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Appendix
A. Remark

In the following remark, we gather some useful results about maximal support, 2A,, and F),. These will
be used in the proofs in the next section. Recall that ri(X) is the relative interior of X (C R™). Proofs are
omitted but can be easily checked.

Remark. Let g € AM and MSupp(q) = {w1, ..., wi}.
(i) There is a weighting vector (1)< € (0, 1]* such that g = Y| A,v,,,.
(i) If g € ri(AM), then MSupp(gq) =W and A, = AM.
(i) ri(Aq) = {p € AM [MSupp(p) = MSupp(q)}.
(iv) geri(Dy).
(v) MSupp(p) € MSupp(q) if and only if (iff) p € A, iff g € F),.
(vi) If MSupp(p) € MSupp(q), then F, CF,,.

B. Proofs

Lemma 1 (Invariance under the same ouput representation (IOR)). Let B and B' be non-empty subsets of
W. If the corresponding points in A7 are the same, i.e., b=V, then, forallAe Z,

(i) BCAiffbs=1and BC A iff by =0, and thus

(ii) BCAiff B CAand B C A® iff B' C A, where A° is the complement of A.

Proof. In A7 weAiff (vw)a = 1 for all w € W and for all A € Z. Thus, B C A means that for all w' € B,
(v)a =1, which is equivalent to by (=Y,vcp 1/|B|(v,s)a) = 1. Similarly, w € A iff (v,,)4 =0 for all
w €W and for all A € .%. Thus, B C A® means that for all w' € B, (v )a =0, which is equivalent to by = 0.!
Since b = b’ means that for all A € .7, by = b/, the rest of the claim follows. O

Theorem 1 (Characterization of DM rule). A binarization rule (BR) G is a distance minimization (DM)
rule in AM iff

(i) G satisfies invariance under the same input representation (IIR) in AM, and
(ii) G satisfies the suspension principle.

IThe following is another proof for the first part of Lemma 1. If BCA, then by =
U(B)(A) =Ywea U(B)(w) = Lyeann U(B)(W) = Lyep U(B)(w) = 1. If BZ A, then ¥,,canp U(B)(w) #
Yes U(B)(W) Thus, by # 1.
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Proof. (—) Since G has the form G(P) = argmin,, d(p, b) for some divergence d, (i) and (ii) hold.
(<) Define d as follows: For b € U™,

0 ifbeG(P)and p=b,
d(p,b):=< 1 ifbeG(P)and p#Db,
2 ifb¢ G(P),

and for g € AM\ UM, d(p, q) =0 if p =g, otherwise d(p, q) = 1. This is well defined thanks to IIR. And
d is a divergence: If p = b € UM then G(P) = b by the suspension principle and thus d(p, b) =0.If p # b,
then d(p, b) = 1 if b € G(P), otherwise d(p,b) =2, and thus d(p,b) > 0. For g€ AM\ UM, d(p,q) =0
iff p = gq. Furthermore, we have G(P) = argmin, d(p, b): If p = b, argmin, d(p, b) = {b} = G(P) by the
definition of d and the suspension principle. If p # b, argmin, d(p, b) = {b|d(p,b) =1} = G(P). O

To prove Theorem 2, we need the following lemma, which shows that the directional derivative of a
convex function is linear, if it exists and is finite.

Lemma 2 (Linearity of directional derivative). Let ®: AM =R be a convex function. The following
statements are equivalent:

(i) Forallpe AM and q € ), the directional derivative V ,_,®(q) exists and is finite.

(ii) Forall g€ AM there exists f € R™ such that, for all p € Ny, Vp_q®(q) = f - (p — q).

Proof. (ii) — (i) is straightforward.

(i) — (ii): Suppose that f is a subgradient of ® at g. As g €1i(4\,), the existence of a subgradient is
guaranteed by the convexity of ®. For 4 > 0, from the definition of subgradient we have that ®(q + h(p —
q)) >®(q)+ f-h(p —q) forall p € A\, that is,

<I>(q+h(p;q))—<1>(q) > f(p—q).

For 1 > 0 small enough that ¢ — h(p — ¢q) € 2, (such an h exists since g € ri(4A;)), we have that ®(q —
h(p—q)) >®(q) — f-h(p—q) forall pe A, that is,

Pla) - ‘b(qh_ Me=9) s (p—g).

Since @ has a finite directional derivative at ¢ in the direction of p — g, with 1 —0 we get V,_,®(q) =
f-(p—a)? O
Theorem 2 (Representation of DM(Bregman) by strictly proper expected (epistemic) utility maximization
(EUM(SP))). Let D be a Bregman divergence in M. Then, for all p, q € AM and any probability function
P € P(W) represented by p,
D(p,q) = ]EWNP[D(VW 61)] - ]EWNP[D(VVW 17)]»
and thus argmin, D(p, b) = argmin,, E,,p[D(vy,, b)].
Proof. First, assume that g € F,. Then, not only the left-hand side but also the right-hand side is finite

because

Ev~p[D(viw, g)] — Bwnp[D(vw, p)] = Z P(W)D(vy, q) — Z P(w)D(vw, p)
weSupp(P) weSupp(P)

and, for all we Supp(P) (C MSupp(p) € MSupp(q)), D(vw,q) and D(v,, p) are finite. Let D(p, q) =
@(p) = ®(q) = Vp—qP(g). Then
Evnp[D(vw; 4)] = Bynp[D(viy, p)] = B [®(viy) — D(q) — Vi, P(q)]
— Evp[®(viy) = @(p) = Vy,—p®(p)]
=®(p) = 2(q) = Eyr [V, —qP(q)] + Ennp Vs, - p®(p)]
=®(p) = (q) = Vp—gP(q)-

ZNotice that for any subgradients f and f" of ® at ¢, we have f - (p —q) = f- (p — q) forall p € A,.
This shows the uniqueness of the subgradient of ® [ A, at g, which indicates differentiability at g.
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The last equality follows from the fact that
By [Vi—@(@)] = Bwer[f - (v = )] = F - Bunp[(vw — )] = f - (Bunp[v] — q)

where f is a (sub)gradient at g and E,,.p[g(w)] = (Ey~p[gi(w)])i<m for §: W — R™. Since w € MSupp(q)

for all w € Supp(P), this holds by the linearity of expectation and the linearity of the directional derivative

of a convex function, which is proved by Lemma 2. Our claim holds from E,,p[vy] = ¥ ew P(W)viy = p.
Next, assume that g ¢ IF,. Then

D(p, q) = )lcl_I)Ill] D(pvx) = }l_r}(l] (]EWNP[D(VW’X)] - ]EWNP[D(VW? [7)])

1xefp 1xelfp
= )lfl‘r;}i ZP me ]EW'VP[D(VW7 p)]
1xeFp W
= Z P(w) )ngn D(vy, x) = Eyp[D(vw;, p)]
weSupp(P) : MSupp(p)CMSupp(x)

=Ey~p[D(vw, ¢)] — Evp[D(v, p)].
The fourth equality holds since P(w), D(vy, x) > 0. Let us explain why the last equality holds: For any
w € Supp(P), thus for any w such that {w} = MSupp(vy,) € MSupp(p), lim,_, ;. msupp(p)cMSupp(x) PV X)
exists because {x € AM|MSupp(p) C MSupp(x)} C {x € AM | MSupp(v,,) C MSupp(x)}.> Moreover,
limxﬁq: MSupp(p) CMSupp(x) D(vw, x) = D(vy, q) since limxﬁq: MSupp(vy,) CMSupp(x) D(Vwa x) =D (v, q)' |

Lemma 3. LetI: W x AM — [0, o] be a strictly proper score. Then I(w, -) is finite in T,

Vip+

Proof. Since E,,p[I(w, p)] < E,~p[I(w, q)] for all g # p, E,,~p[I(w, p)] should be finite for all P € P(W)
and p € AM such that p is a representation point P. Thus, for all w € Supp(P), I(w, p) is finite for all P
represented by p. Therefore, for all w € MSupp(p), I(w, p) is finite. O

Lemma 4. A function I: W x A7 — [0, o] satisfies invariant expectation under the same representa-
tion (IER) if I is a partition-wise score, i.e., there is a partition of W, say W =AU - - - UAy, such that
(i) Ay, ... A € F and (i) for all i < k we have, for all w,w' € A; and g € N7, I(w, q) =1(W, q).

Proof. Since Eyp[I(w, q)] = Lyew PW)I(w, q) = Li< P(Ai)I(wi, q), where w; is any world in A;, we
have By p[I(W, q)] = i< Pa I (Wi, q) = Eypopr [1(w, 9)]. O
Lemma5. LetI: W x A — [0, 0] be additive, i.e., for allw € W and p € A7,

Iw,p) =Y L((vw)a, pa)s
AeF

where I5: {0,1} x [0, 1] = [0, o] for all A € Z.
(i) I satisfies IER.
(ii) If1 is event-wise strictly proper (E-SP), i.e.,

argmin (pals(1,44) + (1 = pa)la(0,94)) = {pa}
44€[0,1]

forall A€ F and py € [0, 1), then I is strictly proper.

Proof. (i) We compute the following:

Ewpll(w, )] = Y PWI(w,q)= Y. P(w) Y Ia((vw)a:qa)

wew wew AeF
=Y (ZP Ma(l,qa) + Y P(w IA(Ov(IA)>
AeF \weA w¢A
=Y (pala(1,44) + (1 = pa)la(0, qa))- (B1)
AeF

3Forany r € AM  in the case where MSupp(r) € MSupp(q), lim,—, D(r, x) might not exist if we do not
impose the condition about the sequence that MSupp(r) € MSupp(x), under which D(r, x) can be defined
without using a limit.
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Figure B1: L and f such that L(f(p)) = p.

Thus, if p=p/, then Ey,p[I(w, )] = E,,.p [I(w, q)].
(ii) The claim follows from B1. O

To prove Theorem 3, we need the following lemmas. Note that we are dealing with continuity not only in
A but also in A7 . The following lemma enables one to find a continuous function assigning a P € P(W)
tope A7,

Lemma A (Continuous selection). There is a continuous function taking any p € A7 and giving a P €
P(W) that is represented by p.

Proof. Let |#| =m and |W| = n. First, observe that we have a linear function L: A" — A7 that can be
represented by an m X n binary matrix as follows:

)t w1 -+ (w P(w1) 4
w)2 )2 = (V)2 | | P(w2) R
(Vw.l )m (Vw.z)m . (Vw;,)m P(V.Vn) p.m

Our aim is to find a continuous function f: AZ — AW satisfying L(f(p)) = p (see figure B1).
First of all, we can triangulate A7 in such a way that A7 is a union of simplexes A1, ..., /¢ and
KL V(L) =V(AT), where V(A) denotes the set of all vertexes of a polytope A. This is always possible,
because A7 is a polytope. For a vertex v of A7 choose one of the omniscient probability measures V,, such
that L(V,,) = v. This is always possible because for any vertex v we have {w |v=w,} # 0. For any p € A;
we can uniquely represent p by p =Y,y (a,) Avv for some (A,),cy(a,) such that ¥yey(a,y Ay = 1 and A, >
0. Then we can define a function f; from A to AV such that fi(p) = Toev(ay AL7'(v), where L™1(v)
denotes the selected omniscient probability measure. Observe that f; is continuous. Note that for any g €
AiNAj, fi(g) = fi(q). Now, we can construct a unique map f: Uf-‘zl A — AW by gluing f1, f, ..., fi
where f | A; = f; forall i <k.

Let us check that f is continuous. Suppose that A is a closed subset of AW . Then =1 (4) = U, f,71(A).
Since every ffI (A) is closed because of the continuity of f;, and a finite union of closed sets is closed, it
follows that £~'(A) is also closed.

It remains to show that L(f(p)) = p for all p € A7 . First, pick a 2; such that p € A;. Then

wi-c(s( £ m))-r( F mw)- T aalon- T oav-p
veV (L) veV (L) veV(4) LEV(A )

where in the third equality we used the linearity of L. O

From this lemma we see that expected scores are also continuous, as follows.

LemmaB. Letl: W x AM — [0, 0] be a continuous score, and p € AM . Let f be a continuous function as
in the previous lemma when AM = AF . When AM = AV | let f be the identity function. Then B (LW, p)]
is continuous at p.
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Proof. Es,)[I(w, p)] =Y., f(p)(W)I(w, p), and if w € Supp(f(p)) then w € MSupp(p). Thus, for all w €
Supp(f(p)), I(w, ) is finite and continuous at p. Moreover, f is continuous, and the projection on the wth
coordinate is continuous. Therefore, our claim holds. O

Theorem 3 (Representation of EUM(SP) by DM(Bregman)). Let I: W x AM — [0, ] be a continuous
strictly proper score with IER. Then there is a Bregman divergence D in AN such that, for all p,q € NM
and any probability function P € P(W) represented by p,

D(p, q) = ]EW'VP[I(W7 Q)] —Ew~p [1(W7 p)]v
and thus argminy, E,,p[I(w, b)] = argmin, D(p, b).
Proof. For p,q € AM, let us define a divergence as follows:

D(p,q) :=Eyp[I(w, q)] = Ew~p[I(w, p)]-
Since I satisfies IER it is well defined, and since [ is SP, it is a divergence. We will show that it is a Bregman
divergence with ®(p) = —E,,p[I(w, p)]. Note that ® is well defined since / satisfies IER.

Claim (i): ® is continuous, bounded, and strictly convex on AM By IER and Lemma B, & is continu-
ous. Since I(w, p) is finite for all w € MSupp(p), it is finite for all w € Supp(P) (C MSupp(p)), and thus
E,~p[I(w, p)] is finite. Now let us prove the strict convexity. For p, g(€ AM) and A € (0, 1) we have

—®Ap+(1=2)q) =Eyrpi-a)oll(w,Ap + (1 = 1)q)]
— A, pli( Ap+ (1 = )q)] + (1 — )EynglI(w, Ap + (1 - A)g)]
> AB,pll(w. p)] + (1 = 1)EpnglI(0,q)]
— —1®(p) — (1 - 1)(q).
The first equality holds by IER because AP+ (1 — 4)Q is one of the probability distributions that are
represented in AM by Ap + (1 — 4)g. The second equality comes from the linearity of expectation, and the
inequality in the third line holds because I is SP.

Claim (ii): If ¢ € IF),, then the directional derivative V,_,®(q) exists and is finite. Moreover V,_.®(-)

is continuous at g. Assuming that g € F,, we will show that

Vp-4®(q) = —Eu~p[l(Ww, 9)] + Eyol(w, 9)]

and that it is finite and continuous in ¢. Note that there is a small enough % such that g+ h(p — q), g —
h(p — q) €r1i(Ag) because p € Ay and g € 1i(A). For h >0,

L(a-+ (p—q) —blg)] = — 1 | L@+ h(P— ))(w)(w. -+ h(p—q)) ~ ¥ Q0w (w.q)

:—*Z (w) = QW)U (w, g+ h(p — q)) = 1(w, q)]
*):P I(w,q) + Y, QW) (w,q).

The first equality holds by IER. The last equality holds since every term is finite because

Supp(P), Supp(Q) € MSupp(q + h(p — q)) = MSupp(q)-

Since [ is strictly proper, we know that

Y(Q00) + H(P() = QW) 1w+ h(p — a) ~ 1(w. )] <O.
which implies that
1190+ p — 4)) ~ B(a)) = ~ ¥ P00 4) + ¥ QW (,0).

Similarly, for 4 > 0, we have

(900 =@l h(p—))) < = ¥ PO 0.0)+ 000} (0.0).
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Notice that ¥, P(w)I(w, g) is continuous in ¢ because for w such that P(w) # 0, we have w € Supp(P) C
MSupp(gq), and thus I(w, g) is continuous in g. By IER and Lemma B, we also have that Y, Q(w)I(w, q) is
continuous in ¢. Thismimplies that V,,_,®(g) exists as desired. Note that

= L PI(w.q) + Y, Q(W)I(w. q) = ~EpnplI(w,)] + Eunoll (i, q)]

and it is finite and continuous in g as we indicated above.
Claim (iii): For all p,q€ AM, D(p, q) = ®(p) — ®(q) — V,—4P(q) if q €F,, otherwise D(p,q) =
limy, g xer, D(p, x), which exists (infinity being allowed as limits). First assume that ¢ € F,. By Claim (ii),

D(p, q) =Ew~pll(w, q)] = Eyp[I(w, p)]
= —Euwnp[I(w, p)] + Bung[I(W, 9)] + Evnp [I(w, g)] = Eng[I(w; )]
=®(p) = P(q) = Vp—4P(q).
Otherwise, we need to show that limy_, ;. xer, D(p, X) = Eynp[I(w, ¢)] — Eyup[I(w, p)]:
xa};i:Te]Fp D(p,x) :Xﬁ}]i:r){‘er(E»wP [I(w, x)] = EwnplI(w, p)])

= lim ZP(W)](W, x) — Eyp[l(w, p)]

x—q: x€F) m

= P(w lim I(w,x) — E,p[I(w, p
wES%p(P) ( )xﬂq:MSupp(p)gMSupp(x) ( ) P[( )]

= EuplI(.9)] ~ Bupli(0, )]

The third equality holds because P(w),I(w,x) > 0. The fourth equality holds since, for w € Supp(P),
limxaq: MSupp(p) CMSupp(x) I(W= x) = I(W, q) since limxaq: MSupp(vy, ) CMSupp(x) I(W, x) = I(W-, q)- O

Corollary 1. (i) Let I be a continuous SP score in AY. Then D(p, q) := Eyp[I(w, q)] — Eyp[I(w, p)]
is a Bregman divergence in AW .
(ii) Let I be a continuous additive E-SP score in N7 . Then D(p, q) :=Eyp[I(w, q)] — EvpplI(w, p)] is
an additive Bregman divergence in A7

Proof. (i) IER always holds in AW
(ii) Since [ is additive, by Lemma 5(i) it has IER and since / is an E-SP score by Lemma 5(ii), it is SP. [

Corollary 2. (i) LetI: W x AM — [0, o] satisfy IER. I is continuous SP iff

Di(p, q) :=Ewep[l(w, q)] — Ewep[I(w, p)]

is a Bregman divergence.
(ii) LetD: ANM x AM — [0, o] be a divergence, and suppose that In(w, q) := D(v,, q) satisfies IER. Then
D is a Bregman divergence iff

D(p,q) =Ey~p[D(viy, q)] = Eyp[D(vw, p)];
and Ip(w, q) is continuous in q.

Proof. (i) (—) We can easily check this from the proof of Theorem 3.

(+-) Since Dy is a divergence, I is SP. Let p =v,, for any w € W. Since D;(vy,, q) =I(w, q) — I(w, vy)
and Dy is continuous in IF,,,, / is continuous in g.

(ii) (—) We can easily check this from the proof of Theorem 2.

() Since D is a divergence, D(vy,, ¢) is SP. Thus we can apply Theorem 3, and from its proof we know
that there is a Bregman divergence dp that is the same as D. O
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