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SUPPLEMENTARY MATERIAL 1 
Species distribution model methods
[bookmark: _ylc3hfn08nby]We downloaded Australian occurrence records for D. rhodogaster from the Atlas of Living Australia (ala.org.au) using the package Galah 1.40 (Stevenson et al., 2023) in R 4.1.2 (R Core Team, 2021). We then undertook an intensive data cleaning process to remove spatially invalid or suspect records that, if retained, can cause species’ environmental ranges to be miscalculated. Spatially invalid records, those collected before 1950, duplicate records, those within 10 km of capital cities and biodiversity institutions (which are likely to be museum records, and thus not reflective of the species realised niche), and individual records > 300 km from other records for that species (likely to be misidentified, or outliers) were removed using the package CoordinateCleaner 1.0–7 (Zizka et al., 2019), resulting in c. 27 % of c. 380 records being removed. We then combined the Atlas of Living Australia records for D. rhodogaster with the New South Wales Bionet records (records collated by the state environmental regulator and therefore assumed to be clean), resulting in a total of 198 clean records. We also downloaded occurrence records for all other reptile species in the Atlas of Living Australia, to be used as reference or background data in the habitat suitability models. A total of 38,704 background records were used (from all reptile data in the Atlas of Living Australia), with the assumption that the bias structure in these background records (all reptile taxa) is the same as the target records (D. rhodogaster).
[bookmark: _Hlk176167581]We obtained climate data for the Australian continent from the CSIRO data access portal, (derived from the ANULCIMN software, see the CSIRO DAP, Williams et al. 2012). Eleven climate layers (i.e. rasters) were summarised for the period 1976–2005 at c. 280 m resolution, creating variables to use for habitat model calibration: (1) annual mean temperature, (2) isothermality, (3) maximum temperature of the warmest month, (4) minimum temperature of the coldest month, (5) mean diurnal range, (6) temperature annual range, (7) annual precipitation, (8) Summer-winter precipitation seasonality (PTS1) 1, (9) Spring-Autumn precipitation seasonality (PTS2), (10)  precipitation of the wettest month, and (11) precipitation of the driest month. These variables were chosen to capture climate averages, seasonality and extremes, all of which have been identified as important variables for predicting climatically suitable habitat for reptiles (Cabrelli et al., 2014, Cabrelli & Hughes, 2015). 
To capture edaphic processes in the habitat models, continental soil data were obtained from the Soil Landscape Grid of Australia at c. 280 m resolution (see the CSIRO DAP). A lithology layer was also calculated using the 1:250k Geology of Australia map (Geoscience Australia), and topographic layers were calculated from the 3 second (~90m) Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM); see ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/69888. Similarly, the effects of vegetation on habitat suitability were incorporated using remotely sensed estimates of Australian forest and woodland structure (height and cover) at c. 30 m resolution (Scarth et al., 2019). We then extracted the values from all environmental layers at every occurrence point for D. rhodogaster (Supplementary Table 1), creating 43 environmental variables as input to habitat suitability models. 

[bookmark: _l9d5glhxdqci]Habitat suitability modelling
A habitat suitability model was created for D. rhodogaster across eastern Australia by supplying all occurrence records and current environmental layers to the Maxent algorithm (Phillips et al., 2006; Phillips & Dudík, 2008; Elith et al., 2011) within the R package dismo 1.1–4 (Hijmans et al. 2016). Maxent is a machine learning, correlative approach to modelling habitat suitability that is generally considered superior to alternative algorithms that analyse presence-only data (Elith et al., 2006). The resulting map generated by Maxent illustrates how habitat suitability for D. rhodogaster varies across eastern Australia, with suitability in grid cells ranging from 0 (highly unsuitable) to 1 (highly suitable; see Elith et al., 2011; Merow et al., 2013 for more details of the algorithm).
Models were calibrated using mostly default Maxent settings, although hinge and threshold ‘features’ (mathematical transformations of predictor variables; Elith et al., 2011) were disabled to reduce model complexity. In addition to occurrence records, Maxent requires ‘background’ data that characterizes the surrounding environment in which the modelled taxon occurs. We took background points as random samples of up to 100,000 cells from the pool of cells that (a) contained occurrence records in Atlas of Living Australia for one or more reptile species other that D. rhodogaster, and (b) fell within 100 km of records for the target species (i.e. a buffered target-group background; Elith & Leathwick, 2007; Phillips & Dudík, 2008). This approach was utilized to ensure that both the occurrence and background points had similar spatial biases (a key requirement for robust Maxent model calibration). Models were calibrated using occurrence data from the whole of Australia, but the models were only projected into eastern Australia.
To evaluate model performance, we calculated the average area under the receiver operating characteristic curve (AUC; Swets, 1988) and the true skill statistic (TSS) on test data through five-fold cross-validation. This split the occurrence data for D. rhodogaster into five random subsets of close to equal size (i.e. folds), fitting the model to four of the five folds and then predicting into the fifth. This process was repeated until each fold was used four times for model fitting and once for model evaluation (Stone, 1974). Subsequently, the model was fitted a final time using the complete set of species data. 
Importantly, habitat suitability models can show high performance indicators using test/training data, yet still over-project habitat suitability (i.e. although the model projects some locations to be suitable, given ecological knowledge of the species, these locations are unlikely to be suitable in reality). This may indicate that models are encountering novel conditions. To explore this uncertainty, we calculated a Multivariate Environmental Similarity Surface (MESS; Elith et al., 2010; Baumgartner et al. 2017). Although the MESS map indicated that the model was not projecting to novel states for individual environmental variables, this approach does not consider novel combinations of variables (i.e. interactions). An alternate explanation for over-projection is that suitable conditions for species are influenced by environmental variables not considered in the model (such as biotic interactions, see Barry & Elith, 2006). The habitat suitability model map illustrates the projected distribution of suitable climate under current conditions. Each grid cell is given a probability value between 0 (highly unsuitable) and 1 (highly suitable).
[bookmark: _4i6azc1h9pje]Combining habitat models with burnt areas
To estimate the total area of suitable habitat for D. rhodogaster across Eastern Australia that was burnt by the 2019–2020 fires, we intersected our habitat suitability model with an aggregated layer of the Fire extent (which was developed by digitizing fire boundaries from remote sensing, see NIAFED data). We used the sf package in R to calculate the approximate area of suitable habitat that was classified as burnt. 



SUPPLEMENTARY TABLE 1 Environmental layers (i.e. rasters) used in the habitat suitability analysis. All layers were resampled to c. 280 m resolution, and all climate layers are summarised for 1976–2005. See Williams et al. (2012) for more details on layer development and their use in biodiversity modelling.
	Layer
	Type
	Source
	Description

	Annual Precip
	Climate
	CSIRO DAP
	Annual precipitation

	Precip dry Month
	Climate
	CSIRO DAP
	Precipitation of the driest month

	Precip wet Month
	Climate
	CSIRO DAP
	Precipitation of the wettest month

	PTS1
	Climate
	CSIRO DAP
	Annual precipitation seasonality

	PTS2
	Climate
	CSIRO DAP
	Annual precipitation seasonality

	Annual Mean Temp
	Climate
	CSIRO DAP
	Annual mean temperature

	Isothermality
	Climate
	CSIRO DAP
	Annual precipitation

	Max temp warm month
	Climate
	CSIRO DAP
	Annual precipitation

	Min_temp_cold_month
	Climate
	CSIRO DAP
	Annual precipitation

	Mean_diurnal_range
	Climate
	CSIRO DAP
	Annual precipitation

	Temp_annual_range
	Climate
	CSIRO DAP
	Annual precipitation

	Lithology
	Soil
	GEOSC AUS
	Annual precipitation

	AWC
	Soil
	SOIL LG AUS
	Annual precipitation

	BDW
	Soil
	SOIL LG AUS
	Annual precipitation

	CLY
	Soil
	SOIL LG AUS
	Annual precipitation

	DER
	Soil
	SOIL LG AUS
	Annual precipitation

	DES
	Soil
	SOIL LG AUS
	Annual precipitation

	ECE
	Soil
	SOIL LG AUS
	Annual precipitation

	NTO
	Soil
	SOIL LG AUS
	Annual precipitation

	PTO
	Soil
	SOIL LG AUS
	Annual precipitation

	SLT
	Soil
	SOIL LG AUS
	Annual precipitation

	SND
	Soil
	SOIL LG AUS
	Annual precipitation

	SOC
	Soil
	SOIL LG AUS
	Annual precipitation

	TOPO
	Topo
	CSIRO DAP
	Annual precipitation

	CONAREA
	Topo
	CSIRO DAP
	Annual precipitation

	ELVR1000
	Topo
	CSIRO DAP
	Annual precipitation

	PlanCurv
	Topo
	CSIRO DAP
	Annual precipitation

	PROFCURV
	Topo
	CSIRO DAP
	Annual precipitation

	SlopeDeg
	Topo
	CSIRO DAP
	Annual precipitation

	SLPFM300
	Topo
	CSIRO DAP
	Annual precipitation

	TWI
	Topo
	CSIRO DAP
	Annual precipitation

	MRVBF
	Topo
	GEOSC AUS
	Annual precipitation

	Plant_cover_fraction_0_5m
	Veg
	Scarth et al
	Annual precipitation

	Plant_cover_fraction_5_10m
	Veg
	Scarth et al
	Annual precipitation

	Plant_cover_fraction_10_30m
	Veg
	Scarth et al
	Annual precipitation

	Plant_cover_fraction_30m
	Veg
	Scarth et al
	Annual precipitation

	Total_Plant_cover_fraction
	Veg
	Scarth et al
	Annual precipitation

	Tree_canopy_height_25th
	Veg
	Scarth et al
	Annual precipitation

	Tree_canopy_height_50th
	Veg
	Scarth et al
	Annual precipitation

	Tree_canopy_height_75th
	Veg
	Scarth et al
	Annual precipitation

	Tree_canopy_height_95th
	Veg
	Scarth et al
	Annual precipitation

	Tree_canopy_peak_foliage
	Veg
	Scarth et al
	Annual precipitation

	Tree_canopy_peak_foliage_total
	Veg
	Scarth et al
	Annual precipitation


 
[bookmark: _Hlk132717945]
SUPPLEMENTARY TABLE 2 Habitat suitability model results for D. rhodogaster. Column definitions are as follows: HSM points, the number of records included in the model after cleaning and filtering to 1km grid cells; Vars, the number of environmental variables included in the final model (including HSM terms); Var_pcont_1, the enviro variable with the highest % contribution to the model; Var_pimp, the variable with the greatest permutational importance to the model; AUC, area under the curve measure; BG pts, the number of background points used in the model; Threshold, the probability at which 10% of the HSM training presence records are omitted; Omission, the proportion of test records that occurred in locations predicted as unsuitable for D. rhodogaster (Phillips 2006); TSS, true skill statistic value, derived from a confusion matrix of the number of correct and incorrect predictions for the presence/absence of D. rhodogaster, considered the best indicator of HSM performance (Frans et al., 2007).
	HSM points
	Vars
	Var_pcont_1
	Var_pimp
	AUC
	BG pts
	Logistic
	Omission
	TSS

	198
	16
	PTS2 = 29.131
	PTS2
	0.888
	38704
	0.262
	0.096
	0.681
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