our aim is to find a continuous function f : △F →△W satisfying L( f (p)) = p (see figure B1).
First of all, we can triangulate △F in such a way that △F is a union of simplexes △1, . . . , △k and⋃k

i=1 V (△i) =V (△F ), where V (△) denotes the set of all vertexes of a polytope△. This is always possible,
because△F is a polytope. For a vertex v of△F choose one of the omniscient probability measures Vw such
that L(Vw) = v. This is always possible because for any vertex v we have {w | v = vw} ̸= /0. For any p∈△i
we can uniquely represent p by p = ∑v∈V (△i) λvv for some (λv)v∈V (△i) such that ∑v∈V (△i) λv = 1 and λv ≥
0. Then we can define a function fi from △i to △W such that fi(p) = ∑v∈V (△i) λvL−1(v), where L−1(v)
denotes the selected omniscient probability measure. Observe that fi is continuous. Note that for any q∈
△i ∩△ j , fi(q) = f j(q). Now, we can construct a unique map f : ∪k

i=1△i→△W by gluing f1, f2, . . . , fk
where f ↾△i = fi for all i≤ k.

Let us check that f is continuous. Suppose that A is a closed subset of△W . Then f−1(A) =
⋃k

i=1 f−1
i (A).

Since every f−1
i (A) is closed because of the continuity of fi, and a finite union of closed sets is closed, it

follows that f−1(A) is also closed.
It remains to show that L( f (p)) = p for all p∈△F . First, pick a△i such that p∈△i. Then

L( f (p)) = L
(

f
(

∑
v∈V (△i)

λvv
))

= L
(

∑
v∈V (△i)

λvL−1(v)
)
= ∑

v∈V (△i)

λvL(L−1(v)) = ∑
v∈V (△i)

λvv = p,

where in the third equality we used the linearity of L.

From this lemma we see that expected scores are also continuous, as follows.

Lemma B. Let I : W ×△M→ [0, ∞] be a continuous score, and p∈△M . Let f be a continuous function as
in the previous lemma when△M =△F . When△M =△W , let f be the identity function. Then E f (p)[I(w, p)]
is continuous at p.
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Proof. E f (p)[I(w, p)] = ∑w f (p)(w)I(w, p), and if w∈ Supp( f (p)) then w∈MSupp(p). Thus, for all w∈
Supp( f (p)), I(w, ·) is finite and continuous at p. Moreover, f is continuous, and the projection on the wth
coordinate is continuous. Therefore, our claim holds.

Theorem 3 (Representation of EUM(SP) by DM(Bregman)). Let I : W ×△M→ [0, ∞] be a continuous
strictly proper score with IER. Then there is a Bregman divergence D in △M such that, for all p, q∈△M

and any probability function P∈ P(W ) represented by p,

D(p, q) =Ew∼P[I(w, q)]−Ew∼P[I(w, p)],

and thus argminb Ew∼P[I(w, b)] = argminb D(p, b).

Proof. For p, q∈△M , let us define a divergence as follows:

D(p, q) :=Ew∼P[I(w, q)]−Ew∼P[I(w, p)].

Since I satisfies IER it is well defined, and since I is SP, it is a divergence. We will show that it is a Bregman
divergence with Φ(p) =−Ew∼P[I(w, p)]. Note that Φ is well defined since I satisfies IER.

Claim (i): Φ is continuous, bounded, and strictly convex on △M . By IER and Lemma B, Φ is continu-
ous. Since I(w, p) is finite for all w∈MSupp(p), it is finite for all w∈ Supp(P) (⊆MSupp(p)), and thus
Ew∼P[I(w, p)] is finite. Now let us prove the strict convexity. For p, q(∈△M) and λ ∈ (0, 1) we have

−Φ(λ p + (1− λ )q) =Ew∼λP+(1−λ )Q[I(w, λ p + (1− λ )q)]

= λEw∼P[I(w, λ p + (1− λ )q)] + (1− λ )Ew∼Q[I(w, λ p + (1− λ )q)]

> λEw∼P[I(w, p)] + (1− λ )Ew∼Q[I(w, q)]

=−λΦ(p)− (1− λ )Φ(q).

The first equality holds by IER because λP + (1− λ )Q is one of the probability distributions that are
represented in△M by λ p + (1− λ )q. The second equality comes from the linearity of expectation, and the
inequality in the third line holds because I is SP.

Claim (ii): If q∈ Fp, then the directional derivative ∇p−qΦ(q) exists and is finite. Moreover ∇p−·Φ(·)
is continuous at q. Assuming that q∈ Fp, we will show that

∇p−qΦ(q) =−Ew∼P[I(w, q)] +Ew∼Q[I(w, q)]

and that it is finite and continuous in q. Note that there is a small enough h such that q + h(p− q), q−
h(p− q)∈ ri(△q) because p∈△q and q∈ ri(△q). For h > 0,

1
h
[Φ(q + h(p− q))−Φ(q)] =−1

h

[
∑
w
(Q + h(P−Q))(w)I(w, q + h(p− q))−∑

w
Q(w)I(w, q)

]
=−1

h ∑
w
(Q(w) + h(P(w)−Q(w)))[I(w, q + h(p− q))− I(w, q)]

−∑
w

P(w)I(w, q) +∑
w

Q(w)I(w, q).

The first equality holds by IER. The last equality holds since every term is finite because

Supp(P), Supp(Q)⊆MSupp(q + h(p− q)) = MSupp(q).

Since I is strictly proper, we know that

∑
w
(Q(w) + h(P(w)−Q(w)))[I(w, q + h(p− q)− I(w, q)]≤ 0,

which implies that

1
h
[Φ(q + h(p− q))−Φ(q)]≥−∑

w
P(w)I(w, q) +∑

w
Q(w)I(w, q).

Similarly, for h > 0, we have

1
h
[Φ(q)−Φ(q− h(p− q))]≤−∑

w
P(w)I(w, q) +∑

w
Q(w)I(w, q).
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Notice that ∑w P(w)I(w, q) is continuous in q because for w such that P(w) ̸= 0, we have w∈ Supp(P)⊆
MSupp(q), and thus I(w, q) is continuous in q. By IER and Lemma B, we also have that ∑w Q(w)I(w, q) is
continuous in q. Thismimplies that ∇p−qΦ(q) exists as desired. Note that

−∑
w

P(w)I(w, q) +∑
w

Q(w)I(w, q) =−Ew∼P[I(w, q)] +Ew∼Q[I(w, q)]

and it is finite and continuous in q as we indicated above.
Claim (iii): For all p, q∈△M , D(p, q) = Φ(p)−Φ(q)−∇p−qΦ(q) if q∈ Fp, otherwise D(p, q) =

limx→q: x∈Fp D(p, x), which exists (infinity being allowed as limits). First assume that q∈ Fp. By Claim (ii),

D(p, q) =Ew∼P[I(w, q)]−Ew∼P[I(w, p)]

=−Ew∼P[I(w, p)] +Ew∼Q[I(w, q)] +Ew∼P[I(w, q)]−Ew∼Q[I(w, q)]

= Φ(p)−Φ(q)−∇p−qΦ(q).

Otherwise, we need to show that limx→q: x∈Fp D(p, x) =Ew∼P[I(w, q)]−Ew∼P[I(w, p)]:

lim
x→q: x∈Fp

D(p, x) = lim
x→q: x∈Fp

(Ew∼P[I(w, x)]−Ew∼P[I(w, p)])

= lim
x→q: x∈Fp

∑
w

P(w)I(w, x)−Ew∼P[I(w, p)]

= ∑
w∈Supp(P)

P(w) lim
x→q: MSupp(p)⊆MSupp(x)

I(w, x)−Ew∼P[I(w, p)]

=Ew∼P[I(w, q)]−Ew∼P[I(w, p)].

The third equality holds because P(w), I(w, x)≥ 0. The fourth equality holds since, for w∈ Supp(P),
limx→q: MSupp(p)⊆MSupp(x) I(w, x) = I(w, q) since limx→q: MSupp(vw)⊆MSupp(x) I(w, x) = I(w, q).

Corollary 1. (i) Let I be a continuous SP score in△W . Then D(p, q) :=Ew∼P[I(w, q)]−Ew∼P[I(w, p)]
is a Bregman divergence in△W .

(ii) Let I be a continuous additive E-SP score in △F . Then D(p, q) :=Ew∼P[I(w, q)]−Ew∼P[I(w, p)] is
an additive Bregman divergence in△F .

Proof. (i) IER always holds in△W .
(ii) Since I is additive, by Lemma 5(i) it has IER and since I is an E-SP score by Lemma 5(ii), it is SP.

Corollary 2. (i) Let I : W ×△M→ [0, ∞] satisfy IER. I is continuous SP iff

DI(p, q) :=Ew∼P[I(w, q)]−Ew∼P[I(w, p)]

is a Bregman divergence.
(ii) Let D : △M ×△M→ [0, ∞] be a divergence, and suppose that ID(w, q) := D(vw, q) satisfies IER. Then

D is a Bregman divergence iff

D(p, q) =Ew∼P[D(vw, q)]−Ew∼P[D(vw, p)],

and ID(w, q) is continuous in q.

Proof. (i) (→) We can easily check this from the proof of Theorem 3.
(←) Since DI is a divergence, I is SP. Let p = vw for any w∈W . Since DI(vw, q) = I(w, q)− I(w, vw)

and DI is continuous in Fvw , I is continuous in q.
(ii) (→) We can easily check this from the proof of Theorem 2.
(←) Since D is a divergence, D(vw, q) is SP. Thus we can apply Theorem 3, and from its proof we know

that there is a Bregman divergence dD that is the same as D.
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