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 25 

Fig. S1. Four configurations of elastic/viscoelastic rods which are semi-infinite/fixed at 26 
the base and subject to a compressive impact at the top of the rod. The double-sided 27 
arrow at the base of each column denotes the sign of stress and acceleration. Waves 28 
through both elastic and Maxwell-viscoelastic travel with a constant velocity. In the 29 
semi-infinite, elastic column (a) the stress wave travels downward never changing shape. 30 
In the elastic, fixed-bottom case (b), the positive interference between the incident and 31 
reflected compressive waves results in a peak compressive stress at the base which is 32 
double that of the applied stress. After interference has concluded, the original magnitude 33 
and shape is restored as an upwards traveling compressive wave. In the Maxwell, semi-34 
infinite case (c), the wave decreases in magnitude as it travels through the column. Like 35 
the fixed-base elastic case, the fixed-base Maxwell case (d) results in positive 36 
interference between incident and reflected waves but the peak compressive stress is less 37 
than double the applied stress. 38 
  39 
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 40 

Fig. S2. A comparison of the six loading methods. The curves are idealized as Gaussians 41 
according to equation 8. The drops heights are shown in the legend and impact duration 42 
category are shown in the legend. 43 
  44 
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 45 

Fig. S3. An evaluation of the heterogeneity in the test samples. Each dot is the median 46 
force from the profile and the lines are one standard deviation in each direction. Three 47 
SMP measurements are made in each column to investigate horizontal heterogeneity, and 48 
the standard deviations for each profile are a measure of vertical heterogeneity. Tests 49 
19/20 and 21/22 are identical because they use the same column for both short and long 50 
duration impacts. In 15 out of the 20 snow columns, all three error bars overlap indicating 51 
minimal horizontal heterogeneity. In the 5 remaining columns (tests 5,6,8,18, and 21/22), 52 
there is overlap by two out of the three error bars indicating a greater degree of horizontal 53 
heterogeneity. Keeping in mind the logarithmic scale, the degree of vertical heterogeneity 54 
tends to increase with penetration resistance. The SMP values used for the regression are 55 
the means of the three medians. 56 
  57 
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 58 
 59 

Table S1. Details on the snow columns that were tested including impact category, 60 
snow properties, and height change. The height change was measured with both a stick 61 
ruler and a SnowMicropen mounted to a stand at a fixed height. The table is uploaded to 62 
the Dryad repository with the filename: TableS1_detailedSnowTests.xlsx. 63 
  64 



 
 

6 
 

Text S1. 65 
Since there is a significant (> 5 mm) change in height between impacts for the tests that 66 
took place on 9–11 November 2022, the height for each drop is calculated. This section 67 
describes the details of that process. 68 

The height, 𝐻𝐻, is a function of the drop number, 𝑑𝑑, the applied impact forces, and 69 
the starting height of the column, 𝐻𝐻𝑠𝑠. 70 

 𝐻𝐻(𝑑𝑑) =  

⎩
⎪
⎨

⎪
⎧

𝐻𝐻𝑠𝑠 − 𝑑𝑑𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙
𝐻𝐻𝑠𝑠 − 10𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 − (𝑑𝑑 − 10)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐻𝐻𝑠𝑠 − 10𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 − 10𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − (𝑑𝑑 − 20)𝑚𝑚ℎ𝑚𝑚𝑖𝑖ℎ
𝐻𝐻𝑠𝑠 − 10𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 − 10𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 10𝑚𝑚ℎ𝑚𝑚𝑖𝑖ℎ − (𝑑𝑑 − 30)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐻𝐻𝑠𝑠 − 10𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 − 10𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 10𝑚𝑚ℎ𝑚𝑚𝑖𝑖ℎ − 10𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − (𝑑𝑑 − 40)𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙

0 ≤ 𝑑𝑑 ≤ 10
11 ≤ 𝑑𝑑 ≤ 20
21 ≤ 𝑑𝑑 ≤ 30
31 ≤ 𝑑𝑑 ≤ 40
41 ≤ 𝑑𝑑 ≤ 50

 (S1) 

The slopes, 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, and 𝑚𝑚ℎ𝑚𝑚𝑖𝑖ℎ, are different depending on their respective impact 71 
force. The slopes are calculated as ratios of the average peak forces for the three drop 72 
heights (see Table 1). The average peak force for the highest drop, 𝐹𝐹ℎ𝑚𝑚𝑖𝑖ℎ, is 2.9 times that 73 
of the average drop from the lowest height, 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙.  74 

 𝐹𝐹ℎ𝑚𝑚𝑖𝑖ℎ = 𝛼𝛼𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 (S2) 

Where 𝛼𝛼 = 2.9. Similarly, for the average peak force of the middle height, 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 75 

 𝐹𝐹ℎ𝑚𝑚𝑖𝑖ℎ = 𝛽𝛽𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 (S3) 

Where 𝛽𝛽 = 1.7. 76 
To calculate the slopes, the total change in height after 50 drops, Δ𝐻𝐻, is used in concert 77 
with these ratios. 78 

 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 =
Δ𝐻𝐻

20 + 20𝛼𝛼𝛽𝛽 + 10𝛼𝛼
 (S4) 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
Δ𝐻𝐻

20𝛽𝛽𝛼𝛼 + 20 + 10𝛽𝛽
 (S5) 

 𝑚𝑚ℎ𝑚𝑚𝑖𝑖ℎ =
Δ𝐻𝐻

20
𝛼𝛼 + 20

𝛽𝛽 + 10
 (S6) 

For example, Fig. S3 illustrates the height changes over 50 drops on 9 November 2022. 79 
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 80 
 81 

Fig. S4. The height is calculated for each individual drop based on a piecewise linear 82 
interpolation between the measured starting height and ending height on the test days 83 
where the height change was greater than 5 mm (9-11 November 2022). 84 
  85 
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 86 
Fig. S5. To determine the arrival of the stress wave at each plate, three methods are 87 
considered. First, a fixed threshold -20 N. Second, an autoregressive approach, referred to 88 
as AIC-picker, that determines the minimum AIC of the continuous wavelet transform as 89 
the signal arrival time (Kurz and others 2005, Kalkan 2016). Third, a variable threshold 90 
equal to three times the standard deviation of the noise prior to the signal. These three 91 
methods are applied to the entire dataset. For the short duration impacts (tests: 92 
1,2,3,20,22) the wave speed for the -20 N threshold and AIC-picker are of similar 93 
magnitude whereas the variable threshold based on the noise is of higher magnitude. For 94 
the long duration impacts (all other test numbers), the fixed, -20 N threshold appears to 95 
be systematically greater than the other two methods, which achieve similar results. 96 
Ultimately, the AIC-picker method is chosen for further analysis. The fact that the stress 97 
wave has attenuated as it transmits through snow opposes the use of a fixed value 98 
threshold. The greater variance in the noise-based threshold supports the use of the AIC-99 
picker. Furthermore, this method was used in a similar study to measure the elastic 100 
modulus of snow with acoustic emissions sensors (Gerling and others, 2017). 101 
  102 
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Text S2. Example of regression determination 103 
The process for selecting a regression model is exemplified for the elastic modulus, 104 

long duration impacts (𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖). The 7 possibilities of equation (S1) are calculated with 105 
density, 𝜌𝜌, thin blade penetration resistance, 𝑅𝑅𝑇𝑇𝑇𝑇, and/or temperature, 𝑇𝑇. They are shown 106 
in Table S2.  107 

 Elong(ρ,𝑅𝑅𝑇𝑇𝑇𝑇 , T) ≈  a0 + a1ρ + a2𝑅𝑅𝑇𝑇𝑇𝑇 + a3T  (S7) 

Table S2. Seven regressions considered for 𝑬𝑬𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍, excluding interactions. The lowest 108 
𝑨𝑨𝑨𝑨𝑪𝑪𝒄𝒄 score is highlighted. The 𝑹𝑹𝟐𝟐 and adjusted 𝑹𝑹𝟐𝟐 (𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐 ) are included for reference but 109 
are not the criteria used for model selection. 110 

Predictors 
𝒂𝒂𝟎𝟎 

[Pa] 
𝒂𝒂𝟏𝟏 

[m2 s-2] 
𝒂𝒂𝟐𝟐 

[m-2] 
𝒂𝒂𝟑𝟑 

[Pa oC-1] 𝑹𝑹𝟐𝟐 𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐  𝑨𝑨𝑨𝑨𝑪𝑪𝒄𝒄 

𝜌𝜌 -8.45E+06 7.07E+04 0 0 0.70 0.68 559.3 
𝑅𝑅𝑇𝑇𝑇𝑇 2.87E+06 0 1.01E+06 0 0.77 0.76 554.6 
𝑇𝑇 3.96E+06 0 0 -4.57E+05 0.13 0.07 577.6 

𝜌𝜌,𝑅𝑅𝑇𝑇𝑇𝑇 -2.61E+06 3.06E+04 6.72E+05 0 0.82 0.79 553.8 
𝜌𝜌,𝑇𝑇 -1.12E+07 6.80E+04 0 -3.26E+05 0.76 0.73 558.3 
𝑅𝑅𝑇𝑇𝑇𝑇,𝑇𝑇 2.49E+06 0 9.94E+05 -4.37E+04 0.77 0.74 557.5 
𝜌𝜌,𝑅𝑅𝑇𝑇𝑇𝑇,𝑇𝑇 -4.85E+06 3.56E+04 5.66E+05 -1.53E+05 0.83 0.79 556.2 

 111 
The regression with lowest 𝐴𝐴𝐴𝐴𝐶𝐶𝑐𝑐 score is the current front-runner which happens to 112 

include density and penetration resistance as predictors. Now there are interactions 113 
between the predictors to consider. Interactions were not considered earlier as to not 114 
violate the marginality principle (Weisberg, 2014). So, one more possible regression is 115 
considered. 116 

 Elong(ρ, hSMP, T) ≈  a0 + a1ρ + a2𝑅𝑅𝑇𝑇𝑇𝑇 + a4ρ𝑅𝑅𝑇𝑇𝑇𝑇 (S8) 

Table S3. The 𝐄𝐄𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 regression with interactions between predictors considered. 117 

Predictors 
𝒂𝒂𝟎𝟎 

[Pa] 
𝒂𝒂𝟏𝟏 

[m2 s-2] 
𝒂𝒂𝟐𝟐 

[m-2] 
𝒂𝒂𝟑𝟑 

[Pa oC-1] 
𝒂𝒂𝟒𝟒 

[m2 s-2 N-1] 𝑹𝑹
𝟐𝟐 𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐  𝑨𝑨𝑨𝑨𝑪𝑪𝒄𝒄 

𝜌𝜌,𝑅𝑅𝑇𝑇𝑇𝑇 ,𝜌𝜌𝑅𝑅𝑇𝑇𝑇𝑇 -2.42E+06 3.21E+04 3.55E+05 0 7.75E+02 0.82 0.78 557.3 
 118 
The regression that includes interactions has higher 𝐴𝐴𝐴𝐴𝐶𝐶𝑐𝑐 values than the regression 119 

without interaction terms. Thus, the front-runner regression remains the one highlighted 120 
in Table S2. 121 

 The final consideration is using SMP penetration resistance instead of thin blade 122 
penetration resistance. It turns out, all of the regressions with SMP penetration resistance 123 
have higher 𝐴𝐴𝐴𝐴𝐶𝐶𝑐𝑐 values than 553.8. Thus, the highlighted equation in Table S2 remains 124 
the recommended regression. The data for all regressions is included in the Dryad 125 
repository in the “Regressions” folder. 126 
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Text S3. Multicollinearity analysis 127 
Multicollinearity may be a concern among the three predictor variables: density (𝜌𝜌), 128 

penetration resistance (𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 or 𝑅𝑅𝑇𝑇𝑇𝑇), and temperature (𝑇𝑇). The correlation coefficient is a 129 
“measure of linear association” (Kutner et al., 2005) between two variables and spans 130 
from -1 to 1. The closer the absolute value of the coefficient is to 1, the more the 131 
variables are correlated; a value of 0 implies no correlation. As a step towards 132 
determining the degree of multicollinearity, correlation coefficient matrices are calculated 133 
for the four sets of predictors and are shown in Fig. S6. 134 

 135 

Fig. S6. The correlation coefficient matrices for the four sets of predictors 136 
  137 
These matrices are of limited use because they only show the correlation between 138 

two variables, but one variable may be correlated to a linear combination of the two other 139 
variables. Thus, a common metric to determine the severity of multicollinearity is the 140 
variance inflation factor (VIF). VIF’s are the diagonal terms of the inverse of the 141 
correlation coefficient matrix (Belsley et al., 1980). The VIF’s for the four sets of 142 
predictors are shown in Fig. S7. 143 



 
 

11 
 

 144 

Fig. S7. The variance inflation factors (VIF's) for the four sets of predictors. 145 
 A predictor’s VIF of 1 implies there is no correlation between that predictor and 146 

any linear combination of the other two predictors. When the VIF is higher, it indicates a 147 
stronger correlation and increases concern of multicollinearity. A commonly used 148 
threshold is 10 (Kutner et al., 2005). By that threshold, multicollinearity is a concern for 149 
the short impact duration tests’ sets of densities and hardness (Fig. S6 parts c and d). So, 150 
any regression for these short impact duration tests that contains both density and 151 
hardness may be unreliable.  152 

The low VIF for the long impact duration tests is attributed to the experimental 153 
design. Specifically, the densities remained constant for the three days of testing while 154 
the penetration resistance and temperature changed. 155 
  156 
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Text S4 157 
There is inherent uncertainty in the determination model parameters. First, wave 158 

speed is calculated using column height and travel time. The uncertainty in column height 159 
is primarily driven by the levelness of the column, estimated to be ±4% (±2.5 mm with a 160 
60 cm column). Uncertainty in travel time has both statistical and systematic components. 161 
The statistical component is the statistical spread across repeated loading events and is 162 
considered as the standard deviation of the AIC-picker method in Fig. S5. The systematic 163 
component is the uncertainty in determining travel time from the onset determination 164 
method (AIC-picker). Comparing the AIC-picker method to the other considered 165 
methods, the systematic uncertainty, as plotted in Fig. S8, is defined as the maximum 166 
percent difference in mean travel time between AIC-picker and the other two methods. In 167 
21 of the 22 tests, this systematic uncertainty was larger than statistical uncertainty by 168 
these definitions. Sampling rate also contributes to systematic uncertainty an additional 1-169 
2%, but is left off Fig. S8 because of its relatively minor contribution. 170 

The uncertainty in wave speed carries over to an uncertainty in elastic modulus, 171 
with the inclusion of density. The uncertainty in density is due to the scale resolution of 172 
±1-4% (±0.5 g uncertainty, 13.5 g to 42.8 g samples) and volume uncertainty of ±2% 173 
(100 ± 2 cm3). Following the elastic modulus is viscosity, which has the propagated 174 
uncertainty from elastic modulus in addition to an uncertainty associated with peak 175 
measured force at the column’s base and stopping criteria in the root finding. This 176 
uncertainty in force is <1% (1 N/maximum measured peak force at base). 177 
  178 
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 179 

Fig. S8. A comparison of systematic and statistical uncertainty for travel time. The 180 
statistical uncertainty is the standard deviation of the ascertained travel times for each test 181 
number. The systematic uncertainty is the maximum percent difference in mean travel 182 
time between AIC-picker and the other two onset determination methods.  183 
  184 
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185 
Fig. S9. A visual comparison of the acceleration results from the two different numerical 186 
solution methods of the governing equations. The results between the finite difference 187 
and finite element methods agree well with each other. 188 
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 189 

  190 
Fig. S10. A visual comparison of the stress results from the two different numerical 191 
solution methods of the governing equations. The results between the finite difference 192 
and finite element methods agree well with each other. 193 
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