

RESEARCH ARTICLE

Credence and Belief: Distance- and Utility-Based Approaches

Minkyung Wang¹ and Chisu Kim²

¹Munich Center for Mathematical Philosophy, ²Independent Researcher, *Corresponding author: Minkyung Wang; minkyungwang@gmail.com

(Received XX XX XXXX; revised XX XX XXXX; accepted XX XX XXXX)

Appendix A. Remark

In the following remark, we gather some useful results about maximal support, \triangle_q , and \mathbb{F}_p . These will be used in the proofs in the next section. Recall that ri(X) is the relative interior of $X (\subseteq \mathbb{R}^m)$. Proofs are omitted but can be easily checked.

Remark. Let $q \in \triangle^M$ and $MSupp(q) = \{w_1, \ldots, w_k\}$.

- (i) There is a weighting vector $(\lambda_i)_{i \le k} \in (0, 1]^k$ such that $q = \sum_{i=1}^k \lambda_i v_{w_i}$.
- (ii) If $q \in \operatorname{ri}(\triangle^M)$, then $\operatorname{MSupp}(q) = W$ and $\triangle_q = \triangle^M$.
- (iii) $\operatorname{ri}(\triangle_q) = \{ p \in \triangle^M \mid \operatorname{MSupp}(p) = \operatorname{MSupp}(q) \}.$
- (iv) $q \in \operatorname{ri}(\triangle_q)$.
- (v) $MSupp(p) \subseteq MSupp(q)$ if and only if (iff) $p \in \triangle_q$ iff $q \in \mathbb{F}_p$.
- (vi) If $MSupp(p) \subseteq MSupp(q)$, then $\mathbb{F}_q \subseteq \mathbb{F}_p$.

B. Proofs

Lemma 1 (Invariance under the same ouput representation (IOR)). Let B and B' be non-empty subsets of W. If the corresponding points in $\triangle^{\mathscr{F}}$ are the same, i.e., b = b', then, for all $A \in \mathscr{F}$,

- (i) $B \subseteq A$ iff $b_A = 1$ and $B \subseteq A^c$ iff $b_A = 0$, and thus
- (ii) $B \subseteq A$ iff $B' \subseteq A$ and $B \subseteq A^c$ iff $B' \subseteq A^c$, where A^c is the complement of A.

Proof. In $\triangle^{\mathscr{F}}$, $w \in A$ iff $(v_w)_A = 1$ for all $w \in W$ and for all $A \in \mathscr{F}$. Thus, $B \subseteq A$ means that for all $w' \in B$, $(v_{w'})_A = 1$, which is equivalent to $b_A \left(= \sum_{w' \in B} 1/|B|(v_{w'})_A \right) = 1$. Similarly, $w \in A^c$ iff $(v_w)_A = 0$ for all $w \in W$ and for all $A \in \mathscr{F}$. Thus, $B \subseteq A^c$ means that for all $w' \in B$, $(v_{w'})_A = 0$, which is equivalent to $b_A = 0$.¹ Since b = b' means that for all $A \in \mathscr{F}$, $b_A = b'_A$, the rest of the claim follows.

Theorem 1 (Characterization of DM rule). A binarization rule (BR) G is a distance minimization (DM) rule in \triangle^M iff

- (i) G satisfies invariance under the same input representation (IIR) in \triangle^M , and
- (ii) G satisfies the suspension principle.

¹The following is another proof for the first part of Lemma 1. If $B \subseteq A$, then $b_A = U(B)(A) = \sum_{w \in A} U(B)(w) = \sum_{w \in A \cap B} U(B)(w) = \sum_{w \in B} U(B)(w) = 1$. If $B \not\subseteq A$, then $\sum_{w \in A \cap B} U(B)(w) \neq \sum_{w \in B} U(B)(w)$. Thus, $b_A \neq 1$.

© The Author(s) 2021, Published by Cambridge University Press on behalf of the Philosophy of Science Association.

2 Credence and Belief: Distance- and Utility-Based Approaches

Proof. (→) Since *G* has the form $G(P) = \operatorname{argmin}_b d(p, b)$ for some divergence *d*, (i) and (ii) hold. (←) Define *d* as follows: For $b \in U^M$,

$$d(p,b) := \begin{cases} 0 & \text{if } b \in G(P) \text{ and } p = b, \\ 1 & \text{if } b \in G(P) \text{ and } p \neq b, \\ 2 & \text{if } b \notin G(P), \end{cases}$$

and for $q \in \triangle^M \setminus U^M$, d(p,q) = 0 if p = q, otherwise d(p,q) = 1. This is well defined thanks to IIR. And d is a divergence: If $p = b \in U^M$ then G(P) = b by the suspension principle and thus d(p,b) = 0. If $p \neq b$, then d(p,b) = 1 if $b \in G(P)$, otherwise d(p,b) = 2, and thus d(p,b) > 0. For $q \in \triangle^M \setminus U^M$, d(p,q) = 0 iff p = q. Furthermore, we have $G(P) = \operatorname{argmin}_b d(p,b)$: If p = b, $\operatorname{argmin}_b d(p,b) = \{b \mid d(p,b) = 1\} = G(P)$ by the definition of d and the suspension principle. If $p \neq b$, $\operatorname{argmin}_b d(p,b) = \{b \mid d(p,b) = 1\} = G(P)$.

To prove Theorem 2, we need the following lemma, which shows that the directional derivative of a convex function is linear, if it exists and is finite.

Lemma 2 (Linearity of directional derivative). Let $\Phi \colon \triangle^M \to \mathbb{R}$ be a convex function. The following statements are equivalent:

- (i) For all $p \in \triangle^M$ and $q \in \mathbb{F}_p$, the directional derivative $\nabla_{p-q} \Phi(q)$ exists and is finite.
- (ii) For all $q \in \triangle^M$ there exists $f \in \mathbb{R}^m$ such that, for all $p \in \triangle_q$, $\nabla_{p-q} \Phi(q) = f \cdot (p-q)$.

Proof. (ii) \rightarrow (i) is straightforward.

(i) \rightarrow (ii): Suppose that *f* is a subgradient of Φ at *q*. As $q \in ri(\triangle_q)$, the existence of a subgradient is guaranteed by the convexity of Φ . For h > 0, from the definition of subgradient we have that $\Phi(q + h(p - q)) \ge \Phi(q) + f \cdot h(p - q)$ for all $p \in \triangle_q$, that is,

$$\frac{\Phi(q+h(p-q))-\Phi(q)}{h} \geq f \cdot (p-q).$$

For h > 0 small enough that $q - h(p - q) \in \triangle_q$ (such an h exists since $q \in ri(\triangle_q)$), we have that $\Phi(q - h(p - q)) \ge \Phi(q) - f \cdot h(p - q)$ for all $p \in \triangle_q$, that is,

$$\frac{\Phi(q) - \Phi(q - h(p - q))}{h} \leq f \cdot (p - q).$$

Since Φ has a finite directional derivative at q in the direction of p-q, with $h \to 0$ we get $\nabla_{p-q} \Phi(q) = f \cdot (p-q).^2$

Theorem 2 (Representation of DM(Bregman) by strictly proper expected (epistemic) utility maximization (EUM(SP))). Let *D* be a Bregman divergence in \triangle^M . Then, for all $p, q \in \triangle^M$ and any probability function $P \in \mathbb{P}(W)$ represented by *p*,

$$D(p,q) = \mathbb{E}_{w \sim P}[D(v_w,q)] - \mathbb{E}_{w \sim P}[D(v_w,p)]$$

and thus $\operatorname{argmin}_b D(p, b) = \operatorname{argmin}_b \mathbb{E}_{w \sim P}[D(v_w, b)].$

Proof. First, assume that $q \in \mathbb{F}_p$. Then, not only the left-hand side but also the right-hand side is finite because

$$\mathbb{E}_{w \sim P}[D(v_w, q)] - \mathbb{E}_{w \sim P}[D(v_w, p)] = \sum_{w \in \text{Supp}(P)} P(w)D(v_w, q) - \sum_{w \in \text{Supp}(P)} P(w)D(v_w, p)$$

and, for all $w \in \text{Supp}(P)$ ($\subseteq \text{MSupp}(p) \subseteq \text{MSupp}(q)$), $D(v_w, q)$ and $D(v_w, p)$ are finite. Let $D(p, q) = \Phi(p) - \Phi(q) - \nabla_{p-q}\Phi(q)$. Then

$$\begin{split} \mathbb{E}_{w \sim P}[D(v_w, q)] - \mathbb{E}_{w \sim P}[D(v_w, p)] &= \mathbb{E}_{w \sim P}[\Phi(v_w) - \Phi(q) - \nabla_{v_w - q}\Phi(q)] \\ &- \mathbb{E}_{w \sim P}[\Phi(v_w) - \Phi(p) - \nabla_{v_w - p}\Phi(p)] \\ &= \Phi(p) - \Phi(q) - \mathbb{E}_{w \sim P}[\nabla_{v_w - q}\Phi(q)] + \mathbb{E}_{w \sim P}[\nabla_{v_w - p}\Phi(p)] \\ &= \Phi(p) - \Phi(q) - \nabla_{p - q}\Phi(q). \end{split}$$

²Notice that for any subgradients f and f' of Φ at q, we have $f \cdot (p-q) = f' \cdot (p-q)$ for all $p \in \triangle_q$. This shows the uniqueness of the subgradient of $\Phi \upharpoonright \triangle_q$ at q, which indicates differentiability at q.

The last equality follows from the fact that

$$\mathbb{E}_{w \sim P}[\nabla_{v_w - q} \Phi(q)] = \mathbb{E}_{w \sim P}[f \cdot (v_w - q)] = f \cdot \mathbb{E}_{w \sim P}[(v_w - q)] = f \cdot (\mathbb{E}_{w \sim P}[v_w] - q)$$

where *f* is a (sub)gradient at *q* and $\mathbb{E}_{w \sim P}[\vec{g}(w)] = (\mathbb{E}_{w \sim P}[g_i(w)])_{i \leq m}$ for $\vec{g} : W \to \mathbb{R}^m$. Since $w \in \mathrm{MSupp}(q)$ for all $w \in \mathrm{Supp}(P)$, this holds by the linearity of expectation and the linearity of the directional derivative of a convex function, which is proved by Lemma 2. Our claim holds from $\mathbb{E}_{w \sim P}[v_w] = \sum_{w \in W} P(w)v_w = p$.

Next, assume that $q \notin \mathbb{F}_p$. Then

$$\begin{split} D(p,q) &= \lim_{\substack{x \to q \\ :x \in \mathbb{F}_p}} D(p,x) = \lim_{\substack{x \to q \\ :x \in \mathbb{F}_p}} \left(\mathbb{E}_{w \sim P}[D(v_w,x)] - \mathbb{E}_{w \sim P}[D(v_w,p)] \right) \\ &= \lim_{\substack{x \to q \\ :x \in \mathbb{F}_p}} \sum_{w} P(w) D(v_w,x) - \mathbb{E}_{w \sim P}[D(v_w,p)] \\ &= \sum_{w \in \text{Supp}(P)} P(w) \lim_{\substack{x \to q \\ : \text{MSupp}(p) \subseteq \text{MSupp}(x)}} D(v_w,x) - \mathbb{E}_{w \sim P}[D(v_w,p)] \\ &= \mathbb{E}_{w \sim P}[D(v_w,q)] - \mathbb{E}_{w \sim P}[D(v_w,p)]. \end{split}$$

The fourth equality holds since $P(w), D(v_w, x) \ge 0$. Let us explain why the last equality holds: For any $w \in \text{Supp}(P)$, thus for any w such that $\{w\} = \text{MSupp}(v_w) \subseteq \text{MSupp}(p), \lim_{x \to q: \text{MSupp}(p) \subseteq \text{MSupp}(x)} D(v_w, x)$ exists because $\{x \in \triangle^M \mid \text{MSupp}(p) \subseteq \text{MSupp}(x)\} \subseteq \{x \in \triangle^M \mid \text{MSupp}(v_w) \subseteq \text{MSupp}(x)\}$.³ Moreover, $\lim_{x \to q: \text{MSupp}(p) \subseteq \text{MSupp}(x)} D(v_w, x) = D(v_w, q)$ since $\lim_{x \to q: \text{MSupp}(v_w) \subseteq \text{MSupp}(x)} D(v_w, x) = D(v_w, q)$.

Lemma 3. Let $I: W \times \triangle^M \to [0, \infty]$ be a strictly proper score. Then $I(w, \cdot)$ is finite in \mathbb{F}_{v_w} .

Proof. Since $\mathbb{E}_{w \sim P}[I(w, p)] < \mathbb{E}_{w \sim P}[I(w, q)]$ for all $q \neq p$, $\mathbb{E}_{w \sim P}[I(w, p)]$ should be finite for all $P \in \mathbb{P}(W)$ and $p \in \triangle^M$ such that p is a representation point P. Thus, for all $w \in \text{Supp}(P)$, I(w, p) is finite for all P represented by p. Therefore, for all $w \in \text{MSupp}(p)$, I(w, p) is finite.

Lemma 4. A function $I: W \times \triangle^{\mathscr{F}} \to [0, \infty]$ satisfies invariant expectation under the same representation (IER) if I is a partition-wise score, i.e., there is a partition of W, say $W = A_1 \cup \cdots \cup A_k$, such that $(i) A_1, \ldots, A_k \in \mathscr{F}$ and (ii) for all $i \leq k$ we have, for all $w, w' \in A_i$ and $q \in \triangle^{\mathscr{F}}$, I(w, q) = I(w', q).

Proof. Since $\mathbb{E}_{w \sim P}[I(w, q)] = \sum_{w \in W} P(w)I(w, q) = \sum_{i \leq k} P(A_i)I(w_i, q)$, where w_i is any world in A_i , we have $\mathbb{E}_{w \sim P}[I(w, q)] = \sum_{i \leq m} p_{A_i}I(w_i, q) = \mathbb{E}_{w \sim P'}[I(w, q)]$.

Lemma 5. Let $I: W \times \triangle^{\mathscr{F}} \to [0, \infty]$ be additive, i.e., for all $w \in W$ and $p \in \triangle^{\mathscr{F}}$,

$$I(w, p) = \sum_{A \in \mathscr{F}} I_A((v_w)_A, p_A),$$

where $I_A : \{0, 1\} \times [0, 1] \rightarrow [0, \infty]$ for all $A \in \mathscr{F}$.

(i) I satisfies IER.

(ii) If I is event-wise strictly proper (E-SP), i.e.,

$$\underset{q_A \in [0,1]}{\operatorname{argmin}} \left(p_A I_A(1, q_A) + (1 - p_A) I_A(0, q_A) \right) = \{ p_A \}$$

for all $A \in \mathscr{F}$ and $p_A \in [0, 1]$, then I is strictly proper.

Proof. (i) We compute the following:

$$\mathbb{E}_{w \sim P}[I(w,q)] = \sum_{w \in W} P(w)I(w,q) = \sum_{w \in W} P(w) \sum_{A \in \mathscr{F}} I_A((v_w)_A, q_A)$$
$$= \sum_{A \in \mathscr{F}} \left(\sum_{w \in A} P(w)I_A(1,q_A) + \sum_{w \notin A} P(w)I_A(0,q_A) \right)$$
$$= \sum_{A \in \mathscr{F}} \left(p_A I_A(1,q_A) + (1-p_A)I_A(0,q_A) \right). \tag{B1}$$

³For any $r \in \triangle^M$, in the case where $MSupp(r) \not\subseteq MSupp(q)$, $\lim_{x \to q} D(r, x)$ might not exist if we do not impose the condition about the sequence that $MSupp(r) \subseteq MSupp(x)$, under which D(r, x) can be defined without using a limit.

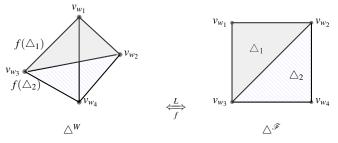


Figure B1: *L* and *f* such that L(f(p)) = p.

Thus, if p = p', then $\mathbb{E}_{w \sim P}[I(w, q)] = \mathbb{E}_{w \sim P'}[I(w, q)]$. (ii) The claim follows from B1.

To prove Theorem 3, we need the following lemmas. Note that we are dealing with continuity not only in \triangle^W but also in $\triangle^{\mathscr{F}}$. The following lemma enables one to find a continuous function assigning a $P \in \mathbb{P}(W)$ to $p \in \triangle^{\mathscr{F}}$.

Lemma A (Continuous selection). There is a continuous function taking any $p \in \triangle^{\mathscr{F}}$ and giving a $P \in$ $\mathbb{P}(W)$ that is represented by p.

Proof. Let $|\mathscr{F}| = m$ and |W| = n. First, observe that we have a linear function $L: \bigtriangleup^W \to \bigtriangleup^{\mathscr{F}}$ that can be represented by an $m \times n$ binary matrix as follows:

$$\begin{pmatrix} (v_{w_1})_1 & (v_{w_2})_1 & \cdots & (v_{w_n})_1 \\ (v_{w_1})_2 & (v_{w_2})_2 & \cdots & (v_{w_n})_2 \\ \vdots & \vdots & \ddots & \vdots \\ (v_{w_1})_m & (v_{w_2})_m & \cdots & (v_{w_n})_m \end{pmatrix} \begin{pmatrix} P(w_1) \\ P(w_2) \\ \vdots \\ P(w_n) \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_m \end{pmatrix}.$$

Our aim is to find a continuous function $f: \triangle^{\mathscr{F}} \to \triangle^W$ satisfying L(f(p)) = p (see figure B1). First of all, we can triangulate $\triangle^{\mathscr{F}}$ in such a way that $\triangle^{\mathscr{F}}$ is a union of simplexes $\triangle_1, \ldots, \triangle_k$ and $\bigcup_{i=1}^{k} V(\triangle_i) = V(\triangle^{\mathscr{F}})$, where $V(\triangle)$ denotes the set of all vertexes of a polytope \triangle . This is always possible, because $\triangle^{\mathscr{F}}$ is a polytope. For a vertex v of $\triangle^{\mathscr{F}}$ choose one of the omniscient probability measures V_w such that $L(V_w) = v$. This is always possible because for any vertex v we have $\{w \mid v = v_w\} \neq \emptyset$. For any $p \in \triangle_i$ we can uniquely represent p by $p = \sum_{\nu \in V(\triangle_i)} \lambda_{\nu} \nu$ for some $(\lambda_{\nu})_{\nu \in V(\triangle_i)}$ such that $\sum_{\nu \in V(\triangle_i)} \lambda_{\nu} = 1$ and $\lambda_{\nu} \ge 1$ 0. Then we can define a function f_i from \triangle_i to \triangle^W such that $f_i(p) = \sum_{v \in V(\triangle_i)} \lambda_v L^{-1}(v)$, where $L^{-1}(v)$ denotes the selected omniscient probability measure. Observe that f_i is continuous. Note that for any $q \in$ $\triangle_i \cap \triangle_j, f_i(q) = f_j(q)$. Now, we can construct a unique map $f: \bigcup_{i=1}^k \triangle_i \to \triangle^W$ by gluing f_1, f_2, \ldots, f_k where $f \upharpoonright \triangle_i = f_i$ for all $i \le k$.

Let us check that f is continuous. Suppose that A is a closed subset of \triangle^W . Then $f^{-1}(A) = \bigcup_{i=1}^k f_i^{-1}(A)$. Since every $f_i^{-1}(A)$ is closed because of the continuity of f_i , and a finite union of closed sets is closed, it follows that $f^{-1}(A)$ is also closed.

It remains to show that L(f(p)) = p for all $p \in \triangle^{\mathscr{F}}$. First, pick a \triangle_i such that $p \in \triangle_i$. Then

$$L(f(p)) = L\left(f\left(\sum_{\nu \in V(\triangle_i)} \lambda_{\nu}\nu\right)\right) = L\left(\sum_{\nu \in V(\triangle_i)} \lambda_{\nu}L^{-1}(\nu)\right) = \sum_{\nu \in V(\triangle_i)} \lambda_{\nu}L(L^{-1}(\nu)) = \sum_{\nu \in V(\triangle_i)} \lambda_{\nu}\nu = p,$$

where in the third equality we used the linearity of L.

From this lemma we see that expected scores are also continuous, as follows.

Lemma B. Let $I: W \times \triangle^M \to [0,\infty]$ be a continuous score, and $p \in \triangle^M$. Let f be a continuous function as in the previous lemma when $\triangle^M = \triangle^{\mathscr{F}}$. When $\triangle^M = \triangle^W$, let f be the identity function. Then $\mathbb{E}_{f(n)}[I(w, p)]$ is continuous at p.

Proof. $\mathbb{E}_{f(p)}[I(w, p)] = \sum_{w} f(p)(w)I(w, p)$, and if $w \in \text{Supp}(f(p))$ then $w \in \text{MSupp}(p)$. Thus, for all $w \in \text{Supp}(f(p))$, $I(w, \cdot)$ is finite and continuous at p. Moreover, f is continuous, and the projection on the wth coordinate is continuous. Therefore, our claim holds.

Theorem 3 (Representation of EUM(SP) by DM(Bregman)). Let $I: W \times \triangle^M \to [0, \infty]$ be a continuous strictly proper score with IER. Then there is a Bregman divergence D in \triangle^M such that, for all $p, q \in \triangle^M$ and any probability function $P \in \mathbb{P}(W)$ represented by p,

$$D(p,q) = \mathbb{E}_{w \sim P}[I(w,q)] - \mathbb{E}_{w \sim P}[I(w,p)],$$

and thus $\operatorname{argmin}_{b} \mathbb{E}_{w \sim P}[I(w, b)] = \operatorname{argmin}_{b} D(p, b).$

Proof. For $p, q \in \triangle^M$, let us define a divergence as follows:

$$D(p,q) := \mathbb{E}_{w \sim P}[I(w,q)] - \mathbb{E}_{w \sim P}[I(w,p)].$$

Since *I* satisfies IER it is well defined, and since *I* is SP, it is a divergence. We will show that it is a Bregman divergence with $\Phi(p) = -\mathbb{E}_{w \sim P}[I(w, p)]$. Note that Φ is well defined since *I* satisfies IER.

Claim (i): Φ is continuous, bounded, and strictly convex on \triangle^M . By IER and Lemma B, Φ is continuous. Since I(w, p) is finite for all $w \in \text{MSupp}(p)$, it is finite for all $w \in \text{Supp}(P)$ ($\subseteq \text{MSupp}(p)$), and thus $\mathbb{E}_{w \sim P}[I(w, p)]$ is finite. Now let us prove the strict convexity. For $p, q \in \triangle^M$ and $\lambda \in (0, 1)$ we have

$$\begin{split} -\Phi(\lambda p + (1-\lambda)q) &= \mathbb{E}_{w \sim \lambda P + (1-\lambda)Q}[I(w, \lambda p + (1-\lambda)q)] \\ &= \lambda \mathbb{E}_{w \sim P}[I(w, \lambda p + (1-\lambda)q)] + (1-\lambda)\mathbb{E}_{w \sim Q}[I(w, \lambda p + (1-\lambda)q)] \\ &> \lambda \mathbb{E}_{w \sim P}[I(w, p)] + (1-\lambda)\mathbb{E}_{w \sim Q}[I(w, q)] \\ &= -\lambda \Phi(p) - (1-\lambda)\Phi(q). \end{split}$$

The first equality holds by IER because $\lambda P + (1 - \lambda)Q$ is one of the probability distributions that are represented in \triangle^M by $\lambda p + (1 - \lambda)q$. The second equality comes from the linearity of expectation, and the inequality in the third line holds because *I* is SP.

Claim (ii): If $q \in \mathbb{F}_p$, then the directional derivative $\nabla_{p-q}\Phi(q)$ exists and is finite. Moreover $\nabla_{p-\cdot}\Phi(\cdot)$ is continuous at q. Assuming that $q \in \mathbb{F}_p$, we will show that

$$\nabla_{p-q} \Phi(q) = -\mathbb{E}_{w \sim P}[I(w,q)] + \mathbb{E}_{w \sim Q}[I(w,q)]$$

and that it is finite and continuous in q. Note that there is a small enough h such that $q + h(p-q), q - h(p-q) \in \operatorname{ri}(\Delta_q)$ because $p \in \Delta_q$ and $q \in \operatorname{ri}(\Delta_q)$. For h > 0,

$$\begin{split} \frac{1}{h} [\Phi(q+h(p-q)) - \Phi(q)] &= -\frac{1}{h} \bigg[\sum_{w} (\mathcal{Q} + h(P-\mathcal{Q}))(w) I(w,q+h(p-q)) - \sum_{w} \mathcal{Q}(w) I(w,q) \bigg] \\ &= -\frac{1}{h} \sum_{w} (\mathcal{Q}(w) + h(P(w) - \mathcal{Q}(w))) [I(w,q+h(p-q)) - I(w,q)] \\ &- \sum_{w} P(w) I(w,q) + \sum_{w} \mathcal{Q}(w) I(w,q). \end{split}$$

The first equality holds by IER. The last equality holds since every term is finite because

 $\operatorname{Supp}(P), \operatorname{Supp}(Q) \subseteq \operatorname{MSupp}(q + h(p - q)) = \operatorname{MSupp}(q).$

Since I is strictly proper, we know that

$$\sum_{w} (Q(w) + h(P(w) - Q(w))) [I(w, q + h(p - q) - I(w, q)] \le 0,$$

which implies that

$$\frac{1}{h}[\Phi(q+h(p-q))-\Phi(q)] \ge -\sum_{w} P(w)I(w,q) + \sum_{w} Q(w)I(w,q).$$

Similarly, for h > 0, we have

$$\frac{1}{h}[\Phi(q) - \Phi(q - h(p - q))] \le -\sum_{w} P(w)I(w, q) + \sum_{w} Q(w)I(w, q).$$

Notice that $\sum_{w} P(w)I(w,q)$ is continuous in q because for w such that $P(w) \neq 0$, we have $w \in \text{Supp}(P) \subseteq M\text{Supp}(q)$, and thus I(w,q) is continuous in q. By IER and Lemma B, we also have that $\sum_{w} Q(w)I(w,q)$ is continuous in q. Thismimplies that $\nabla_{p-q}\Phi(q)$ exists as desired. Note that

$$-\sum_{w} P(w)I(w,q) + \sum_{w} \mathcal{Q}(w)I(w,q) = -\mathbb{E}_{w \sim P}[I(w,q)] + \mathbb{E}_{w \sim Q}[I(w,q)]$$

and it is finite and continuous in q as we indicated above.

Claim (iii): For all $p, q \in \triangle^M$, $D(p,q) = \Phi(p) - \Phi(q) - \nabla_{p-q}\Phi(q)$ if $q \in \mathbb{F}_p$, otherwise $D(p,q) = \lim_{x \to q: x \in \mathbb{F}_p} D(p, x)$, which exists (infinity being allowed as limits). First assume that $q \in \mathbb{F}_p$. By Claim (ii),

$$\begin{split} D(p,q) &= \mathbb{E}_{w \sim P}[I(w,q)] - \mathbb{E}_{w \sim P}[I(w,p)] \\ &= -\mathbb{E}_{w \sim P}[I(w,p)] + \mathbb{E}_{w \sim Q}[I(w,q)] + \mathbb{E}_{w \sim P}[I(w,q)] - \mathbb{E}_{w \sim Q}[I(w,q)] \\ &= \Phi(p) - \Phi(q) - \nabla_{p-q}\Phi(q). \end{split}$$

Otherwise, we need to show that $\lim_{x\to q: x\in\mathbb{F}_p} D(p,x) = \mathbb{E}_{w\sim P}[I(w,q)] - \mathbb{E}_{w\sim P}[I(w,p)]$:

$$\begin{split} \lim_{x \to q: x \in \mathbb{F}_p} D(p, x) &= \lim_{x \to q: x \in \mathbb{F}_p} (\mathbb{E}_{w \sim P}[I(w, x)] - \mathbb{E}_{w \sim P}[I(w, p)]) \\ &= \lim_{x \to q: x \in \mathbb{F}_p} \sum_{w} P(w)I(w, x) - \mathbb{E}_{w \sim P}[I(w, p)] \\ &= \sum_{w \in \text{Supp}(P)} P(w) \lim_{x \to q: \text{MSupp}(p) \subseteq \text{MSupp}(x)} I(w, x) - \mathbb{E}_{w \sim P}[I(w, p)] \\ &= \mathbb{E}_{w \sim P}[I(w, q)] - \mathbb{E}_{w \sim P}[I(w, p)]. \end{split}$$

The third equality holds because $P(w), I(w, x) \ge 0$. The fourth equality holds since, for $w \in \text{Supp}(P)$, $\lim_{x \to q: M\text{Supp}(p) \subseteq M\text{Supp}(x)} I(w, x) = I(w, q)$ since $\lim_{x \to q: M\text{Supp}(v_w) \subseteq M\text{Supp}(x)} I(w, x) = I(w, q)$.

- **Corollary 1.** (i) Let I be a continuous SP score in \triangle^W . Then $D(p,q) := \mathbb{E}_{w \sim P}[I(w,q)] \mathbb{E}_{w \sim P}[I(w,p)]$ is a Bregman divergence in \triangle^W .
- (ii) Let I be a continuous additive E-SP score in $\triangle^{\mathscr{F}}$. Then $D(p,q) := \mathbb{E}_{w \sim P}[I(w,q)] \mathbb{E}_{w \sim P}[I(w,p)]$ is an additive Bregman divergence in $\triangle^{\mathscr{F}}$.

Proof. (i) IER always holds in \triangle^W .

(ii) Since *I* is additive, by Lemma 5(i) it has IER and since *I* is an E-SP score by Lemma 5(ii), it is SP. \Box

Corollary 2. (i) Let $I: W \times \triangle^M \to [0, \infty]$ satisfy IER. I is continuous SP iff

$$D_I(p,q) := \mathbb{E}_{w \sim P}[I(w,q)] - \mathbb{E}_{w \sim P}[I(w,p)]$$

is a Bregman divergence.

(ii) Let D: $\triangle^M \times \triangle^M \to [0, \infty]$ be a divergence, and suppose that $I_D(w, q) := D(v_w, q)$ satisfies IER. Then D is a Bregman divergence iff

$$D(p,q) = \mathbb{E}_{w \sim P}[D(v_w,q)] - \mathbb{E}_{w \sim P}[D(v_w,p)],$$

and $I_D(w, q)$ is continuous in q.

Proof. (i) (\rightarrow) We can easily check this from the proof of Theorem 3.

 (\leftarrow) Since D_I is a divergence, I is SP. Let $p = v_w$ for any $w \in W$. Since $D_I(v_w, q) = I(w, q) - I(w, v_w)$ and D_I is continuous in \mathbb{F}_{v_w} , I is continuous in q.

(ii) (\rightarrow) We can easily check this from the proof of Theorem 2.

 (\leftarrow) Since *D* is a divergence, $D(v_w, q)$ is SP. Thus we can apply Theorem 3, and from its proof we know that there is a Bregman divergence d_D that is the same as *D*.