checkCIF/PLATON report

Structure factors have been supplied for datablock(s) attalinite-Ce = letnikovite-(Ce)

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: attalinite-Ce

Bond precision:	Si - 0 = 0.0156	Si- O = 0.0156 A Wavelength=0.71073		0.71073	
Cell:	a=7.4726(3) alpha=90	b=22.9196(beta=105.5	9) 50(5)	c=13.9360(6) gamma=90	
Temperature:	298 K				
	Calculated		Reported		
Volume	2299.44(17)		2299.43(17)	
Space group	C 2/m		C 2/m		
Hall group	-C 2y		-C 2y		
	Ce7.21 F4 072 Si28,				
Moiety formula	15.471(F), 10.4(O), ?				
	0.162(Cs), 7.22(C	Ca), 1.			
Sum formula	Ca7.22 Ce7.21 Cs0.16 F19.47 Ca1.805 Ce1.803 Cs0.04				
	Mg1.44 Na4 O82.40 Si28 F4.87 Mg0.36 O20.60 Si7				
Mr	3922.59		981.93		
Dx,g cm-3	2.833 2.833				
Z	1		4		
Mu (mm-1)	4.516 4.516				
F000	1859.0 1859.0				
F000′	1862.36				
h,k,lmax	9,29,17		9,29,17		
Nref	2596		2580		
Tmin,Tmax	0.869,0.905 0.868,0.905		5		
Tmin'	0.809				

Correction method= # Reported T Limits: Tmin=0.868 Tmax=0.905 AbsCorr = MULTI-SCAN

Data completeness= 0.994

Theta(max) = 26.999

R(reflections) = 0.0420(2126)

wR2(reflections) = 0.1164(2580)

S = 1.124 Npar= 183

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

🔍 Alert level B

SHFSU01_ALERT_2_B The absolute value of parameter shift to su ratio > 0.10 Absolute value of the parameter shift to su ratio given 0.183 Additional refinement cycles may be required. PLAT080_ALERT_2_B Maximum Shift/Error 0.18 Why ? 03 08 010 PLAT213 ALERT 2 B Atom O1 has ADP max/min Ratio 5.0 prolat PLAT213_ALERT_2_B Atom O4 has ADP max/min Ratio 4.6 prolat PLAT306_ALERT_2_B Isolated Oxygen Atom (H-atoms Missing ?) W1 Check

Alert level C

CHEMW01_ALERT_1_C The ratio of given/expected molecular weight as calculated from the _chemical_formula_sum lies outside the range 0.99 <> 1.01 Calculated formula weight = 957.7586 Formula weight given = 981.9296 PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ Please Check PLAT043_ALERT_1_C Calculated and Reported Mol. Weight Differ by .. 5.12 Check PLAT077_ALERT_4_C Unitcell Contains Non-integer Number of Atoms .. Please Check PLAT202_ALERT_3_C Isotropic non-H Atoms in Anion/Solvent 2 Check X1 W1 PLAT213_ALERT_2_C Atom O5 has ADP max/min Ratio 3.3 prolat PLAT214_ALERT_2_C Atom A2 (Anion/Solvent) ADP max/min Ratio 4.6 prolat PLAT220_ALERT_2_C NonSolvent Resd 1 0 Ueq(max)/Ueq(min) Range 5.1 Ratio PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of Si4 Check PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 13 Report

Alert level G

FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:Ca1.805 Ce1.803 Cs.04 F4.87 Mg0. Atom count from the _atom_site data: Ca1.805 Ce1.802 Cs.0406 F4.8677 PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 4 Report PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension 2 Info PLAT017_ALERT_1_G Check Scattering Type Consistency of M1 CE as PLAT017_ALERT_1_G Check Scattering Type Consistency of M2as CA PLAT017_ALERT_1_G Check Scattering Type Consistency of M3as CA PLAT017_ALERT_1_G Check Scattering Type Consistency of M4 MG as PLAT017_ALERT_1_G Check Scattering Type Consistency of Alas NA PLAT017_ALERT_1_G Check Scattering Type Consistency of A2 CS as PLAT017_ALERT_1_G Check Scattering Type Consistency of X1 F as PLAT017_ALERT_1_G Check Scattering Type Consistency of X2 F as PLAT017_ALERT_1_G Check Scattering Type Consistency of X3 F as PLAT017_ALERT_1_G Check Scattering Type Consistency of X4 F as

PLAT017_ALERT_1_G	Check Scattering Type Consistency of W1 as	0
PLAT017_ALERT_1_G	Check Scattering Type Consistency of W2 as	0
PLAT017_ALERT_1_G	Check Scattering Type Consistency of W3 as	0
PLAT017_ALERT_1_G	Check Scattering Type Consistency of W4 as	0
PLAT017_ALERT_1_G	Check Scattering Type Consistency of W5 as	0
PLAT045_ALERT_1_G	Calculated and Reported Z Differ by a Factor	0.250 Check
PLAT066_ALERT_1_G	Predicted and Reported Tmin&Tmax Range Identical	? Check
PLAT083_ALERT_2_G	SHELXL Second Parameter in WGHT Unusually Large	33.41 Why ?
PLAT300_ALERT_4_G	Atom Site Occupancy of X1 Constrained at	0.9244 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of X3 Constrained at	0.9811 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of X4 Constrained at	0.9811 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of W2 Constrained at	0.44 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of W3 Constrained at	0.19 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of W4 Constrained at	0.16 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of W5 Constrained at	0.23 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of A2 Constrained at	0.0406 Check
PLAT301_ALERT_3_G	Main Residue Disorder (Resd 1)	6% Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder (Resd 2)	100% Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder (Resd 3)	100% Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder (Resd 4)	100% Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder (Resd 6)	100% Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder (Resd 7)	100% Note
PLAT302 ALERT 4 G	Anion/Solvent/Minor-Residue Disorder (Resd 8)	100% Note
PLAT302 ALERT 4 G	Anion/Solvent/Minor-Residue Disorder (Resd 9)	100% Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder (Resd 10)	100% Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder (Resd 11)	100% Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder (Resd 13)	100% Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder (Resd 14)	100% Note
PLAT311_ALERT_2_G	Isolated Disordered Oxygen Atom (No H's ?)	W2 Check
PLAT311_ALERT_2_G	Isolated Disordered Oxygen Atom (No H's ?)	W3 Check
PLAT311_ALERT_2_G	Isolated Disordered Oxygen Atom (No H's ?)	W4 Check
PLAT311_ALERT_2_G	Isolated Disordered Oxygen Atom (No H's ?)	W5 Check
PLAT396_ALERT_2_G	Deviating Si-O-Si Angle From 150 for O1 .	128.2 Degree
PLAT396_ALERT_2_G	Deviating Si-O-Si Angle From 150 for O4 .	136.0 Degree
PLAT396_ALERT_2_G	Deviating Si-O-Si Angle From 150 for O8 .	134.9 Degree
PLAT432_ALERT_2_G	Short Inter XY Contact SilX4 .	3.36 Ang.
	x,y,z =	1_555 Check
PLAT432_ALERT_2_G	Short Inter XY Contact Si4W3 .	2.87 Ang.
	1/2+x,1/2-y,z =	8_555 Check
PLAT432_ALERT_2_G	Short Inter XY Contact Si4W3 .	2.87 Ang.
	1/2+x, -1/2+y, z =	3_545 Check
PLAT432_ALERT_2_G	Short Inter XY Contact Si4W5 .	2.96 Ang.
	1/2+x, -1/2+y, z =	3_545 Check
PLAT432_ALERT_2_G	Short Inter XY Contact Si4W5 .	2.96 Ang.
	1/2+x,1/2-y,z =	8_555 Check
PLAT434_ALERT_2_G	Short Inter HLHL Contact X2X4 .	2.66 Ang.
	x,y,z =	1_555 Check
PLAT434_ALERT_2_G	Short Inter HLHL Contact X2X4 .	2.66 Ang.
	1-x,y,1-z =	2_656 Check
PLAT720_ALERT_4_G	Number of Unusual/Non-Standard Labels	15 Note
PLAT802_ALERT_4_G	CIF Input Record(s) with more than 80 Characters	1 Info
PLAT811_ALERT_5_G	No ADDSYM Analysis: Too Many Excluded Atoms	! Info
PLAT870_ALERT_4_G	ALERTS Related to Twinning Effects Suppressed	! Info
PLAT883_ALERT_1_G	No Info/Value for _atom_sites_solution_primary .	Please Do !
PLAT910_ALERT_3_G	<pre>Missing # of FCF Reflection(s) Below Theta(Min).</pre>	3 Note
PLAT931_ALERT_5_G	CIFcalcFCF Twin Law (0001) Est.d BASF	0.48 Check
PLAT933_ALERT_2_G	Number of HKL-OMIT Records in Embedded .res File	1 Note

PLAT965_ALERT_2_G The SHELXL WEIGHT Optimisation has not Converged Please Check PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res .. 54.0 Degree

0 ALERT level A = Most likely a serious problem - resolve or explain 5 ALERT level B = A potentially serious problem, consider carefully 10 ALERT level C = Check. Ensure it is not caused by an omission or oversight 65 ALERT level G = General information/check it is not something unexpected 21 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 28 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 23 ALERT type 4 Improvement, methodology, query or suggestion 4 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 09/05/2022; check.def file version of 21/03/2022

Datablock attalinite-Ce - ellipsoid plot

