RESEARCH ARTICLE

Credence and Belief: Distance- and Utility-Based Approaches

Minkyung Wang ${ }^{1}$ and Chisu Kim ${ }^{2}$
${ }^{1}$ Munich Center for Mathematical Philosophy, ${ }^{2}$ Independent Researcher,
*Corresponding author: Minkyung Wang; minkyungwang @ gmail.com

(Received XX XX XXXX; revised XX XX XXXX; accepted XX XX XXXX)

Appendix

A. Remark

In the following remark, we gather some useful results about maximal support, \triangle_{q}, and \mathbb{F}_{p}. These will be used in the proofs in the next section. Recall that $\operatorname{ri}(X)$ is the relative interior of $X\left(\subseteq \mathbb{R}^{m}\right)$. Proofs are omitted but can be easily checked.

Remark. Let $q \in \triangle^{M}$ and $\operatorname{MSupp}(q)=\left\{w_{1}, \ldots, w_{k}\right\}$.
(i) There is a weighting vector $\left(\lambda_{i}\right)_{i \leq k} \in(0,1]^{k}$ such that $q=\sum_{i=1}^{k} \lambda_{i} v_{w_{i}}$.
(ii) If $q \in \operatorname{ri}\left(\triangle^{M}\right)$, then $\operatorname{MSupp}(q)=W$ and $\triangle_{q}=\triangle^{M}$.
(iii) $\operatorname{ri}\left(\triangle_{q}\right)=\left\{p \in \triangle^{M} \mid \operatorname{MSupp}(p)=\operatorname{MSupp}(q)\right\}$.
(iv) $q \in \operatorname{ri}\left(\triangle_{q}\right)$.
(v) $\operatorname{MSupp}(p) \subseteq \operatorname{MSupp}(q)$ if and only if (iff) $p \in \triangle_{q}$ iff $q \in \mathbb{F}_{p}$.
(vi) If $\operatorname{MSupp}(p) \subseteq \operatorname{MSupp}(q)$, then $\mathbb{F}_{q} \subseteq \mathbb{F}_{p}$.

B. Proofs

Lemma 1 (Invariance under the same ouput representation (IOR)). Let B and B^{\prime} be non-empty subsets of W. If the corresponding points in $\triangle^{\mathscr{F}}$ are the same, i.e., $b=b^{\prime}$, then, for all $A \in \mathscr{F}$,
(i) $B \subseteq A$ iff $b_{A}=1$ and $B \subseteq A^{\mathrm{c}}$ iff $b_{A}=0$, and thus
(ii) $B \subseteq A$ iff $B^{\prime} \subseteq A$ and $B \subseteq A^{\mathrm{c}}$ iff $B^{\prime} \subseteq A^{\mathrm{c}}$, where A^{c} is the complement of A.

Proof. In $\triangle^{\mathscr{F}}, w \in A$ iff $\left(v_{w}\right)_{A}=1$ for all $w \in W$ and for all $A \in \mathscr{F}$. Thus, $B \subseteq A$ means that for all $w^{\prime} \in B$, $\left(v_{w^{\prime}}\right)_{A}=1$, which is equivalent to $b_{A}\left(=\sum_{w^{\prime} \in B} 1 /|B|\left(v_{w^{\prime}}\right)_{A}\right)=1$. Similarly, $w \in A^{\mathrm{c}}$ iff $\left(v_{w}\right)_{A}=0$ for all $w \in W$ and for all $A \in \mathscr{F}$. Thus, $B \subseteq A^{\text {c }}$ means that for all $w^{\prime} \in B,\left(v_{w^{\prime}}\right)_{A}=0$, which is equivalent to $b_{A}=0 .{ }^{1}$ Since $b=b^{\prime}$ means that for all $A \in \mathscr{F}, b_{A}=b_{A}^{\prime}$, the rest of the claim follows.

Theorem 1 (Characterization of DM rule). A binarization rule $(B R) G$ is a distance minimization (DM) rule in \triangle^{M} iff
(i) G satisfies invariance under the same input representation (IIR) in \triangle^{M}, and
(ii) G satisfies the suspension principle.

[^0]Proof. (\rightarrow) Since G has the form $G(P)=\operatorname{argmin}_{b} d(p, b)$ for some divergence d, (i) and (ii) hold. (\leftarrow) Define d as follows: For $b \in U^{M}$,

$$
d(p, b):= \begin{cases}0 & \text { if } b \in G(P) \text { and } p=b, \\ 1 & \text { if } b \in G(P) \text { and } p \neq b, \\ 2 & \text { if } b \notin G(P)\end{cases}
$$

and for $q \in \triangle^{M} \backslash U^{M}, d(p, q)=0$ if $p=q$, otherwise $d(p, q)=1$. This is well defined thanks to IIR. And d is a divergence: If $p=b \in U^{M}$ then $G(P)=b$ by the suspension principle and thus $d(p, b)=0$. If $p \neq b$, then $d(p, b)=1$ if $b \in G(P)$, otherwise $d(p, b)=2$, and thus $d(p, b)>0$. For $q \in \triangle^{M} \backslash U^{M}, d(p, q)=0$ iff $p=q$. Furthermore, we have $G(P)=\operatorname{argmin}_{b} d(p, b)$: If $p=b, \operatorname{argmin}_{b} d(p, b)=\{b\}=G(P)$ by the definition of d and the suspension principle. If $p \neq b, \operatorname{argmin}_{b} d(p, b)=\{b \mid d(p, b)=1\}=G(P)$.

To prove Theorem 2, we need the following lemma, which shows that the directional derivative of a convex function is linear, if it exists and is finite.

Lemma 2 (Linearity of directional derivative). Let $\Phi: \triangle^{M} \rightarrow \mathbb{R}$ be a convex function. The following statements are equivalent:
(i) For all $p \in \triangle^{M}$ and $q \in \mathbb{F}_{p}$, the directional derivative $\nabla_{p-q} \Phi(q)$ exists and is finite.
(ii) For all $q \in \triangle^{M}$ there exists $f \in \mathbb{R}^{m}$ such that, for all $p \in \triangle_{q}, \nabla_{p-q} \Phi(q)=f \cdot(p-q)$.

Proof. (ii) \rightarrow (i) is straightforward.
(i) \rightarrow (ii): Suppose that f is a subgradient of Φ at q. As $q \in \operatorname{ri}\left(\triangle_{q}\right)$, the existence of a subgradient is guaranteed by the convexity of Φ. For $h>0$, from the definition of subgradient we have that $\Phi(q+h(p-$ $q)) \geq \Phi(q)+f \cdot h(p-q)$ for all $p \in \triangle_{q}$, that is,

$$
\frac{\Phi(q+h(p-q))-\Phi(q)}{h} \geq f \cdot(p-q)
$$

For $h>0$ small enough that $q-h(p-q) \in \triangle_{q}$ (such an h exists since $\left.q \in \operatorname{ri}\left(\triangle_{q}\right)\right)$, we have that $\Phi(q-$ $h(p-q)) \geq \Phi(q)-f \cdot h(p-q)$ for all $p \in \triangle_{q}$, that is,

$$
\frac{\Phi(q)-\Phi(q-h(p-q))}{h} \leq f \cdot(p-q)
$$

Since Φ has a finite directional derivative at q in the direction of $p-q$, with $h \rightarrow 0$ we get $\nabla_{p-q} \Phi(q)=$ $f \cdot(p-q) .^{2}$

Theorem 2 (Representation of DM(Bregman) by strictly proper expected (epistemic) utility maximization (EUM(SP))). Let D be a Bregman divergence in \triangle^{M}. Then, for all $p, q \in \triangle^{M}$ and any probability function $P \in \mathbb{P}(W)$ represented by p,

$$
D(p, q)=\mathbb{E}_{w \sim P}\left[D\left(v_{w}, q\right)\right]-\mathbb{E}_{w \sim P}\left[D\left(v_{w}, p\right)\right]
$$

and thus $\operatorname{argmin}_{b} D(p, b)=\operatorname{argmin}_{b} \mathbb{E}_{w \sim P}\left[D\left(v_{w}, b\right)\right]$.
Proof. First, assume that $q \in \mathbb{F}_{p}$. Then, not only the left-hand side but also the right-hand side is finite because

$$
\mathbb{E}_{w \sim P}\left[D\left(v_{w}, q\right)\right]-\mathbb{E}_{w \sim P}\left[D\left(v_{w}, p\right)\right]=\sum_{w \in \operatorname{Supp}(P)} P(w) D\left(v_{w}, q\right)-\sum_{w \in \operatorname{Supp}(P)} P(w) D\left(v_{w}, p\right)
$$

and, for all $w \in \operatorname{Supp}(P)(\subseteq \operatorname{MSupp}(p) \subseteq \operatorname{MSupp}(q)), D\left(v_{w}, q\right)$ and $D\left(v_{w}, p\right)$ are finite. Let $D(p, q)=$ $\Phi(p)-\Phi(q)-\nabla_{p-q} \Phi(q)$. Then

$$
\begin{aligned}
\mathbb{E}_{w \sim P}\left[D\left(v_{w}, q\right)\right]-\mathbb{E}_{w \sim P}\left[D\left(v_{w}, p\right)\right]= & \mathbb{E}_{w \sim P}\left[\Phi\left(v_{w}\right)-\Phi(q)-\nabla_{v_{w}-q} \Phi(q)\right] \\
& -\mathbb{E}_{w \sim P}\left[\Phi\left(v_{w}\right)-\Phi(p)-\nabla_{v_{w}-p} \Phi(p)\right] \\
= & \Phi(p)-\Phi(q)-\mathbb{E}_{w \sim P}\left[\nabla_{v_{w}-q} \Phi(q)\right]+\mathbb{E}_{w \sim P}\left[\nabla_{v_{w}-p} \Phi(p)\right] \\
= & \Phi(p)-\Phi(q)-\nabla_{p-q} \Phi(q) .
\end{aligned}
$$

[^1]The last equality follows from the fact that

$$
\mathbb{E}_{w \sim P}\left[\nabla_{v_{w}-q} \Phi(q)\right]=\mathbb{E}_{w \sim P}\left[f \cdot\left(v_{w}-q\right)\right]=f \cdot \mathbb{E}_{w \sim P}\left[\left(v_{w}-q\right)\right]=f \cdot\left(\mathbb{E}_{w \sim P}\left[v_{w}\right]-q\right),
$$

where f is a (sub)gradient at q and $\mathbb{E}_{w \sim P}[\vec{g}(w)]=\left(\mathbb{E}_{w \sim P}\left[g_{i}(w)\right]\right)_{i \leq m}$ for $\vec{g}: W \rightarrow \mathbb{R}^{m}$. Since $w \in \operatorname{MSupp}(q)$ for all $w \in \operatorname{Supp}(P)$, this holds by the linearity of expectation and the linearity of the directional derivative of a convex function, which is proved by Lemma 2. Our claim holds from $\mathbb{E}_{w \sim P}\left[v_{w}\right]=\sum_{w \in W} P(w) v_{w}=p$.

Next, assume that $q \notin \mathbb{F}_{p}$. Then

$$
\begin{aligned}
D(p, q)=\lim _{\substack{x \rightarrow q \\
: x \in \mathbb{F}_{p}}} D(p, x) & =\lim _{\substack{x \rightarrow q \\
: x \in \mathbb{F}_{p}}}\left(\mathbb{E}_{w \sim P}\left[D\left(v_{w}, x\right)\right]-\mathbb{E}_{w \sim P}\left[D\left(v_{w}, p\right)\right]\right) \\
& =\lim _{\substack{x \rightarrow q}} \sum_{x \in \mathbb{F}_{p}} P(w) D\left(v_{w}, x\right)-\mathbb{E}_{w \sim P}\left[D\left(v_{w}, p\right)\right] \\
& =\sum_{w \in \operatorname{Supp}(P)} P(w): \operatorname{MSupp}(p) \subseteq \operatorname{MSupp}(x) \\
& =\lim _{x \rightarrow P} D\left(v_{w}, x\right)-\mathbb{E}_{w \sim P}\left[D\left(v_{w}, p\right)\right] \\
& =\mathbb{E}_{w \sim P}\left[D\left(v_{w}, q\right)\right]-\mathbb{E}_{w \sim P}\left[D\left(v_{w}, p\right)\right] .
\end{aligned}
$$

The fourth equality holds since $P(w), D\left(v_{w}, x\right) \geq 0$. Let us explain why the last equality holds: For any $w \in \operatorname{Supp}(P)$, thus for any w such that $\{w\}=\operatorname{MSupp}\left(v_{w}\right) \subseteq \operatorname{MSupp}(p), \lim _{x \rightarrow q: \operatorname{MSupp}(p) \subseteq \operatorname{MSupp}(x)} D\left(v_{w}, x\right)$ exists because $\left\{x \in \triangle^{M} \mid \operatorname{MSupp}(p) \subseteq \operatorname{MSupp}(x)\right\} \subseteq\left\{x \in \triangle^{M} \mid \operatorname{MSupp}\left(v_{w}\right) \subseteq \operatorname{MSupp}(x)\right\} .^{3}$ Moreover, $\lim _{x \rightarrow q: \operatorname{MSupp}(p) \subseteq \operatorname{MSupp}(x)} D\left(v_{w}, x\right)=D\left(v_{w}, q\right)$ since $\lim _{x \rightarrow q: \operatorname{MSupp}\left(v_{w}\right) \subseteq \operatorname{MSupp}(x)} D\left(v_{w}, x\right)=D\left(v_{w}, q\right)$.

Lemma 3. Let $I: W \times \triangle^{M} \rightarrow[0, \infty]$ be a strictly proper score. Then $I(w, \cdot)$ is finite in $\mathbb{F}_{v_{w}}$.
Proof. Since $\mathbb{E}_{w \sim P}[I(w, p)]<\mathbb{E}_{w \sim P}[I(w, q)]$ for all $q \neq p, \mathbb{E}_{w \sim P}[I(w, p)]$ should be finite for all $P \in \mathbb{P}(W)$ and $p \in \triangle^{M}$ such that p is a representation point P. Thus, for all $w \in \operatorname{Supp}(P), I(w, p)$ is finite for all P represented by p. Therefore, for all $w \in \operatorname{MSupp}(p), I(w, p)$ is finite.

Lemma 4. A function $I: W \times \triangle^{\mathscr{F}} \rightarrow[0, \infty]$ satisfies invariant expectation under the same representation (IER) if I is a partition-wise score, i.e., there is a partition of W, say $W=A_{1} \cup \cdots \cup A_{k}$, such that (i) $A_{1}, \ldots, A_{k} \in \mathscr{F}$ and (ii) for all $i \leq k$ we have, for all $w, w^{\prime} \in A_{i}$ and $q \in \triangle^{\mathscr{F}}, I(w, q)=I\left(w^{\prime}, q\right)$.

Proof. Since $\mathbb{E}_{w \sim P}[I(w, q)]=\sum_{w \in W} P(w) I(w, q)=\sum_{i \leq k} P\left(A_{i}\right) I\left(w_{i}, q\right)$, where w_{i} is any world in A_{i}, we have $\mathbb{E}_{w \sim P}[I(w, q)]=\sum_{i \leq m} p_{A_{i}} I\left(w_{i}, q\right)=\mathbb{E}_{w \sim P^{\prime}}[I(w, q)]$.
Lemma 5. Let $I: W \times \triangle^{\mathscr{F}} \rightarrow[0, \infty]$ be additive, i.e., for all $w \in W$ and $p \in \triangle^{\mathscr{F}}$,

$$
I(w, p)=\sum_{A \in \mathscr{F}} I_{A}\left(\left(v_{w}\right)_{A}, p_{A}\right)
$$

where $I_{A}:\{0,1\} \times[0,1] \rightarrow[0, \infty]$ for all $A \in \mathscr{F}$.
(i) I satisfies IER.
(ii) If I is event-wise strictly proper (E-SP), i.e.,

$$
\underset{q_{A} \in[0,1]}{\operatorname{argmin}}\left(p_{A} I_{A}\left(1, q_{A}\right)+\left(1-p_{A}\right) I_{A}\left(0, q_{A}\right)\right)=\left\{p_{A}\right\}
$$

for all $A \in \mathscr{F}$ and $p_{A} \in[0,1]$, then I is strictly proper.
Proof. (i) We compute the following:

$$
\begin{align*}
\mathbb{E}_{w \sim P}[I(w, q)]=\sum_{w \in W} P(w) I(w, q) & =\sum_{w \in W} P(w) \sum_{A \in \mathscr{F}} I_{A}\left(\left(v_{w}\right)_{A}, q_{A}\right) \\
& =\sum_{A \in \mathscr{F}}\left(\sum_{w \in A} P(w) I_{A}\left(1, q_{A}\right)+\sum_{w \notin A} P(w) I_{A}\left(0, q_{A}\right)\right) \\
& =\sum_{A \in \mathscr{F}}\left(p_{A} I_{A}\left(1, q_{A}\right)+\left(1-p_{A}\right) I_{A}\left(0, q_{A}\right)\right) . \tag{B1}
\end{align*}
$$

[^2]

Figure B1: L and f such that $L(f(p))=p$.

Thus, if $p=p^{\prime}$, then $\mathbb{E}_{w \sim P}[I(w, q)]=\mathbb{E}_{w \sim P^{\prime}}[I(w, q)]$.
(ii) The claim follows from B1.

To prove Theorem 3, we need the following lemmas. Note that we are dealing with continuity not only in \triangle^{W} but also in $\triangle^{\mathscr{F}}$. The following lemma enables one to find a continuous function assigning a $P \in \mathbb{P}(W)$ to $p \in \triangle^{\mathscr{F}}$.

Lemma \mathbf{A} (Continuous selection). There is a continuous function taking any $p \in \triangle^{\mathscr{F}}$ and giving a $P \in$ $\mathbb{P}(W)$ that is represented by p.

Proof. Let $|\mathscr{F}|=m$ and $|W|=n$. First, observe that we have a linear function $L: \triangle^{W} \rightarrow \triangle^{\mathscr{F}}$ that can be represented by an $m \times n$ binary matrix as follows:

$$
\left(\begin{array}{cccc}
\left(v_{w_{1}}\right)_{1} & \left(v_{w_{2}}\right)_{1} & \cdots & \left(v_{w_{n}}\right)_{1} \\
\left(v_{w_{1}}\right)_{2} & \left(v_{w_{2}}\right)_{2} & \cdots & \left(v_{w_{n}}\right)_{2} \\
\vdots & \vdots & \ddots & \vdots \\
\left(v_{w_{1}}\right)_{m} & \left(v_{w_{2}}\right)_{m} & \cdots & \left(v_{w_{n}}\right)_{m}
\end{array}\right)\left(\begin{array}{c}
P\left(w_{1}\right) \\
P\left(w_{2}\right) \\
\vdots \\
P\left(w_{n}\right)
\end{array}\right)=\left(\begin{array}{c}
p_{1} \\
p_{2} \\
\vdots \\
p_{m}
\end{array}\right) .
$$

Our aim is to find a continuous function $f: \triangle^{\mathscr{F}} \rightarrow \Delta^{W}$ satisfying $L(f(p))=p$ (see figure B1).
First of all, we can triangulate $\triangle^{\mathscr{F}}$ in such a way that $\triangle^{\mathscr{F}}$ is a union of simplexes $\triangle_{1}, \ldots, \triangle_{k}$ and $\bigcup_{i=1}^{k} V\left(\triangle_{i}\right)=V\left(\triangle^{\mathscr{F}}\right)$, where $V(\triangle)$ denotes the set of all vertexes of a polytope \triangle. This is always possible, because $\triangle^{\mathscr{F}}$ is a polytope. For a vertex v of $\triangle^{\mathscr{F}}$ choose one of the omniscient probability measures V_{w} such that $L\left(V_{w}\right)=v$. This is always possible because for any vertex v we have $\left\{w \mid v=v_{w}\right\} \neq \emptyset$. For any $p \in \triangle_{i}$ we can uniquely represent p by $p=\sum_{v \in V\left(\Delta_{i}\right)} \lambda_{v} v$ for some $\left(\lambda_{v}\right)_{v \in V\left(\Delta_{i}\right)}$ such that $\sum_{v \in V\left(\Delta_{i}\right)} \lambda_{v}=1$ and $\lambda_{v} \geq$ 0 . Then we can define a function f_{i} from \triangle_{i} to Δ^{W} such that $f_{i}(p)=\sum_{v \in V\left(\Delta_{i}\right)} \lambda_{v} L^{-1}(v)$, where $L^{-1}(v)$ denotes the selected omniscient probability measure. Observe that f_{i} is continuous. Note that for any $q \in$ $\triangle_{i} \cap \triangle_{j}, f_{i}(q)=f_{j}(q)$. Now, we can construct a unique map $f: \cup_{i=1}^{k} \triangle_{i} \rightarrow \triangle^{W}$ by gluing $f_{1}, f_{2}, \ldots, f_{k}$ where $f \upharpoonright \triangle_{i}=f_{i}$ for all $i \leq k$.

Let us check that f is continuous. Suppose that A is a closed subset of \triangle^{W}. Then $f^{-1}(A)=\bigcup_{i=1}^{k} f_{i}^{-1}(A)$. Since every $f_{i}^{-1}(A)$ is closed because of the continuity of f_{i}, and a finite union of closed sets is closed, it follows that $f^{-1}(A)$ is also closed.

It remains to show that $L(f(p))=p$ for all $p \in \triangle^{\mathscr{F}}$. First, pick a \triangle_{i} such that $p \in \triangle_{i}$. Then

$$
L(f(p))=L\left(f\left(\sum_{v \in V\left(\Delta_{i}\right)} \lambda_{v} v\right)\right)=L\left(\sum_{v \in V\left(\Delta_{i}\right)} \lambda_{v} L^{-1}(v)\right)=\sum_{v \in V\left(\Delta_{i}\right)} \lambda_{v} L\left(L^{-1}(v)\right)=\sum_{v \in V\left(\Delta_{i}\right)} \lambda_{v} v=p
$$

where in the third equality we used the linearity of L.

From this lemma we see that expected scores are also continuous, as follows.
Lemma B. Let $I: W \times \triangle^{M} \rightarrow[0, \infty]$ be a continuous score, and $p \in \triangle^{M}$. Let f be a continuous function as in the previous lemma when $\triangle^{M}=\triangle^{\mathscr{F}}$. When $\triangle^{M}=\triangle^{W}$, let f be the identity function. Then $\mathbb{E}_{f(p)}[I(w, p)]$ is continuous at p.

Proof. $\mathbb{E}_{f(p)}[I(w, p)]=\sum_{w} f(p)(w) I(w, p)$, and if $w \in \operatorname{Supp}(f(p))$ then $w \in \operatorname{MSupp}(p)$. Thus, for all $w \in$ $\operatorname{Supp}(f(p)), I(w, \cdot)$ is finite and continuous at p. Moreover, f is continuous, and the projection on the w th coordinate is continuous. Therefore, our claim holds.

Theorem 3 (Representation of $\operatorname{EUM}(\mathrm{SP})$ by DM(Bregman)). Let $I: W \times \triangle^{M} \rightarrow[0, \infty]$ be a continuous strictly proper score with IER. Then there is a Bregman divergence D in \triangle^{M} such that, for all $p, q \in \triangle^{M}$ and any probability function $P \in \mathbb{P}(W)$ represented by p,

$$
D(p, q)=\mathbb{E}_{w \sim P}[I(w, q)]-\mathbb{E}_{w \sim P}[I(w, p)]
$$

and thus $\operatorname{argmin}_{b} \mathbb{E}_{w \sim P}[I(w, b)]=\operatorname{argmin}_{b} D(p, b)$.
Proof. For $p, q \in \triangle^{M}$, let us define a divergence as follows:

$$
D(p, q):=\mathbb{E}_{w \sim P}[I(w, q)]-\mathbb{E}_{w \sim P}[I(w, p)]
$$

Since I satisfies IER it is well defined, and since I is SP, it is a divergence. We will show that it is a Bregman divergence with $\Phi(p)=-\mathbb{E}_{w \sim P}[I(w, p)]$. Note that Φ is well defined since I satisfies IER.

Claim (i): Φ is continuous, bounded, and strictly convex on \triangle^{M}. By IER and Lemma B, Φ is continuous. Since $I(w, p)$ is finite for all $w \in \operatorname{MSupp}(p)$, it is finite for all $w \in \operatorname{Supp}(P)(\subseteq \operatorname{MSupp}(p))$, and thus $\mathbb{E}_{w \sim P}[I(w, p)]$ is finite. Now let us prove the strict convexity. For $p, q\left(\in \triangle^{M}\right)$ and $\lambda \in(0,1)$ we have

$$
\begin{aligned}
-\Phi(\lambda p+(1-\lambda) q) & =\mathbb{E}_{w \sim \lambda P+(1-\lambda) Q}[I(w, \lambda p+(1-\lambda) q)] \\
& =\lambda \mathbb{E}_{w \sim P}[I(w, \lambda p+(1-\lambda) q)]+(1-\lambda) \mathbb{E}_{w \sim Q}[I(w, \lambda p+(1-\lambda) q)] \\
& >\lambda \mathbb{E}_{w \sim P}[I(w, p)]+(1-\lambda) \mathbb{E}_{w \sim Q}[I(w, q)] \\
& =-\lambda \Phi(p)-(1-\lambda) \Phi(q)
\end{aligned}
$$

The first equality holds by IER because $\lambda P+(1-\lambda) Q$ is one of the probability distributions that are represented in \triangle^{M} by $\lambda p+(1-\lambda) q$. The second equality comes from the linearity of expectation, and the inequality in the third line holds because I is SP.

Claim (ii): If $q \in \mathbb{F}_{p}$, then the directional derivative $\nabla_{p-q} \Phi(q)$ exists and is finite. Moreover $\nabla_{p-.} \Phi(\cdot)$ is continuous at q. Assuming that $q \in \mathbb{F}_{p}$, we will show that

$$
\nabla_{p-q} \Phi(q)=-\mathbb{E}_{w \sim P}[I(w, q)]+\mathbb{E}_{w \sim Q}[I(w, q)]
$$

and that it is finite and continuous in q. Note that there is a small enough h such that $q+h(p-q), q-$ $h(p-q) \in \operatorname{ri}\left(\triangle_{q}\right)$ because $p \in \triangle_{q}$ and $q \in \operatorname{ri}\left(\triangle_{q}\right)$. For $h>0$,

$$
\begin{aligned}
\frac{1}{h}[\Phi(q+h(p-q))-\Phi(q)]= & -\frac{1}{h}\left[\sum_{w}(Q+h(P-Q))(w) I(w, q+h(p-q))-\sum_{w} Q(w) I(w, q)\right] \\
= & -\frac{1}{h} \sum_{w}(Q(w)+h(P(w)-Q(w)))[I(w, q+h(p-q))-I(w, q)] \\
& -\sum_{w} P(w) I(w, q)+\sum_{w} Q(w) I(w, q) .
\end{aligned}
$$

The first equality holds by IER. The last equality holds since every term is finite because

$$
\operatorname{Supp}(P), \operatorname{Supp}(Q) \subseteq \operatorname{MSupp}(q+h(p-q))=\operatorname{MSupp}(q)
$$

Since I is strictly proper, we know that

$$
\sum_{w}(Q(w)+h(P(w)-Q(w)))[I(w, q+h(p-q)-I(w, q)] \leq 0
$$

which implies that

$$
\frac{1}{h}[\Phi(q+h(p-q))-\Phi(q)] \geq-\sum_{w} P(w) I(w, q)+\sum_{w} Q(w) I(w, q)
$$

Similarly, for $h>0$, we have

$$
\frac{1}{h}[\Phi(q)-\Phi(q-h(p-q))] \leq-\sum_{w} P(w) I(w, q)+\sum_{w} Q(w) I(w, q)
$$

Notice that $\sum_{w} P(w) I(w, q)$ is continuous in q because for w such that $P(w) \neq 0$, we have $w \in \operatorname{Supp}(P) \subseteq$ $\operatorname{MSupp}(q)$, and thus $I(w, q)$ is continuous in q. By IER and Lemma B, we also have that $\sum_{w} Q(w) I(w, q)$ is continuous in q. Thismimplies that $\nabla_{p-q} \Phi(q)$ exists as desired. Note that

$$
-\sum_{w} P(w) I(w, q)+\sum_{w} Q(w) I(w, q)=-\mathbb{E}_{w \sim P}[I(w, q)]+\mathbb{E}_{w \sim Q}[I(w, q)]
$$

and it is finite and continuous in q as we indicated above.
Claim (iii): For all $p, q \in \triangle^{M}, D(p, q)=\Phi(p)-\Phi(q)-\nabla_{p-q} \Phi(q)$ if $q \in \mathbb{F}_{p}$, otherwise $D(p, q)=$ $\lim _{x \rightarrow q: x \in \mathbb{F}_{p}} D(p, x)$, which exists (infinity being allowed as limits). First assume that $q \in \mathbb{F}_{p}$. By Claim (ii),

$$
\begin{aligned}
D(p, q) & =\mathbb{E}_{w \sim P}[I(w, q)]-\mathbb{E}_{w \sim P}[I(w, p)] \\
& =-\mathbb{E}_{w \sim P}[I(w, p)]+\mathbb{E}_{w \sim Q}[I(w, q)]+\mathbb{E}_{w \sim P}[I(w, q)]-\mathbb{E}_{w \sim Q}[I(w, q)] \\
& =\Phi(p)-\Phi(q)-\nabla_{p-q} \Phi(q)
\end{aligned}
$$

Otherwise, we need to show that $\lim _{x \rightarrow q: x \in \mathbb{F}_{p}} D(p, x)=\mathbb{E}_{w \sim P}[I(w, q)]-\mathbb{E}_{w \sim P}[I(w, p)]$:

$$
\begin{aligned}
\lim _{x \rightarrow q: x \in \mathbb{F}_{p}} D(p, x) & =\lim _{x \rightarrow q: x \in \mathbb{F}_{p}}\left(\mathbb{E}_{w \sim P}[I(w, x)]-\mathbb{E}_{w \sim P}[I(w, p)]\right) \\
& =\lim _{x \rightarrow q: x \in \mathbb{F}_{p}} \sum_{w} P(w) I(w, x)-\mathbb{E}_{w \sim P}[I(w, p)] \\
& =\sum_{w \in \operatorname{Supp}(P)} P(w) \lim _{x \rightarrow q: \operatorname{MSupp}(p) \subseteq \operatorname{MSupp}(x)} I(w, x)-\mathbb{E}_{w \sim P}[I(w, p)] \\
& =\mathbb{E}_{w \sim P}[I(w, q)]-\mathbb{E}_{w \sim P}[I(w, p)] .
\end{aligned}
$$

The third equality holds because $P(w), I(w, x) \geq 0$. The fourth equality holds since, for $w \in \operatorname{Supp}(P)$, $\lim _{x \rightarrow q: \operatorname{MSupp}(p) \subseteq \operatorname{MSupp}(x)} I(w, x)=I(w, q)$ since $\lim _{x \rightarrow q: \operatorname{MSupp}\left(v_{w}\right) \subseteq \operatorname{MSupp}(x)} I(w, x)=I(w, q)$.

Corollary 1. (i) Let I be a continuous SP score in \triangle^{W}. Then $D(p, q):=\mathbb{E}_{w \sim P}[I(w, q)]-\mathbb{E}_{w \sim P}[I(w, p)]$ is a Bregman divergence in \triangle^{W}.
(ii) Let I be a continuous additive E-SP score in $\triangle^{\mathscr{F}}$. Then $D(p, q):=\mathbb{E}_{w \sim P}[I(w, q)]-\mathbb{E}_{w \sim P}[I(w, p)]$ is an additive Bregman divergence in $\triangle^{\mathscr{F}}$.

Proof. (i) IER always holds in \triangle^{W}.
(ii) Since I is additive, by Lemma 5(i) it has IER and since I is an E-SP score by Lemma 5(ii), it is SP.

Corollary 2. (i) Let I:W $\times \triangle^{M} \rightarrow[0, \infty]$ satisfy IER. I is continuous SP iff

$$
D_{I}(p, q):=\mathbb{E}_{w \sim P}[I(w, q)]-\mathbb{E}_{w \sim P}[I(w, p)]
$$

is a Bregman divergence.
(ii) Let $D: \triangle^{M} \times \triangle^{M} \rightarrow[0, \infty]$ be a divergence, and suppose that $I_{D}(w, q):=D\left(v_{w}, q\right)$ satisfies IER. Then D is a Bregman divergence iff

$$
D(p, q)=\mathbb{E}_{w \sim P}\left[D\left(v_{w}, q\right)\right]-\mathbb{E}_{w \sim P}\left[D\left(v_{w}, p\right)\right]
$$

and $I_{D}(w, q)$ is continuous in q.
Proof. (i) (\rightarrow) We can easily check this from the proof of Theorem 3.
(\leftarrow) Since D_{I} is a divergence, I is SP. Let $p=v_{w}$ for any $w \in W$. Since $D_{I}\left(v_{w}, q\right)=I(w, q)-I\left(w, v_{w}\right)$ and D_{I} is continuous in $\mathbb{F}_{v_{w}}, I$ is continuous in q.
(ii) (\rightarrow) We can easily check this from the proof of Theorem 2.
(\leftarrow) Since D is a divergence, $D\left(v_{w}, q\right)$ is SP. Thus we can apply Theorem 3, and from its proof we know that there is a Bregman divergence d_{D} that is the same as D.

[^0]: ${ }^{1}$ The following is another proof for the first part of Lemma 1. If $B \subseteq A$, then $b_{A}=$ $U(B)(A)=\sum_{w \in A} U(B)(w)=\sum_{w \in A \cap B} U(B)(w)=\sum_{w \in B} U(B)(w)=1$. If $B \nsubseteq A$, then $\sum_{w \in A \cap B} U(B)(w) \neq$ $\sum_{w \in B} U(B)(w)$. Thus, $b_{A} \neq 1$.
 © The Author(s) 2021, Published by Cambridge University Press on behalf of the Philosophy of Science Association.

[^1]: ${ }^{2}$ Notice that for any subgradients f and f^{\prime} of Φ at q, we have $f \cdot(p-q)=f^{\prime} \cdot(p-q)$ for all $p \in \triangle_{q}$. This shows the uniqueness of the subgradient of $\Phi \upharpoonright \triangle_{q}$ at q, which indicates differentiability at q.

[^2]: ${ }^{3}$ For any $r \in \triangle^{M}$, in the case where $\operatorname{MSupp}(r) \nsubseteq \operatorname{MSupp}(q), \lim _{x \rightarrow q} D(r, x)$ might not exist if we do not impose the condition about the sequence that $\operatorname{MSupp}(r) \subseteq \operatorname{MSupp}(x)$, under which $D(r, x)$ can be defined without using a limit.

