Suplementarny materials

Gorerite, CaAlFe₁₁O₁₉, a new mineral of the magnetoplumbite group from the Negev Desert, Israel

Evgeny V. Galuskin, Biljana Krüger, Irina O. Galuskina, Hannes Krüger, Krzysztof Nejbert and Yevgeny Vapnik

Figure S1. (a) Zone II (central part) with celsian metacrysts, rare ferrite aggregates and cavities, on walls of which relatively large andradite crystals grow. Cavities are filled by calcite and/or tacharanite and/or zeolites; sometimes, latiumite is observed in these cavities. Fragment magnified in Fig. 5B is outlined by frame; (b) Magnesioferrite grain with gorerite inclusions and rim composed by dorrite and andradite. BSE images. Adr = andradite, Baf = baroferrite, Cal = calcite, Cls = celsian, Dor = dorrite, Ess = esseneite, Gh = gehlenite-ackermanite series, Gor = gorerite, Lat = latiumite, Mfr = magnesioferrite, Wo = wollastonite.

Figure S2. (a) Barioferrite crystals; (b) – epitaxial overgrowths of "Sr-Ba-gorerite" on hibonite from porous fragments of rock at the periphery of the hematite zone I. BSE images. Adr = andradite, Baf = barioferrite, Cal = calcite, Cls = celsian, Dor = dorrite, Ess = esseneite, Hem = hematite, Hbn = hibonite, Hfr = hexaferrie "Sr-Ba-gorerite", Mfr = magnesioferrite, Wo = wollastonite, Zlt = zeolite.

	1		2			3			4		5		
	Fig. 4c,5c		Fig. S2b		Fig. S2b			Fig. S2a			Fig. S2a		
wt.%	n=11	s.d.	range	n=21	s.d.	range	<i>n</i> =7	s.d.	range	n=8 core	s.d.	range	n=2 rim
TiO ₂	5.63	0.36	5.04-6.21	5.69	0.46	4.72-6.46	3.45	0.21	3.14-3.74	0.19	0.09	0.04-0.29	1.52
SiO_2	0.10	0.15	0-0.55	0.07	0.05	0-0.19	0.08	0.03	0.04-0.12	0.25	0.04	0.19-0.29	0.17
Fe_2O_3	25.22	2.03	22.60-28.80	26.22	1.60	24.08-29.53	57.93	1.81	53.76-59.50	83.85	0.38	83.28-84.40	80.24
Cr_2O_3	0.18	0.04	0.14-0.27	0.14	0.02	0.10-0.18	0.37	0.05	0.28-0.44	n.d.			n.d.
V_2O_3				0.1	1 0.	05 0-0.17	7 0.1	3	0.04	0.07-0.17	n.d.		n.d.
Al_2O_3	58.25	1.47	55.65-60.47	56.66	1.16	54.09-58.54	26.27	1.58	24.62-29.92	2.49	0.10	2.40-2.71	4.99
BaO	n.d.			n.d.			2.26	0.40	1.51-2.89	11.72	0.55	10.79-12.42	10.20
SrO	0.07	0.08	0-0.25	n.d.			3.72	0.18	3.40-3.98	0.40	0.14	0.23-0.69	1.11
FeO*	0.35			0.37						n.d.			n.d.
MnO	n.d.			0.10	0.03	0.04-0.16	0.12	0.02	0.07-0.15	n.d.			0.12
CaO	7.65	0.14	7.41-7.91	7.66	0.21	7.40-8.49	3.31	0.19	2.99-3.57	1.05	0.27	0.62-1.40	1.01
MgO	2.56	0.17	2.35-2.91	2.41	0.14	2.10-2.67	1.28	0.08	1.19-1.43	0.18	0.03	0.12-0.22	0.74
K_2O	n.d.			n.d.			0.24	0.03	0.20-0.27	0.00	0.02	0-0.07	0.05
Na ₂ O	n.d.			0.03	0.02	0-0.08	0.03	0.02	0-0.06	n.d.			n.d.
Total	100.03			99.47			99.16			100.14			100.15
Calcul	ated on 1	90											
Ca	0.99			0.99			0.48			0.15			0.18
Ba							0.13			0.82			0.70
Sr	0.01						0.32			0.04			0.11
Κ							0.05						0.01
Na				0.01			0.01						
А	1.00			1.00			1.00			1.01			1.00
Al	8.54			8.40			4.65			0.53			1.03
Fe ³⁺	2.36			2.48			6.54			11.30			10.52
Mg	0.48			0.45			0.29			0.05			0.19
Ti ⁴⁺	0.53			0.54			0.39			0.03			0.20
Mn ²⁺				0.01			0.02						
Ca	0.03			0.04			0.05			0.05			0.01
Cr^{3+}	0.02			0.01			0.04						
V^{3+}				0.01			0.02						
Si	0.01			0.01			0.01			0.05			0.03
Fe ²⁺	0.04			0.04									0.02
В	12.00			12.00			12.00			12.00			12.00

Table S1. Hexagonal ferrites: hibonite relicts in gorerite (1), hibonite (2) from intergrowth with Sr-Ba-bearing hexaferrite (3), single crystals of barioferrite (4,5)

n.d.-not detected, * - Fe^{2+}/Fe^{3+} ratio calculated on charge balance

	1 2				3	4				
	Fig. 5a		Fig. 4c		Fig. 4c			Fig. 5a		
wt.%	<i>n</i> =4	<i>n</i> =12	s.d.	range	<i>n</i> =6	s.d.	range	<i>n</i> =6	s.d.	range
TiO ₂	0.00	0.00	0.02	0-0.06	0.31	0.02	0.28-0.35	0.12	0.02	0.09-0.16
Fe ₂ O ₃	68.32	63.35	1.01	61.75-65.45	92.20	0.56	91.22-92.68	93.21	0.38	92.92-93.98
Cr_2O_3	0.46	0.48	0.08	0.42-0.74	0.33	0.01	0.32-0.35	0.24	0.02	0.22-0.29
Al_2O_3	5.37	12.51	0.97	10.09-14.34	6.07	0.08	5.99-6.22	5.24	0.18	5.03-5.58
ZnO	0.12	0.23	0.05	0.16-0.33	n.d.			n.d.		
NiO	0.24	0.38	0.08	0.27-0.60	n.d.			n.d.		
FeO*	9.67	2.70								
MnO	0.76	1.02	0.10	0.87-1.16	n.d.			n.d.		
CaO	0.23	0.37	0.07	0.31-0.56	0.31	0.05	0.27-0.41	0.13	0.03	0.07-0.18
MgO	13.27	18.38	0.29	18.03-18.96	0.11	0.01	0.09-0.13	0.05	0.02	0.02-0.07
Total	98.45	99.43			99.34			98.99		
Calcul	ated on 4	40								
Mg	0.68	0.87			0.01					
Fe ²⁺	0.28	0.07								
Mn^{2+}	0.02	0.03								
Ni ²⁺	0.01	0.01								
Zn		0.01								
Ca	0.01	0.01			0.01					
Fe ³⁺					0.66			0.66		
А	1.00	1.00			0.68			0.66		
Fe ³⁺	1.77	1.52			1.73			1.78		
Al	0.22	0.47			0.25			0.21		
Ti^{4+}					0.01					
Cr^{3+}	0.01	0.01			0.01			0.01		
В	2.00	2.00			2.00			2.00		

Table S2. Oxyspinel group minerals: magnesioferrite (1,2) and maghemite (3,4)

n.d. – not detected, * - $Fe^{2+}\!/Fe^{3+}$ ratio calculated on charge balance

			1		2			
		Fig.	4a,b	Fig. S2b				
	<i>n</i> =11	s.d.	range	<i>n</i> =24	s.d.	range		
TiO ₂	0.08	0.05	0-0.16	0.71	0.25	0.10-0.43		
Fe_2O_3	96.86	0.40	95.85-97.45	94.36	0.57	93.48-95.30		
Cr_2O_3	0.29	0.07	0.25-0.45	0.23	0.03	0.18-0.19		
Al_2O_3	1.77	0.15	1.55-1.96	2.80	0.27	2.37-2.87		
MgO	0.09	0.18	0-0.65	0.23	0.08	0.08-0.15		
CaO	0.21	0.10	0.08-0.40	0.17	0.09	0.02-0.13		
Total	99.30			98.49				
			Calculated o	n 30				
Fe ³⁺	1.93			1.88				
Al	0.06			0.09				
Cr^{3+}	0.01							
Mg	0.00			0.01				
Ca	0.01							
Ti ⁴⁺				0.01				

Table S3. Chemical composition of hematite

Table S4. Reflectance data for gorerite

R _{max}	R _{min}	λ (nm)
23.5(0.5)	21.4(0.5)	470 (COM)
23.3(0.5)	21.2(0.5)	486
22.6(0.5)	20.3(0.5)	546 (COM)
21.7(0.5)	19.8(0.5)	589 (COM)
20.2(0.5)	18.5(0.5)	650 (COM)
20.0(0.5)	18.4(0.5)	656

Reference material: WTiC no.370 (Zeiss) and "Gadolinium-Gallium-Garnet" (Craic Technologies).

h	k	l	$d_{ m hkl}$	$I_{\text{rel.}}[\%]$	h	k	l	$d_{\rm hkl}$	$I_{\text{rel.}}[\%]$
0	0	4	5.6778	12	1	0	12	1.7627	3
1	0	0	4.8420	3	2	0	9	1.7470	3
1	0	1	4.7355	3	2	0	10	1.6564	10
1	0	3	4.0790	20	2	1	6	1.6476	4
0	0	6	3.7852	6	0	0	14	1.6222	7
1	0	5	3.3127	6	3	0	0	1.6140	5
1	0	6	2.9821	14	2	1	7	1.5940	31
0	0	8	2.8389	13	2	0	11	1.5710	46
1	1	0	2.7955	40	3	0	4	1.5525	14
1	1	2	2.7145	2	2	1	8	1.5382	12
1	0	7	2.6953	100	2	0	12	1.4910	8
1	1	4	2.5080	94	3	0	6	1.4847	4
1	0	8	2.4490	22	2	0	13	1.4167	7
2	0	0	2.4210	10	2	2	0	1.3978	42
2	0	1	2.4073	26	2	0	14	1.3477	9
2	0	2	2.3678	10	2	1	12	1.3156	2
2	0	3	2.3059	39	1	0	17	1.2878	2
1	1	6	2.2487	16	2	2	8	1.2540	3
2	0	5	2.1365	27	3	1	7	1.2408	9
2	0	6	2.0395	17	3	1	8	1.2139	3
2	0	7	1.9403	5	4	0	1	1.2088	2
1	0	11	1.8992	2					

Table S5. Calculated powder diffraction data for gorerite ($CuK\alpha = 1.540598$ Å, Debye-Scherrer geometry, I > 2; data were calculated using PowderCell 2.4 (Krause and Nolze, 1996)

Krause W. and Nolze G. (1996) POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301–303.