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Quantized Tensor Networks for the Vlasov-Maxwell Equations: Supplementary
Information

I. EXAMPLES OF QUANTIZED TENSOR TRAINS

As stated in the main text, the quantized tensor train format is

hi = h(xi) ∼= h(i1, i2, ..., iL) =

r1∑
α1=1

...

rL−1∑
αL−1=1

M (1)
α1

(i1)M
(2)
α1,α2

(i2) . . .M
(L)
αL−1

(iL) , (1)

and the quantized tensor train operator (QTT-Operator) format is

O(x′i, xi)
∼= O((o1, o2, ..., oL), (i1, i2, ..., iL)) =

r1∑
α1=1

...

rL−1∑
αL−1=1

O(1)
α1

(o1, i1)O
(2)
α1,α2

(o2.i2) . . . O
(L)
αL−1

(oL, iL) . (2)

A. QTT Operators for the Vlasov Equation

In this section, we explicitly write the QTT representations of the operators used in the Vlasov equation.

1. QTT-Operator for first derivative

The QTT-Operator for the first derivative along one axis can be written explicitly, assuming uniform grid points
and a finite difference scheme. With periodic boundary conditions and a centered second-order stencil, it is

∂

∂x
≈ 1

∆x

[
I S+ + S− S+ + S−] I S− S+

0 S+ 0
0 0 S−

I S− S+

0 S+ 0
0 0 S−

 . . .
I S− S+

0 S+ 0
0 0 S−

0.5(S− − S+)
0.5S+

−0.5S−

 , (3)

where

I =
[
1 0
0 1

]
, S+ =

[
0 0
1 0

]
, S− =

[
0 1
0 0

]
.

In this notation, the matrices from left to right are the tensors O(1) to O(L) in Eq. (2). For the pth tensor, the
dimensions of the blocks are labeled by op and ip, while the dimensions of the explicitly written matrices are the
virtual bonds αp−1 and αp.

2. Application of QTT-Operators to QTTs

Example 1. As a brief aside, consider a system with 8 grid points and suppose our vector of interest is all ones. The
corresponding QTT is rank 1, and given by

h = [1, 1, 1, 1, 1, 1, 1, 1] ∼= 1⊗ 1⊗ 1 =
[
1
] [
1
] [
1
]

where 1 =

[
1
1

]
.

Applying the finite difference operator in Eq. (3) to this QTT, we obtain the following QTT:

∂

∂x
h ≈ 1

∆x

[
I1 (S+ + S−)1 (S+ + S−)1

] I1 S−1 S+1
0 S+1 0
0 0 S−1

0.5(S− − S+)1
0.5S+1
−0.5S−1

 . (4)
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By combining blocks that are the same within each matrix, the QTT can be simplified to

∂

∂x
h ≈ 0.5

[
1 1 1

]

1

[
1
0

] [
0
1

]
0

[
0
1

]
0

0 0

[
1
0

]


[[

1
−1

] [
0
1

] [
−1
0

]]
= 0.5

[
1
] [

1 1 1
]


[
1
−1

]
[
0
1

]
[
−1
0

]

 = 0.5
[
1
] [

1
] [

0
]
= 0 , (5)

which is the expected result.

Example 2. Now consider the vector h = [−4,−3,−2,−1, 0, 1, 2, 3]. There exists an analytical expression for QTTs
representing the linear function av+ b on a uniform grid. Let the grid be defined along the interval [−d/2, d/2), such
that the ith grid point is vi = −d/2 + di/N . For a grid of N = 2L grid points (v⃗), the QTT of length L is

av⃗ + b =
[
1 2−1adn⃗+ (−ad/2 + b)1

] [1 2−2adn⃗
0 1

]
. . .

[
1 2−(L−1)adn⃗
0 1

] [
2−Ladn⃗

1

]
where n⃗ =

[
0
1

]
. (6)

Thus, taking L = 3 and plugging in a = 1, b = 0, and d = 8 into Eq. (6), we arrive at

h = [−4,−3,−2,−1, 0, 1, 2, 3] ∼=
[[

1
1

] [
−4
0

]]
[
1
1

] [
0
2

]
0

[
1
1

]


[
0
1

]
[
1
1

]
 .

After applying the finite difference operator in Eq. (3), we obtain the QTT (rank 6, with 3 tensor cores)

∂

∂x
h ≈ 1

∆x

[[
I
[
1
1

]
(S+ + S−)

[
1
1

]
(S+ + S−)

[
1
1

] ] [
I
[
−4
0

]
(S+ + S−)

[
−4
0

]
(S+ + S−)

[
−4
0

] ]]
×


I
[
1
1

]
S−

[
1
1

]
S+

[
1
1

]
0 S+

[
1
1

]
0

0 0 S−
[
1
1

]




I
[
0
2

]
S−

[
0
2

]
S+

[
0
2

]
0 S+

[
0
2

]
0

0 0 S−
[
0
2

]



0


I
[
1
1

]
S−

[
1
1

]
S+

[
1
1

]
0 S+

[
1
1

]
0

0 0 S−
[
1
1

]





×




0.5(S− − S+)

[
0
1

]
0.5S+

[
0
1

]
−0.5S−

[
0
1

]


0.5(S− − S+)

[
1
1

]
0.5S+

[
1
1

]
−0.5S−

[
1
1

]





= 0.5

[[[
1
1

]] [[
−4
0

] [
0
−4

]]]


[[
1
1

]] [[
0
2

] [
2
0

] [
2
0

]]

0


[
1
1

] [
1
0

] [
0
1

]
0

[
0
1

] [
1
0

]






[
0
]

[
1
−1

]
[
0
1

]
[
−1
0

]




where we use the same simplification techniques as before. Now, removing the zero terms and using the fact that



3[
1
1

]
=

[
0
1

]
+

[
1
0

]
and

[
1
−1

]
=

[
0
1

]
+

[
1
0

]
, we can further simplify the QTT and obtain the expected result:

. . . = 0.5

[[[
1
0

] [
0
1

]] [[
1
0

] [
0
1

]]]



[
0
2

] [
0
2

] [
2
0

] [
2
0

]
[
0
2

] [
0
2

] [
2
0

] [
2
0

]


[
−4
−4

] [
−4
−4

] [
−4
0

] [
0
−4

]
0 0

[
0
−4

] [
−4
0

]








[
1
0

]
[
0
−1

]
[
0
1

]
[
−1
0

]





= 0.5

[[
1
0

] [
0
1

]]
[
2
2

] [
6
−2

]
[
2
−6

] [
−2
−2

]



[
0
1

]
[
−1
0

]
 = [−3, 1, 1, 1, 1, 1, 1,−3] (7)

3. Element-wise Multiplication

The Vlasov equation also requires performing elemental multiplication of generic functions h1(x)h2(x). This com-
putation is performed by writing h1(x) as a diagonal matrix and h2(x) as a vector, and then performing matrix-vector
multiplication.

For the spatial advection term, we require diagonalizing h1(v) = v. Analogous to Eq. (6), a matrix with av⃗ + b
along its diagonal (assuming a uniform grid along the interval [−d/2, d/2)) can be written as an QTT-Operator of
bond dimension 2. For a a grid with N = 2L grid points, we obtain the QTT-Operator of length L,

diag(av⃗ + b) =
[
I 2−1adn̂+ (−ad/2 + b) I

] [I 2−2adn̂
0 I

]
. . .

[
I 2−(L−1)adn̂
0 I

] [
2−Ladn̂

I

]
where n̂ =

[
0 0
0 1

]
. (8)

For the velocity advection term, we require performing elemental multiplication of the distribution function f with
components of the Lorentz force F . The force must be computed at each time step so we do not have an analytical
form. But, since F is already represented in the QTT format, the tensors of the QTT-Operator representing diag(F )
are simply

O(p)
αp−1,αp

(op, ip) =
∑

xp∈{0,1}

M (p)
αp−1,αp

(xp)δxp,ip,op , (9)

where M (p) is the pth tensor in the original QTT, and δijk as the multi-index Kronecker delta function.

4. Multi-dimensional operators

While the operators in the above discussion act only on one dimension, they can still be represented in a multi-
dimensional space. To do this, one simply pads the original QTT with a tensor train of identity matrices for the
remaining dimensions. For example, for a 2-D system with dimensions along x and v, if a sequential ordering of the
tensors is used, the QTT representation of operator O : f(x, v) 7→ ∂

∂xf(x, v) would look like

∂

∂x
⊗ Iv =

[
I S+ + S− S+ + S−] I S− S+

0 S+ 0
0 0 S−

I S− S+

0 S+ 0
0 0 S−

 . . .
I S− S+

0 S+ 0
0 0 S−

0.5(S− − S+)
0.5S+

−0.5S−


︸ ︷︷ ︸

x-axis tensors

[
I
]
. . .

[
I
]︸ ︷︷ ︸

y-axis tensors

, (10)

where Iv is the identity operator acting on dimension v. (The multidimensional QTC is constructed similarly, except
one must now also define the spine tensors to be of size 1× 1× 1 and value 1.)

Similarly, the representation of operator O : f(x, v) 7→ vf(x, v) is

Ix ⊗ diag(v) =
[
I
]
. . .

[
I
]︸ ︷︷ ︸

x-axis tensors

[
I vmax(n̂− I)

] [I 2−1vmaxn̂
0 I

]
. . .

[
2−L+1vmaxn̂

I

]
︸ ︷︷ ︸

y-axis tensors

, (11)
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where we take the grid points along the v-axis to be uniformly spaced along the interval [−vmax, vmax).
These 1-D operators can be combined via the tensor train analog of matrix multiplication. For example, to obtain

operator O : f(x, v) 7→ v ∂
∂xf(x, v), one would apply the QTT-operator defined in Eq. (10) to that defined in Eq. (11)

(or vice versa; the operators commute in this case), yielding

∂

∂x
⊗ diag(v) =

[
I S+ + S− S+ + S−] I S− S+

0 S+ 0
0 0 S−

I S− S+

0 S+ 0
0 0 S−

 . . .
I S− S+

0 S+ 0
0 0 S−

0.5(S− − S+)
0.5S+

−0.5S−


︸ ︷︷ ︸

x-axis tensors

⊗
[
I vmax(n̂− I)

] [I 2−1vmaxn̂
0 I

]
. . .

[
2−L+1vmaxn̂

I

]
︸ ︷︷ ︸

y-axis tensors

. (12)

II. RELEVANT BASIC CONCEPTS IN TENSOR NETWORKS

In this section, we will introduce key tensor network concepts relevant for this work. This is not meant to be a
thorough introduction; we instead refer the reader to other works [1–3]. Throughout the supplementary information,
we will use the same notation introduced in the main paper to describe discretized functions represented as quantized
tensor trains (QTTs)

hi = h(xi) ∼= h(i1, i2, ..., iL) =

r1∑
α1=1

...

rL−1∑
αL−1=1

H(1)
α1

(i1)H
(2)
α1,α2

(i2) . . . H
(L)
αL−1

(iL) , (13)

or as quantized tree tensor networks with a comb geometry (QTCs) (see Fig. 1(c) of the main text)

fi(1),i(2),...,i(K) = f(x1,i(1) , x2,i(2) , . . . , xK,i(K))

∼= f(i
(1)
1 , . . . , i

(1)
L , i

(2)
1 , . . . , i

(2)
L , . . . , i

(K)
1 , . . . , i

(K)
L ) =

=

r1∑
γ1=1

...

rK−1∑
γK−1=1

B(1)
γ1

(i
(1)
1 , ..., i

(1)
L )B(2)

γ1,γ2
(i

(2)
1 , ..., i

(2)
L ) . . . B(K)

γL−1
(i

(K)
1 , ..., i(K)) , (14)

where B(k) is a QTT for the kth dimension

B(k)
γk,γk+1

(i
(k)
1 , ..., i

(k)
L ) =

∑
βk

S
(k)
γk,γk+1,βk

( ∑
α(k,1)

...
∑

α(k,L−1)

M̃
(k;1)
βk,α(k,1)

(i
(k)
1 )M (k;2)

α(k,1),α(k,2)
(i

(k)
2 ) . . . M (k;L)

α(k,L−1)
(i

(k)
L )

)
. (15)

The respective quantized tensor networks (QTNs) for operators (QTT-Os and QTC-Os) have the same form, but
with two physical indices (e.g., o, i) at each tensor instead of just one (denoted by i in the above equations).

A. Tensor Network Differentiation

The working principle behind most local tensor network algorithms involve updating a single tensor or a pair of
neighboring tensors in a sequential fashion. For optimization problems (e.g. finding extreme eigenvalues and solving
linear equations), this involves minimizing the cost function (a scalar value) assuming all but one tensor (or pair of
tensors) remain fixed. This requires taking the derivative of the cost function with respect to the complex conjugate
of that tensor.

Consider the expectation value ⟨x|A|x⟩,

⟨x|A|x⟩ =
⟨x|
A

|x⟩

.
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Let X(i) denote the ith tensor in the QTT for x. Because the tensor network depends linearly on X(i)∗, (treating
X(i) and its complex conjugate as independent), taking the derivative with respect to X(i)∗ amounts to removing
that tensor from the tensor network. For example, for i = 3,

∂
∂X(3)∗ ⟨x|A|x⟩ =

∂

∂X(3)∗ ⟨x|
A

|x⟩

.

An equivalent representation is(
∂

∂X(3)∗
∂

∂X(3) ⟨x|A|x⟩
)
X(3) = AeffX

(3) =

∂

∂X(3)∗ ⟨x|
A

∂

∂X(3) |x⟩X(3)

.

In the figure, X(3) is highlighted in orange. The expression in the parentheses can be considered an effective operator
for the reduced problem;

Aeff = . .

Also note that though the figures depict the tensor networks for the tensor train geometry, the same concept holds
for the comb geometry. If the portions of the tensor network in the dashed boxes are precomputed (see the following
section), then the cost of computing Aeff scales likeO(D2D2

W d2+D4DW d2), whereD andDW are the bond dimensions
of x and A, respectively. The cost of computing AeffX is actually cheaper, scaling like O(2D3DW d+D2D2

W d2).

B. Environment tensors

Computing expectation values and overlaps require performing a series of tensor contractons. While the most
efficient contract pattern may vary depending on the size of each bond, building environment tensors is often most
practical since they are used in multiple steps of most algorithms.

1. Tensor train geometry

Let us consider tensor trains of length L. In this case, the left or right environments for ⟨b|A|x⟩ are (see Fig 1(a)
and (b))

(E
(p)
L )αb

p,α
A
p ,αx

p
=

∑
αb

p−1,α
A
p−1,α

x
p−1

∑
op,ip

B
(p)∗
αb

p−1,α
b
p
(op)A

(p)

αA
p−1,α

A
p
(op, ip)X

(p)
αx

p−1,α
x
p
(ip)(E

(p−1)
L )αb

p−1,α
A
p−1,α

x
p−1

, (16)

(E
(p)
R )αb

p−1,α
A
p−1,α

x
p−1

=
∑

αb
p,α

A
p ,αx

p

∑
op,ip

B
(p)∗
αb

p−1,α
b
p
(op)A

(p)

αA
p−1,α

A
p
(op, ip)X

(p)
αx

p−1,α
x
p
(ip)(E

(p+1)
R )αb

p,α
A
p ,αx

p
, (17)

where p denotes the site of the tensor in the tensor train and B, A and X denote tensors in the QTTs for b, A, and x,
respectively. In essence, the left/right environments at site p are the left/right half of the tensor network for ⟨b|A|x⟩,
including the tensors at site p. If the bond dimensions of x, b, and A areDx, Db, andDA, respectively, and they all have
physical bonds of size d, then the cost of building the environment scales like O((D2

xDb +D2
bDx)DAd+DxDbD

2
Ad

2).
Similarly, the left and right environments for ⟨b|x⟩ are (see Fig 1(c) and (d))

(F
(p)
L )αb

p,α
x
p
=

∑
αb

p−1,α
x
p−1

∑
ip

B
(p)∗
αb

p−1,α
b
p
(ip)X

(p)
αx

p−1,α
x
p
(ip)(F

(p−1)
L )αb

p−1,α
x
p−1

(18)

(F
(p)
R )αb

p−1,α
x
p−1

=
∑
αb

p,α
x
p

∑
ip

B
(p)∗
αb

p−1,α
b
p
(ip)X

(p)
αx

p−1,α
x
p
(ip)(F

(p+1)
R )αb

p,α
x
p

(19)

The cost of the tensor contraction scales like O(D2
xDbd+D2

bDxd).
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(a) E
(3)
L

E
(2)
L

(b) E
(L−2)
R

E
(L−1)
R

(c) F
(3)
L

F
(2)
L

(d) F
(L−2)
R

F
(L−1)
R

FIG. 1. Tensor network diagrams for left environments (E
(3)
L , F

(3)
L ) and right environments (E

(L−2)
R , F

(L−2)
R ), where L is the

length of the QTT. Building environments is typically done recursively, with portions of the TN in the dotted boxes computed
in the previous iteration. Tensors in QTT-vectors (x, b) are in green, while tensors in the QTT-operator (A) are in blue.

Note that the environments are defined recursively. This is because in addition to computing the next the environ-
ment tensor, they can also be used to compute the effective operators introduced in the previous section. At the ends
of the tensor train, for p = 0 or p = L+1, the environment tensor is equal to one (and the indices of the environment
tensor are dummy indices of size one).

2. Comb geometry

For a comb tensor network with K branches, one first computes the environments starting from the ends of the

branch as described above, obtaining the right environments {E(k)
R,branch}. The primary difference lies in contracting

the tensor along the spine.
Again, for concreteness, let us consider the expectation value ⟨b|A|x⟩. In this case the kth branch environment

tensor has three indices, βb
k, β

A
k , β

x
k , where β denotes the bond connecting the spine tensor (M̃ (k) in Eq. (15)) to the

first tensor of the branch tensor train (M (k;1)).
For the first branch, the environment tensor including the spine is (see Fig. 2(a))(

E
(1)
L,spine

)
γb
1,γ

A
1 ,γx

1

=
∑

βb
1,β

A
1 ,βx

1

(
E

(1)
R,branch

)
βb
1,β

A
1 ,βx

1

X
(1)
βx
1 ,γ

x
1
A

(1)

βA
1 ,γA

1
B

(1)∗
βb
1,γ

b
1
. (20)

Again, B, A, and X correspond to tensors in the QTCs for b, A, and x, respectively. For subsequent branches (k > 1),
the environment tensor is (see Fig. 2(b))(

E
(k)
L,spine

)
γb
l ,γ

A
k ,γx

k

=
∑

βb
1, β

A
1 , βx

1

γb
k, γ

A
k , γb

k

(
E

(k−1)
L,spine

)
γb
k−1,γ

A
k−1,γ

x
k−1

(
E

(k)
R,branch

)
βb
k,β

A
k ,βx

k

X
(k)
βx
k ,γ

x
k
A

(k)

βA
k ,γA

k

B
(k)∗
βb
k,γ

b
k

. (21)

The optimal order for tensor contraction will greatly depend on the size of the bonds. For most PDEs (in which
operators are sums of differentials), the sizes of bonds γA and βA are of order 1. In this case, using a tensor
contraction order of EL,spine, A, X, ER,branch, and finally B, the computational cost scales like O(S3

bSx + S3
xSb),

where Sx and Sb are the bond dimension of the spine (both γ and β) for QTC-vectors x and b. The right spine

environment (E
(k)
R,spine) would be computed analogously starting from the last tensor in the spine.

At times, one would like to compute the left environment of the spine (starting the from the side connected to the
branch. In this case, one has to utilize the spine environment tensors (see Fig. 2(c)):(
E

(k;0)
L,branch

)
βb
k,β

A
k ,βx

k

=
∑

γb
k−1, γ

A
k−1, γ

x
k−1

γb
k, γ

A
k , γx

k

(
E

(k−1)
L,spine

)
γb
k−1,γ

A
k−1,γ

x
k−1

(
E

(k+1)
R,spine

)
γb
k,γ

A
k ,γx

k

B
(k)∗
γb
k−1,γ

b
k,β

b
k

A
(k)

γA
k−1,γ

A
k ,βA

k

X
(k)
γx
k−1,γ

x
k ,β

x
k
.

(22)

III. DENSITY-MATRIX ALGORITHM FOR MATRIX-VECTOR MULTIPLICATION

The naive algorithm for performing matrix-vector multiplication involves contracting the pth tensor in the QTN
and QTN-O together for all sites p in the tensor network, and then compressing the newly obtained QTN [1, 6]. The
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(a) E
(1)
L,spine

E
(1)
R,branch

(b) E
(k)
L,spine

E
(k)
R,branchE

(k−1)
L,spine

(c) E
(k;0)
L,branch

E
(k+1)
R,spine

E
(k−1)
L,spine

FIG. 2. Tensor network diagrams depicting Eqs. (20) –(22). Tensors in QTC-vectors (x, b) are in green, while tensors in the
QTC-operator (A) are in blue. Darker shades denote tensors in the spine.

Procedure QTT QTC-spine

Operator-vector multiplication

Naive [4] O(D3D3
W d2) O(S4S4

W )

Zip-up [5] O(D3DW d2) to O(D3D3
W d2) O(S4SW ) to O(S4S4

W )

Density matrix [2] O(D3D2
W d+D2D3

W d2)
+ (Dd×Dd) eigenvalue problem

O(S5S2
W )

+ (S2 × S2) eigenvalue problem

Local update schemes

Build environment tensor
(with n operators)

O(D3(Dw)
nd+ nD2D2

W d2) O(S4Sn
W + nS2S5

W )

Compute Aeff O(D2
WD2d2 +D4DW d2) O(S2S3

W + S4S2
W + S6SW )

Compute Aeffx O(2DWD3d+D2
WD2d2) O(S2S3

W + 2S4S2
W + S4SW )

TABLE I. Theoretical costs of common procedures for the quantized tensor train (QTT) and the spine of the comb-like tree
tensor network (QTC-spine). In the QTT geometry, vectors have bond dimension D while operators have bond dimension DW .
In the spine of the comb geometry, vectors and operators have bond dimension S, SW along the spine, respectively. The costs
are obtained assuming SW and DW are smaller than S and D. If this is not the case, other tensor contraction orderings may
be optimal.

compression (in particular, the canonicalization, which is like a preconditioning step) is expensive; for the tensor train
geometry, the computational cost scales like O(D3D3

W d), where D is the bond dimension of the QTT and DW is the
bond dimension of the QTT-O.

Instead, one could consider algorithms that canonicalize the resulting QTT as the tensors are being contracted.
One such algorithm is the zip-up algorithm, whose cost scales like O(DDW D̃2d2), where D̃ is an intermediate bond
dimension that is problem dependent, ranging in value from D to DDW [5]. In this work, we mainly used the
density-matrix algorithm [2, 7], detailed below. Note that after these algorithms are used, the QTNs are in canonical
form. We observe better performance after compressing again using SVD, sweeping in the opposite direction. This
calculation is no longer as costly, since the bond dimension has already been reduced.

A. Basic Algorithm for QTTs

In the density matrix algorithm, instead of canonicalizing the QTT and compressing using SVD, it involves com-
puting the partial density matrix of ⟨x|A†A|x⟩ at each site, and computing its eigenvalues (which one truncates in
the low-rank approximation). The basic algorithm for QTTs is written in Alg. 1. However, we recommend referring
to Institute [2] for diagrammatic representations of the tensor contractions.
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Algorithm 1 Density Matrix Compression

Input: QTT x, QTT-O A of length L
Output: QTT y, the low-rank approximation of Ax, and of bond dimension D
Notes: sums are performed over all repeated indices

Build left environments
If E

(0)
L is not given, set to one

Build left environments {E(p)
L } for ⟨x|A

†A|x⟩ starting from E
(0)
L

Compute compressed tensors
procedure Compress reduced density matrix (end)

Compute density matrix ρ
(L)

o′
L
,oL
←

∑
E

(L−1)

α′
L−1

,β′
L−1

,βL−1,αL−1
X

(L)∗
α′
L−1

(i′L)A
(L)∗
β′
L−1

(i′L, o
′
L)A

(L)
βL−1

(oL, iL)X
(L)
αL−1(iL)

Solve eigenvalue problem U
(L)

o′
L
,ηL

, λ
(L)
ηL ← Eig(ρ

(L)

o′
L
,oL

), keeping only the D largest eigenvalues

Define M
(L)
αL−1(iL)← Uo′

L
,ηL

,Reindex(ηL → αL−1, o
′
L → iL)

Compute right (compressed) environment C
(L)
αL−1,βL−1,ηL

←
∑

X
(L)
αL−1(iL)O

(L)
βL−1

(oL, iL)U
∗(L)
oL,ηL

for site p = L− 1, ..., 2 do
procedure Compress reduced density matrix

Compute density matrix ρ
(p)

o′p,η
′
p+1,op,ηp+1

←
∑

E
(p−1)

α′
p−1,β

′
p−1,βp−1,αp−1

X
(p)∗
α′
p−1,α

′
p
(i′p)A

(p)∗
β′
p−1,β

′
p
(i′p, o

′
p)

A
(p)

βp−1,β′
p
(op, ip)X

(p)
αp−1,αp(ip)C

(p+1)

αo,βp,η
′
p+1

C
∗(p+1)

α′
p,β

′
p,η

′
p+1

Solve eigenvalue problem U
(i)

(o′p,η
′
p+1),ηp

, λ
(p)
ηp ← Eig (ρ

(p)

(o′p,η
′
p+1),(op,ηp+1)

), keeping only the D largest eigenvalues

Define M
(p)
αp−1,αp(ip)← Uo′p,η

′
p+1,ηp

, Reindex(η′
p+1 → αp, ηp → αp−1, o

′
p → ip)

Compute right (compressed) environment C
(i)
αp−1,βp−1,ηp

←
∑

X
(i)
αp−1,αp(ip)O

(i)
βp−1,βp

(op, ip)U
(i)∗
op,ηp+1,ηpC

(i+1)
αp,βp,ηp+1

M
(1)
α1 (i1)←

∑
x
(1)
α1 (i1)A

(1)
β1

(o1, i1)C
(2)
α1,β1,η2

, Reindex(η2 → α1, o1 → i1)

y ← QTT(M (1),M (2), ... ,M (L)) which is in right canonical form.

B. Computational Cost

The primary costs arise from computing the left environments and performing the eigendecomposition of the reduced
density matrices ρ. With physical bond dimension d, QTT bond dimension D, and QTT-O bond dimension DW ,
the cost of tensor contraction scales like O(D3D2

W d+D2D3
W d2). The cost of the eigendecomposition depends on the

algorithm used. For exact eigendecomposition (which is not necessary since we are only interested in the D largest
eigenvalues), we must first explicitly compute the density matrix, whose cost scales like O(D3D2

W d2 + D2D3
W d2)).

The eigendecomposition itself scales like O((Dd)3). An iterative eigensolver would be attractive, as it may allow one
to avoid explicitly computing ρ.

C. Extension to Comb Geometry

The algorithm introduced above is designed for the 1-D tensor train geometry. However, it can be easily extended
to the comb geometry. Application of the operator along the branches uses the same procedure as above. One must
then compress the branches into the spine, and then compress the spine itself. The algorithm is described in Alg. 2.
Following the discussion earlier in Section II B 2, the cost of computing the environments in the comb geometry scale
like O(S4S2

W + S2S5
W ) in addition to the costs of computing the environments of the branches. Here, S is the size of

the bonds in the QTC spine, SW is the size of the bonds in the QTC-O spine, and we assume that SW < S. The cost
of computing ρ scales like O(S5S2

W ), and the resulting eigenvalue problem is of size S2. Not only is this becoming
relatively expensive, we encounter numerical issues with standard partial eigenvalue solvers (near-zero eigenvalues are
not easily found).

We instead update spine tensors using the zip-up algorithm. The procedure for updating the tensors is given in
Alg. 3; the algorithm otherwise remains essentially the same. The cost of updating the spine now scales ranges from
O(S4) to O(S4S4

W ), depending on the problem.
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Algorithm 2 Density Matrix Compression for Comb Geometry

Input: QTC x, QTC-O A with K branches
Output: QTC y, the low-rank approximation of Ax

Build left environments
▷ Build branch environments ◁
for spine index k = 1, ...,K − 1 do

Compute environments of each branch
{(

E
(k;p)
R,branch

)}
for p = 1, . . . , L. ▷ The branches are QTTs of length L

▷ Build left spine environments ◁
Left spine environments from k ∈ 1 . . .K:

{(
Ek

L,branch

)}
Compute compressed tensors
for branch k = K, ..., 1 do

▷ Compress branch using Alg. 1. The branch is a QTT of length L ◁

Build left branch environment E
(k;0)
L,branch from spine environments (Eq. (22))

Compute compressed branch B(k) = QTT(M (k;1), ..., M (k;L)) using Alg. 1, with left environments built from Ẽ
(k;0)
R,branch

▷ Compress branch into spine ◁

Compute unitary U
(k;1)

o′k1 ,η2,η1
, C

(k;1)

βA
k
,βx

k
,η1

using Compress reduced density matrix step

Update M
(k;1)
βk,α(k,1)

(i
(k)
1 )← U

(i;1)

o′k1 ,η2,η1
, Reindex (η2 → α(k,1), η1 → βk, o′k1 → i

(k)
1 )

procedure Update Spine Tensors
Initialize right (compressed) spine environment C̃(K+1) ← 1
if k ̸= 1 then

▷ Compress spine tensor ◁
▷ for k = K, indices with K + 1 are dummy indices of size 1 ◁
Compute density matrix for spine

ρ̃
(k)

η′
k
,ξ′

k+1
,ηk,ξk+1

←
∑(

Ẽ
(k−1)
L,spine

)
γ′x
k−1

,γ′A
k−1

,γA
k−1

,γx
k−1

X̃
(k)∗
γ′x
k−1

,γ′x
k

,β′x
k

Ã
(k)∗
γ′A
k−1

,γ′A
k

,β′A
k

Ã
(k)

γA
k−1

,γA
k

,βA
k

X̃
(k)
γx
k−1

,γx
k
,βx

k

C
(k;1)

βA
k
,βx

k
,ηk

C
(k;1)∗
β′A
k

,β′x
k

,η′
k

C̃
(k+1)

γA
k

,γx
k
,ξk+1

C̃
(k+1)∗
γ′A
k

,γ′x
k

,ξ′
k+1

Solve eigenvalue problem Ũ
(k)

(η′
k
,ξ′

k+1
),ξk

, λ̃
(k)
ρk ← Eig(ρ̃

(k)

(η′
k
,ξ′

k+1
),(ηk,ξk+1)

)

Define M̃
(b)
γk−1,γk,βk

← Uη′
k
,ξ′

k+1
,ξk

,Reindex(η′
k → βk, ξ′k+1 → γk, ξk → γk−1)) ▷ Updated spine tensor

Define right (compressed) spine environment

C̃k
γA
k−1

,γx
k−1

,ξk
←

∑
X̃

(k)
γx
k−1

,γx
k
,βx

k
Ã

(k)

γA
k−1

,γA
k

,βA
k

Ũ
(k)∗
ηk,ξk+1,ρk

C
(k;1)

βA
k
,βx

k
,ηk

C̃
(k+1)

γA
k

,γx
k
,ξk+1

else

▷ Define spine tensor ◁

M̃
(1)
γ1,β1

←
∑

x̃
(1)
γx
1 ,βx

1
Ã

(1)

γA
1 ,βA

1
C

(1;1)

βA
1 ,βx

1 ,η1
C̃

(2)

γA
1 ,γx

1 ,ξ2

Define right spine environment Ẽ
(k)
R,spine ← C̃(k).

Define new comb
Spine ← QTT(M̃ (1), ..., M̃ (K))

QTC y ← Comb(Spine; (B(1), ..., B(K)))
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(a) ρ(k;1)

E
(k;0)
L,branch

C(k;2)

η′
2

o
′k
1

ok1

η2

ρ
η′
2

o′k1

η2

ok1

U (k;1) Λ(k;1) (U (k;1))†

η′
2

o′k1

η2

ok1

Eig

where = I

FIG. 3. TN diagrams showing the compression and canonicalization of first tensor in the branch (M (k,1)) into the spine. The
diagram looks the same as for a normal tensor train. The orange triangles denote that the tensor is in left/right canonical
form, depending on the direction the triangle is pointing in.

(a) ρ(K)

C(K;1)

E
(K−1)
L,spine

ηk

η′
k

(b) ρ(k)

C(k;1)

Ẽ
(k−1)
L,spine C̃(k+1)

(C̃(k+1))†

ηk

ξk+1

ξ′k+1

η′
k

FIG. 4. TN diagrams showing the computation of density matrix ρ for spine tensors using the density matrix algorithm (a)
at site K and (b) in the middle of the chain (k = 2, ...,K − 1). This computation is expensive so we instead use the zip-up
algorithm.

ηK

γx
K−1

γA
K−1

(a) T̃ (K)

C(K;1)

M̃ (k+1)

(UΣ)(k+1)

βk+1

γk+1

ηk

γx
k−1

γA
k−1

(b) T̃ (k) (and M̃ (k+1))

C(k;1)

FIG. 5. TN diagrams showing the computation of tensor T (k) for spine tensors using the zip-up algorithm (a) at site k = K
and (b) in the middle of the chain (k = 2, ...,K − 1)

.
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Algorithm 3 Update spine procedure based on zip-up algorithm

Input: QTC x, QTC-O A with K branches
Output: QTC y, the low-rank approximation of Ax
procedure Update Spine Tensors(spine index k ∈ (1, . . . ,K))

▷ Zip-up algorithm for spine ◁
if k = K then

T̃
(K)

γA
K−1

,γx
K−1

,ηK
←

∑
X̃

(K)
γx
K−1

,γx
K

,βx
K
Ã

(K)

γA
K−1

,γA
K

,βA
K

C
(K;1)

βA
K

,βx
K

,ηK

U
(K)

(γA
K−1

,γx
K−1

),γK−1
,Σ

(K)
γK−1 , V

(K)
ηK ,γK−1 ← SVD

(
T̃

(K)

(γA
K−1

,γx
K−1

),ηK

)
where only singular values above a cutoff threshold (∼ 10−10) are retained.

Define M̃
(K)
γK−1,βK

← V
(K)
ηK ,γK−1 , Reindex(ηK → βK) ▷ Updated spine tensor

else if 2 ≤ k < K then
T̃

(k)

γA
k−1

,γx
k−1

,γk,ηk
←

∑
X̃

(k)
γx
k−1

,γx
k
,βx

k
Ã

(k)

γA
k−1

,γA
k

,βA
k

C
(k;1)

βA
k
,βx

k
,ηk

Ũ
(k+1)

(γA
k

,γx
k
),γk

Σ̃
(k+1)
γk

U
(k)

(γA
k−1

,γx
k−1

),γk−1
,Σ

(k)
γk−1 , V

(k)
γk,ηk,γk−1 ← SVD

(
T̃

(k)

(γA
k−1

,γx
k−1

),γk,ηk

)
where only singular values above a cutoff threshold (∼ 10−10) are retained.

Define M̃
(k)
γk−1,γk,βk

← V
(k)
γk,ηk,γk−1 , Reindex(ηk → βk) ▷ Updated spine tensor

else if k = 1 then
T̃

(1)
γ1,η1 ←

∑
X̃

(1)
γx
1 ,βx

1
Ã

(1)

γA
1 ,βA

1
C

(1;1)

βA
1 ,βx

1 ,η1
Ũ

(2)

(γA
1 ,γx

1 ),γ1
Σ̃

(2)
γ1

Define M̃
(1)
γ1,β1

← T
(1)
γ1,η1 , Reindex(η1 → β1) ▷ Updated spine tensor

If sweeping from right to left, build right spine environment Ẽ
(k)
R,spine. Else, build left spine environment.
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IV. TIME-DEPENDENT VARIATIONAL PRINCIPLE (TDVP)

Consider a unitary system, with

∂

∂t
ψ(t) = Aψ(t) (23)

where A is an anti-Hermitian operator. According to the Dirac-Frenkel principle, the time derivative at time t exists
on the submanifold tangent to u(t),

⟨v|u̇(t)−Au(t)⟩ = 0, ∀v ∈ Tu(t)M . (24)

In the time-dependent variational principle (TDVP) algorithm, we evolve the tensors forward in time one by one,
using equation of motions obtained from satisfying Eq. (24). Let us begin by representing the QTT for discretized
u(x) in right-canonical form,

|u(i1, i2, ...iL; t)⟩ =
∑

α1,...αL−1

M (1)
α1

(i1; t)B
(2)
α1,α2

(i2; t) ... B
(L)
αL−1

(iL; t) (25)

where the tensors denoted by B are right canonical; i.e.,
∑

ip,αp
B

∗(p)
αp−1,αp(ip)B

(p)
αp−1,αp(ip) = I. We want to obtain an

equation of motion for M (1). Keeping the other tensors fixed, the time derivative of u(t;M (1)) is

∂

∂t
|u(t;M (1))⟩ = Ṁ (1) ∂

∂M (1)
|u(t;M (1))⟩ . (26)

According to Eq. (24), the approximate dynamics is obtained by minimizing

||Ṁ (1) ∂

∂M (1)
|u(t;M (1))⟩ −A|u(t;M (1))⟩||. (27)

Utilizing the fact that u is in right canonical form, we obtain

Ṁ (1)(t) =
∂

∂M (1)∗ ⟨u(t;M
(1))|A|u(t;M (1)⟩

=

(
∂

∂M (1)∗
∂

∂M (1)
⟨u(t;M (1))|A|u(t;M (1))⟩

)
M (1)

= A
(1)
eff M

(1). (28)

Note that Aeff is the original anti-Hermitian matrix projected onto the submanifold tangent to |u(t;M (1))⟩.
Once M (1) is updated to the next time step using some time integration scheme (e.g., exact integration or RK4),

we prepare to shift the orthogonality center of the QTT to the next site by performing a QR decomposition on
M (1)(t+ dt) = A(1)(t+ dt)R(1)(t+ dt).

Because of the gauge degree of freedom, the tensors are not actually independent of each other, so one must
propagate R(1)(t+ dt) backwards in time before updating site 2. This is done in a similar fashion, solving

Ṙ(1) = −A(1|2)
eff R(1) , (29)

A
(1|2)
eff =

(
∂

∂R(1)∗
∂

∂R(1)
⟨u(t;M (1))|A|u(t;R(1))⟩

)
. (30)

Note the negative sign, since we are propagating backwards in time. Once R(1)(t) is obtained, it is contracted with
the tensor at the second site, B(2). The orthogonality center has now been shifted to site 2, and we repeat the above
steps to evolve site 2 forward in time.

In summary, the algorithm is as follows. For each site in the QTT from 1 to L− 1: evolve site p forward in time,
evolve the bond between p and p + 1 backwards in time, and canonicalize the QTT to site p + 1. Finally, the last
site at p = L is propagated forwards in time. Note that the bond dimension of the QTT does not change as one
propagates forward in time.

Updating the tensors in this sweeping fashion has a Trotter error associated with it. The scheme presented is a
first-order scheme, and has error O(∆t). By sweeping from left to right and then right to left, doing time evolution
with ∆t/2 in each sweep, one obtains a second-order time evolution scheme with error O(∆t2). Projecting the true
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dynamics onto the tensor network manifold also introduces some error. However, in the case that a single site is
updated at a time, as introduced here, the expectation value ⟨u|A|u⟩, and the norm of |u⟩ and conserved [8, 9]. In
the two-site variant of TDVP, one updates two neighboring tensors at one time. The advantage is that one can
adaptively increase the rank as needed, thereby reducing some of the projection error. However, this update typically
requires compression of the two tensors (so that the bond dimension remains manageable), breaking the conservation
properties of TDVP.

We refer readers to Haegeman et al. [8] and Paeckel et al. [9] for more technical details.

A. Computational Cost (TT geometry)

The cost of tangent-space methods is dominated by the calculation of A
(i)
eff and the time evolution of a the tensor

Mi, which is of size D × D × d. Recall that D is the bond dimension of the QTT representation of x and d is the
size of the physical indices. If A is represented as an QTT-O with bond dimension DW , then the cost of computing

A
(i)
eff scales like O(D2D2

W d2 +D4d2D2
W ) and exact time evolution via exact diagonalization scales like O((D2d)3). If

one solved Eq. (28) using an approximate scheme such as RK4, one can avoid explicitly computing A
(i)
eff and instead

compute A
(i)
effM (where M is a generic tensor of the appropriate size). For RK4, the cost of time evolution then scales

like O(2D3DW d+D2D2
W d2), arising solely from tensor contraction.

B. TDVP in Comb Geometry

The TDVP algorithm for QTCs mainly differ in the order in which tensors are propagated forward in time. We use
a 1-site TDVP algorithm with the ordering proposed in Bauernfeind and Aichhorn [10] and summarized in Alg. 4:

Algorithm 4 TDVP sweeping algorithm for QTC

for branch k = 1, . . .K − 1 do
Perform TDVP on branch starting from the free end (away from the spine), including the spine tensor

Perform back propagation on the bond between spine tensor M̃ (k) and M̃ (k+1).
For branch k = K, perform TDVP on the branch, starting from spine tensor M̃ (K) and ending at the free end.

For a second order algorithm, the above algorithm and its exact reverse is performed, each with time step ∆t/2.
Also note that while not stated explicitly, the QTC must be properly canonicalized when performing TDVP. Because
the sweeping algorithm is not continuous, TDVP does not automatically put the QTC in the proper canonical form
(as is the case for QTTs).

C. Computational Cost (Comb geometry)

The cost of TDVP for the branches is the same as for the TT geometry. If using exact diagonalization, the cost of
calculating the effective operator scales like O(S6) and the cost of exact diagonalization scales like O(S9). Again, S
is the size of all bonds in the spine for the QTC. While small for most initial states, S will generally will grow over
time. We assume the bonds in the spine for the QTC-O to be small and constant, so they are ignored in the cost
estimates. Unless we require S to be very small, we likely would never use exact diagonalization for spine tensors
because of the high cost. If one instead uses RK4, the cost scales like O(S4).

V. DENSITY MATRIX RENORMALIZATION GROUP

A. Basic DMRG Algorithm

The density-matrix renormalization group (DMRG) algorithm is an optimization algorithm for quantized tensor
networks in which each tensor (or each neighboring pair of tensors) is optimized in a sequential fashion. Typical
applications include finding extreme eigenvalues [1, 11] and solving linear equations [12, 13]. In this work, we are
interested in the latter application.

Let |x⟩ and |b⟩ be QTTs of bond dimensions Dx and Db, respectively, and let A be a QTT-O of bond dimension
DA. For our application, Db ∼ O(Dx) and DA is a small integer value. All have physical bond dimension d (2 in our
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(a) A
(2,3)
eff

∂

∂X(2)∗
∂

∂X(3)∗ ⟨x|
A

∂

∂X(2)
∂

∂X(3) |x⟩

(b) A
(2)
eff T (2,3)

∂

∂X(2)∗
∂

∂X(3)∗ ⟨x|
A

∂

∂X(2)
∂

∂X(3) |x⟩T (2,3)

(c) b
(2,3)
eff

∂

∂X(2)∗
∂

∂X(3)∗ ⟨x|
|b⟩

FIG. 6. Tensor network diagrams for (a) A
(2,3)
eff , (b) A

(2,3)
eff T (2,3), and (c) b

(2,3)
eff . Portions of the TN in the dotted boxes are

typically precomputed as environment tensors.

case) and are of length L. To solve the linear equation A|x⟩ = |b⟩, each neighboring pair of tensors are to be updated
in an iterative fashion with the solution to the reduced problem

A
(p,p+1)
eff T (p,p+1) = b

(p,p+1)
eff , (31)

where

T (p,p+1) =
∑
αp

X(p)
αp−1,αp

X(p+1)
αp,αp+1

, (32)

b
(p,p+1)
eff =

∂

∂T (p,p+1)∗ ⟨x|b⟩ , (33)

A
(p,p+1)
eff =

∂

∂T (p,p+1)

∂

∂T (p,p+1)∗ ⟨x|A|x⟩ , (34)

and x(p) is the pth tensor in |x⟩. The tensor network diagram representations are shown in Fig. 6. The size of the
reduced problems are D2

xd
2, and can be solved using traditional methods. We opt to solve the reduced problem using

conjugate gradient descent (CGD) [14] or conjugate gradient squared (CGS) for non-Hermitian A [15], so as to avoid

computing A
(i,i+1)
eff explicitly (see Alg. 5) [16].

The entire DMRG algorithm is summarized in Alg. 6, with three primary steps:

1. First is to build the left or right environments for ⟨x|A|x⟩ and for ⟨x|b⟩. Again, the environments are gener-

ally built recursively because each are also used to compute A
(p,p+1)
eff and b

(p,p+1)
eff . The cost of building the

environment scales like O(D3
xDAd+D2

xD
2
Ad

2).

2. The second step is to update the tensors in |x⟩ by solving Eq. (31) as described above, starting with sites 1 and
2 of the QTT and then sweeping left to right through the chain of tensors. In this case, one only needs to first
build the right environments. After updating sites p and p+1, one computes new left environments EL,(p) and
FL,(p) as depicted in Fig. 1. It is also equally valid to sweep through the QTT tensors from right to left. In this
case, one first only builds the left environments, and computes new right environments ER,(p+1) and FR,(p+1)

after updating tensors p and p+ 1. The cost of each sweep is dominated by the calculation of A
(p,p+1)
eff T , which

scales like O((D2
xDb +DxD

2
b )DAd+DxDbD

2
Ad

2) per CGD iteration.

3. At the end of each sweep, one computes the error ||b−Ax||2. If the error is still too large, one continues to the
next iteration, sweeping in the opposite direction. By computing the error as ⟨b|b⟩ − 2⟨b|A|x⟩+ ⟨x|A†A|x⟩, the
cost typically is dominated by the last term, which scales like O(2D3

xD
2
Ad + 2D2

xD
3
Ad

2). One could consider a
less exact measure of error to reduce the cost of this step.

B. Block matrix DRMG

Suppose that A contains some structure and is a block matrix. For example, in the case of an implicit solver for
Maxwell’s equations, each component of the electric field E and magnetic field B correspond to a subblock in the
input |x⟩ and target |b⟩, and the matrix A denotes couplings between the components. In this case, the linear equation
to be solved is of the form ∑

ξ

Aη,ξ|xξ⟩ = |bη⟩ (35)
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Algorithm 5 Conjugate gradient descent

Input: tensor network A, tensor b, tensor x (initial guess)
Output: tensor x
procedure CGD(A, b, x)

β ← Ax
r ← b−Ax
d← r
error ε← |r|
i← 1
while i < MAXITER and ε/|b| > CONVTOL do

tensor q ← Contract(A, d) ▷ Contract all tensors together
scalar p← Contract(A, d, d†)
scalar α← ε2/p
tensor x← x+ αd
tensor r ← r − αq
scalar εold ← ε
scalar ε← |r| ▷ new error is the norm of the new residual
scalar β ← ε2/ε2old
tensor d← r + βd
int i← i+ 1

return x

Nc d d d d d∑
η, ξ

êη,ξ ⊗ Aη,ξ

Nc d d d d d∑
ξ

êξ ⊗ xξ

Nc d d d d d

=

Nc d d d d d

=

FIG. 7. Expanded QTT-O (top) and QTT (bottom), which are originally of length L = 5 and physical bond d. They are
generated by summing together QTTs multiplied by an additional tensor that indexes the QTTs position in the block matrix
or vector. Matrix êη,ξ is an Nc × Nc matrix with all elements set to zero except for the (η, ξ)th element which is set to one.
Vector ηξ is a unit vector of length M of where the ξth element is one and otherwise is zero. If the QTTs are originally of bond
dimension D, the bond dimension of the expanded QTT (without compression) is N2

cD for the QTT-Operator and NcD for
the QTT-State.

where η and ξ index the position of each submatrix.

Similar to what is done in classical solvers by appending vectors and matrices together and expanding the problem
space, one can combine the QTTs for each field by adding an extra tensor which denotes which field component is
being operated on (see Fig. 7). The size of the physical bond dimension would be the number of of field components
Nc (six in the case of Maxwell’s equations). One then solves the system of equations using DMRG as described in the
previous section. By construction, the optimization of a single site in the tensor train updates all field components.
While the implementation is straightforward, the calculation can be costly. If the QTTs of each field component is of
bond dimension D, then it is likely that the bond dimension of the composite QTT will need to be larger than D in
order to capture all of the original information.

Alternatively, one can perform a modified DMRG algorithm, in which one updates the tensors of each component
|xη⟩ by solving the reduced problem

∑
ξ

(Aη,ξ)
(p,p+1)
eff T

(p,p+1)
ξ = (bη)

(p,p+1)
eff , (36)
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Algorithm 6 Two-site DMRG with conjugate gradient descent

Input: QTT b and initial guess QTT x, QTT-Operator A. QTTs are of L sites, integer bond dimension D
Output: the solution QTT-State x of bond dimension D

Define environment E
(0)
L ← 1, E

(L+1)
R ← 1

Build left environments
for site p = 1, ..., L− 1 do

Compute left environment E
(p)
L ← Contract(E

(p−1)
L , x(p), A(p), x(p)∗)

Define environment F
(0)
L ← 1, F

(L+1)
R ← 1

for site p = 1, ..., L− 1 do

Compute left environment F
(p)
L ← Contract(F

(p−1)
L , b(p), x(p)∗)

while error ε < CONVTOL and iteration i < MAXITER do
▷ Begin DMRG sweeps (right to left) ◁
for site p = L− 1, ..., 1 do

A
(p,p+1)
eff ← (E

(p−1)
L , E

(p+2)
R , A(p), A(p+1))

b
(p,p+1)
eff ← Contract(F

(p−1)
L , F

(p+2)
R , b(p), b(p+1))

T (p,p+1) ← Contract(x(p), x(p+1))

T (p,p+1) ← Conjugate Gradient Descent(A
(p,p+1)
eff , b

(p,p+1)
eff , T (p,p+1))

U(αp−1,ip),β , Sβ , Vβ,(αp+1,ip+1) = SVD
(
T

(p,p+1)

(α,ip−1),(αp+1,ip+1)

)
keeping D largest singular values

▷ Put in right canonical form ◁

x
(p+1)
αp,αp+1(ip+1)← Vβ,αp+1,ip+1

x
(p)
αp−1,αp(ip)← Uαp−1,ip,β,Sβ

▷ Update left environments ◁

E
(p+1)
R ← Contract(E

(p+2)
R , A(p+1), x(p+1), x(p+1)∗)

F
(p+1)
R ← Contract(F

(p+2)
R , b(p+1), x(p+1)∗)

Measure error ε← Error(A, b, x)
i← i+ 1

if ε < CONVTOL then
break

▷ Begin DMRG sweeps (left to right) ◁
for site p = 1, ..., L− 1 do

A
(p,p+1)
eff ← (E

(p−1)
L , E

(p+2)
R , A(p), A(p+1))

b
(p,p+1)
eff ← Contract(F

(p−1)
L , F

(p+2)
R , b(p), b(p+1))

T (p,p+1) ← Contract(x(p), x(p+1))

T (i,i+1) ← Conjugate Gradient Descent(A
(i,i+1)
eff , b

(i,i+1)
eff , T (i,i+1))

U(αp−1,ip),β , Sβ , Vβ,(αp+1,ip+1) = SVD
(
T

(i,i+1)

(αp−1,ip),(αp+1,ip+1)

)
keeping D largest singular values

▷ Put in left canonical form ◁

x
(p+1)
αp,αp+1(ip+1)← SβVβ,αp+1,ip+1

x
(p)
αp−1,αp(ip)← Uαp−1,ip,β

▷ Update right environments ◁

E
(p)
L ← Contract(E

(p−1)
L , A(p), x(p), x(p)∗)

F
(p)
L ← Contract(F

(p−1)
R , b(p), x(p)∗)

Measure error ε← Error(A, b, x)
i← i+ 1
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where

T
(p,p+1)
ξ =

∑
αp

(Xξ)
(p)
αp−1,αp

(Xξ)
(p+1)
αp,αp+1

, (37)

(bη)
(p,p+1)
eff =

∂

∂T
(p,p+1)∗
η

⟨xη|bη⟩ , (38)

(Aη,ξ)
(p,p+1)
eff =

∂

∂T
(p,p+1)
ξ

∂

∂T
(p,p+1)∗
η

⟨xη|Aη,ξ|xξ⟩ . (39)

The modified DMRG algorithm for solving the linear equation in block form (summarized in Alg. 7) is similar to the
original DMRG algorithm, though additional bookkeeping is needed. Notice that we decided to simultaneously update
the pth tensor in the QTTs for each component in a single optimization step. The primary procedural differences are
in performing CGD of the reduced problem (see Alg. 8) and computing the error,

ε =
∑
η

⟨bη|bη⟩ − 2
∑
ξ

⟨bη|Aη,ξ|xξ⟩+
∑
ξ,β

⟨xξ|A†
η,ξAη,β |xβ⟩

 .

Computationally, it is often advantageous to utilize the block form because the bond dimension needed to represent
each subvector |xξ⟩ is likely smaller than that required for the full vector.

Algorithm 7 DMRG utilizing block matrices

Input: QTT-Os {Aη,ξ}, QTTs {xξ} (initial guess), QTTs {βξ}, number of components M
Output: QTTs {xξ}

for all ξ, η ∈ {1, . . . ,M} do
Build Right Environments(Aη,ξ, xξ)
Build Right Environments(bη, ξη)

while error ε < CONVTOL and iteration i < MAXITER do

▷ Sweeping left to right ◁
for site p = 1, ..., L− 1 do

procedure Solve reduced(p)

Obtain tensor network for (Aη,ξ)
(p,p+1)
eff for all η, ξ

Compute (bη)
(p,p+1)
eff for all η

Compute T
(p,p+1)
η for all η

Solve for {Tη} ← BlockCGD({Aη,ξ}, {Tη}, {bη}) ▷ (See Alg. 8)
for component η = 1, . . . ,M do

Compute Uαp−1,ip,βSβV
†
β,αp+1,ip+1

← SVD

((
T

(p,p+1)
η

)
(αp−1,ip),(αp+1,ip+1)

)
keeping the D largest singular values

Update x
(p)
η ← Uαp−1,ip,β and x

(p+1)
η ← Vβ,αp+1,ip+1Sβ

Extend left environments with updated x
(p)
η

Compute error ε. If converged, return {xξ}

▷ Sweeping right to left ◁
for p = L− 1, ..., 1 do

T (i,i+1) ← Solve reduced(p)
for component η = 1, . . . ,M do

Compute Uαp−1,ip,βSβV
†
β,αp+1,ip+1

← SVD

((
T

(p,p+1)
η

)
(αp−1,ip),(αp+1,ip+1)

)
keeping the D largest singular values

Update x
(p)
η ← Uαp−1,ip,βSβ and x

(p+1)
η ← Vβ,αp+1,ip+1

Extend right environments with updated x
(p+1)
η

Compute error. If converged, return {xξ}
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Algorithm 8 Conjugate gradient descent with block matrices

Input: list of tensor networks Aη,ξ, kust if tensors bη, list of tensors xξ (initial guess)
Output: tensor x
procedure blockCGD(Aη,ξ, bη, xξ)

βη ←
∑

ξ Aη,ξxξ

rη ← bη − βη

dη ← rη

error ε←
√∑

η |rη|2

i← 1
while i < MAXITER and ε/|b| > CONVTOL do

tensor qη ←
∑

ξ contract(Aη,ξ, dξ)

scalar p←
∑

η,ξ contract(Aη,ξ, dη, d
†
ξ)

scalar α← ε2/p
tensor xη ← xη + αdη
tensor rη ← rη − αqη
scalar εold ← ε

scalar error ε←
√∑

η |rη|2 ▷ new error is the norm of the new residual

scalar β ← ε2/ε2old
tensor dη ← rη + βdη
int i← i+ 1

return x

C. Extension to Comb Geometry

In this work, we do not extend this DMRG solver to the comb geometry, since the problems that must be solved
are at most 2-D problems. In this case, the comb geometry is essentially a tensor train.
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VI. ADDITIONAL RESULTS

A. Orszag-Tang vortex

1. Results for calculations with QTC geometry

The electric and magnetic (EM) fields for simulations of the Orszag-Tang vortex performed with bond dimension
D = 64 and time step ∆t = 0.001Ω−1

c,p are shown in Fig. 8. As mentioned in the main text, the electric fields appear
to be the primary source of noise.

FIG. 8. Each component of the magnetic (top) and electric (bottom) fields at a time of 21Ω−1
c,p, computed with a time step of

∆t = 0.001Ω−1
c,p and bond dimension D = 64.

(a) D = 32 (b) D = 64

FIG. 9. Energy spectrum at a time of 21Ω−1
c,p, computed with a time step of ∆t = 0.001Ω−1

c,p. Dashed black lines show power
laws of -3 and -5/3.
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(a) t = 5Ω−1
c,p (b) t = 8Ω−1

c,p

FIG. 10. Energy spectrum of the electric field at times of (a) 5Ω−1
c,p and (b) 7Ω−1

c,p, computed with a time step of ∆t = 0.001Ω−1
c,p.

Calculations are as follows; (1) calculations with D = 32, (2) calculations with D = 64, (3) calculations with Df = 32 for the
distribution functions and DEM = 128 for the EM fields, (4) calculations with D = 32 but the DMRG solver is performed with
bond dimension 128, (5) calculations with Df = 32 and DEM = 128 but the electric field is compressed to bond dimension 32
before measuring the energy spectrum.

Fig. 9 shows the energy spectra of the EM fields for calculations with D = 32 and D = 64 at time t = 21Ω−1
c,p. Both

calculations show similar spectra for k⊥de < 1. (Note that given the amount of noise in the electric field, its spectrum
is not accurate.) However, the spectra are noticeably different for k⊥de > 1. Contrary to expectations, the D = 64
result does not show a significant steepening in the magnetic energy spectra. The spectra also have noticeable dips
at k⊥dp = 10 for the D = 32 calculation and k⊥dp = 20 for the D = 64 calculation, which exactly correspond to the
effective grid resolutions for their respective bond dimensions. This dip seems to limit the resolution that the EM
fields can achieve, again explaining the observation mentioned in the main text that the features in Jz were broader
for the D = 32 calculation than for D = 64. This would suggest that the bond dimension and its associated effective
grid resolution must be large enough to resolve the desired features in the simulation. This is worrying, since in the
event that one would like to consider larger scale separation between the box size and the kinetic scales, one would
need to use larger bond dimension such that the effective grid can fully resolve the same fine structures.

However, as argued in the main text, this observation is likely a result of the numerical noise. This noise may
be introduced through low-rank approximation as well as the Crank-Nicolson solver, and does not necessarily reflect
the efficiency of the QTT for representing the true solution. Fig. 10 shows the energy spectra of Ez obtained with
different bond dimensions for the EM fields at times of (a) t = 5Ω−1

c,p and (b) t = 7Ω−1
c,p. Solid lines are results for (1)

D = 32 and (2) D = 64 computed using the same bond dimension for the distribution functions, and (3) D = 128 but
computed using bond dimension 32 for the distribution functions. Complementary to results shown in the main text,
the flat spectrum for the third calculation is indicative of numerical noise. Because the Crank-Nicolson solver and
the Vlasov equation have no dissipation, any numerical noise that is introduced continues to build. Dashed lines are
results for (4) D = 32 but the QTT is compressed after solving Crank-Nicolson using DMRG with bond dimension
128 and (5) the same as (3) but the QTT of the Ez field is compressed to D = 32 when constructing this plot. Results
from (4) closely match results from (1), suggesting that the dip does not result from poor convergence of the DMRG
solver but instead results from compression of the QTT to smaller rank. However, because results for (5) match those
from (3), it is not solely the compression of the fields that generates the dip in the spectra. It is instead a cumulative
effect from performing the low-rank approximation at each time step. While the observations of an “effective grid
resolution” certainly warrant further investigation, it is not necessarily the case that finite bond dimension will limit
the maximum resolution that can be achieved.
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2. Entanglement entropy for different QTN ansatzë

In Fig. 11, we measure the entanglement entropy at each bond for three different geometries:

• the QTC geometry with flipped binary mapping for each axis (presented in the main paper).

• QTT-SFB: QTT geometry with sequential ordering, with binary mapping for position axes and flipped binary
mapping for velocity axes

• QTT-PFM: QTT geometry with interleaved ordering, with forward binary mapping for position axes and mirror
mapping for velocity axes

As expected, of the three geometries studied, QTT-SFB on average has the largest EE. Interestingly, while the
distribution function for the QTT-PFM geometry has the lowest EE, the EE in the electric field grows much faster
than in the other two cases.

FIG. 11. Entanglement entropy measured at each bond in the QTN for the electron and ion distributions (top) and the electric
and magnetic fields (bottom), obtained using (left) the QTC ansatz with D = 64, (middle) the QTT-SFB ansatz with D = 128,
and (right) and the QTT-PFM ansatz with D = 32. Calculations were performed with a time step of ∆t = 0.002. Time is in
units of Ω−1

c,p.
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3. Calculations with uncentered Crank-Nicolson

Single-step time integration schemes can generally be written as

ϕn+1 − ϕn
∆t

= (1− α)F (ϕn, tn) + αF (ϕn+1, tn+1) , (40)

where ϕn is the solution and F (ϕn, tn) is the time derivative of ϕ at time tn. In the case that α = 1/2, one obtains
the Crank-Nicolson scheme. The time integration scheme is stable for α ≥ 0.5 [17].
In Fig. 12, we compare the contour plots and spectra of the electric fields obtained using (1) the original Crank-

Nicolson scheme and (2) Eq. (40) with α = 0.6 to perform integration of Maxwell’s equations. Unlike the Crank-
Nicolson scheme, the un-centered scheme introduces numerical dissipation, which visibly helps dampen the noise in
the electric field. However, additional work to determine how one can efficiently and accurately reduce noise even
further is required.

(a) (b) (c)

FIG. 12. Plots comparing results using different solvers for updating Maxwell’s equations, obtained using bond dimension
D = 32 and time step ∆t = 0.002Ω−1

c,p. Plots are at a time of t = 12Ω−1
c,p. (a) Energy spectrum of the perpendicular electric

field. (b) Contour plot of Ez computed using a Crank-Nicolson solver (Eq. (40) with α = 0.5). (c) Contour plot of Ez computed
using an un-centered solver (Eq. (40)) with α = 0.6.
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4. Observed scalings of cost with respect to QTN bond dimension

The wall-time of the real-space and velocity-space advection steps are measured with respect to QTN bond dimension
D for the Orszag-Tang problem. (Since the velocity-space advection step is performed twice per actual time step, the
plotted value is those two times averaged together.) The wall-times are measured at various time steps and appear to
converge by 1000 time steps. The observed costs are roughly O(D2.5) for computing the advection term in real-space
and O(D4) for the advection term in velocity-space, which is consistent with theoretical expectations.

102

D

100

101

102

103

w
al

lt
im

e
(s

)

3.81 log(D) -5.23

2.46 log(D) -3.79

time step 500
time step 1000
time step 1500
x advec.
v advec.

FIG. 13. Plot of wall times for the real-space advection step (denoted using ’x’ markers) and velocity-space advection step
(denoted using circle markers) computed with QTCs of various bond dimension D. Wall times are measured at the specified
time steps of the Orszag-Tang problem, and the time step size is ∆t = 0.002Ω−1

c,p. The values of D measured are 16, 24, 32, 48,
64, 96, and 128. Dashed black lines are fitted lines, demonstrating the computational scalings for each calculation.
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B. GEM reconnection problem

Figs. 14 and 15 show the magnetic field, electric field, and distribution function cross sections at times of 25Ω−1
c,p and

40Ω−1
c,p. The simulations were performed with with D = 64 and time step 0.005Ω−1

c,p. At t = 25Ω−1
c,p, some numerical

noise is already evident in the electric field components.
Fig. 16 shows the spectra of the electric and magnetic (EM) fields at those two times, for calculations performed

with D = 32 and D = 64. At t = 25Ω−1
c,p, the spectra for the two bond dimensions look similar, and show the expected

steepening at k⊥de > 1. For d−1
p < k⊥ < d−1

e , B⊥ roughly obeys a k−3 power law while E⊥ and B∥ appear to fit

a k−5/3 power law; for k⊥de > 1, the decay in magnetic energy roughly follows k−8. However, at t = 40Ω−1
c,p, the

spectra for D = 32 appear much flatter, which is due to the fields being dominated by noise.
Following the discussion in the previous section, since the EM fields are represented as QTTs with rank D = 128, we

might expect to observe a dip in the spectra at around k⊥dp = 40. Though not as pronounced as in the Orszag-Tang
simulations, it does appear as if there might be a dip instead of noise at that length scale.

Bx By Bz

Ex Ey Ez

f(x = 0, y = 0, vx = 0) f(x = 0, y = 0, vy = 0) f(x = 0, y = 0, vz = 0)

FIG. 14. Each component of the magnetic (top) and electric (center) fields at a time of 25Ω−1
c,p, computed with a time step

of ∆t = 0.005 and bond dimension D = 64. At the bottom are plots of the distribution function at the X-point, showing the
cross section at zero for the axis not plotted (ordered as vx, vy, vz from left to right).
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Bx By Bz

Ex Ey Ez

f(x = 0, y = 0, vx = 0) f(x = 0, y = 0, vy = 0) f(x = 0, y = 0, vz = 0)

FIG. 15. Each component of the magnetic (top) and electric (middle) fields at a time of 40Ω−1
c,p, computed with a time step

of ∆t = 0.005Ω−1
c,p and bond dimension D = 64. At the bottom are plots of the distribution function at the X-point, showing

the cross section at zero for the axis not plotted (ordered as vx, vy, vz from left to right). We observe that the electric fields
become dominated by noise.
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(a) D = 32

(b) D = 64

FIG. 16. Energy spectrum at a time of 25Ω−1
c,p and 40Ω−1

c,p, computed with a time step of ∆t = 0.005Ω−1
c,p. The thin vertical

dotted lines depict k = d−1
p and k = d−1

e . The sloped dashed black lines show power laws of -3, -5/3, and -8. The D = 64
calculations show match expectations reasonably well. In contrast, for the D = 32 results, while the spectra at earlier times
appear within expectation, at later times the results show much flatter spectra. This is due to the noise in the electric field
dominating the dynamics.
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