## Supplementary Material to

# Meteorological drivers of melt at two nearby glaciers in the McMurdo Dry Valleys of Antarctica

Marte G HOFSTEENGE,<sup>1</sup> Nicolas J CULLEN,<sup>1</sup> Jonathan P CONWAY,<sup>2</sup> Carleen H REIJMER,<sup>3</sup> Michiel R VAN DEN BROEKE,<sup>3</sup> Marwan KATURJI<sup>4</sup>

<sup>1</sup>School of Geography, University of Otago, Dunedin, New Zealand

<sup>2</sup>National Institute of Water and Atmospheric Research (NIWA), Lauder, New Zealand

<sup>3</sup>Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht University, Utrecht, the Netherlands

<sup>4</sup>School of Earth and Environment, University of Canterbury, Christchurch, New Zealand

Correspondence: Marte G Hofsteenge (marte.hofsteenge@postgrad.otago.ac.nz)

#### 1 AWS sensors

Table S1: Sensor specifications at the AWS's based on Gooseff and others (2022). The last column indicates which station data were used and stations in brackets indicate those used only for gap-filling, in which TARM indicates the AWS at Taylor Glacier, COHM at Commonwealth Glacier, BOYM at Lake Bonney, EXEM and Explorers Cove and HOEM at Lake Hoare.

| Variable            | Instrument             | Accuracy                 | Stations                       |
|---------------------|------------------------|--------------------------|--------------------------------|
| Air temperature     | CSI CS 107             | $\pm$ 0.2 °C at 20 °C    | TARM (BOYM), COHM (EXEM)       |
| Relative humidity   | CSI 207 Phys-Chem      | 5% (RH 12–100%) at 25 °C | TARM (BOYM), COHM (EXEM)       |
| Wind speed          | R.M. Young 05103       | 1.5%                     | TARM (BOYM, HOEM), COHM (EXEM) |
| Wind direction      | R.M. Young 05103       | 4%                       | TARM (BOYM, HOEM), COHM (EXEM) |
| Shortwave radiation | Eppley SPP pyranometer | $10 \ {\rm Wm}^{-2}$     | TARM (BOYM), COHM (EXEM)       |
| Longwave radiation  | Eppley PIR pyrgeometer | $5 \text{ Wm}^{-2}$      | BOYM, COHM                     |
| Surface height      | CSI SR50               | 0.01 m                   | TARM, COHM                     |

#### 2 Main findings for different parameter choices

Table S2: Overview of the parameter settings used in the base run and 3 additional runs. Here  $z_{rad}$  impacts the solar penetration (small value results in more solar penetration into the subsurface) and  $z_{0m}$  is the roughness length of momentum for ice. Bold values show the parameter value that is adjusted compared to the base run.

| $\mathbf{run}$ | $z_{rad}$            | $z_{0m}$ |
|----------------|----------------------|----------|
| base           | $0.005 \mathrm{~m}$  | 1e-3 m   |
| z0-rough       | $0.005~\mathrm{m}$   | 1e-2 m   |
| less-pen       | $0.015 \mathrm{\ m}$ | 1e-3 m   |
| more-pen       | 0.001 m              | 1e-3 m   |

Table S3: Slope and p-value of trend in melt season energy for melt, surface melt, internal melt and total melt at COHM for the model runs presented in Table S2.

|          | $Q_M$                |         | Surface melt |           | Internal melt |           | Total melt |           |  |
|----------|----------------------|---------|--------------|-----------|---------------|-----------|------------|-----------|--|
|          | $(\mathrm{Wm}^{-1})$ |         | (mm v        | (mm w.e.) |               | (mm w.e.) |            | (mm w.e.) |  |
| run      | slope                | p-value | slope        | p-value   | slope         | p-value   | slope      | p-value   |  |
| base     | 0.05                 | 0.042   | 0.72         | 0.039     | 4.47          | 0.113     | 3.88       | 0.113     |  |
| z0-rough | 0.04                 | 0.023   | 0.66         | 0.020     | 4.91          | 0.057     | 4.27       | 0.057     |  |
| less-pen | 0.14                 | 0.017   | 2.21         | 0.015     | 4.46          | 0.126     | 2.24       | 0.139     |  |
| more-pen | 0.00                 | 0.039   | 0.02         | 0.057     | 6.54          | 0.126     | 6.54       | 0.126     |  |

|                                 | $\mathbf{TARM}$ |                    |              |          | СОНМ         |              |                    |             |
|---------------------------------|-----------------|--------------------|--------------|----------|--------------|--------------|--------------------|-------------|
|                                 | base            | z0-rough           | less-pen     | more-pen | base         | z0-rough     | less-pen           | more-pen    |
| RH (%)                          | -0.07           | -0.12              | -0.29        | -0.14    | -0.09        | -0.09        | -0.09              | -0.12       |
| $WS \ (\mathrm{ms}^{-1})$       | 0.28            | 0.27               | 0.31         | 0.13     | -0.00        | -0.03        | 0.02               | -0.09       |
| $T_a (^{\circ}C)$               | 0.59            | $\underline{0.52}$ | 0.62         | 0.21     | 0.57         | 0.50         | 0.55               | <u>0.60</u> |
| $S_{in} \; ({\rm Wm}^{-2})$     | -0.30           | -0.05              | 0.18         | -0.22    | -0.08        | -0.07        | -0.02              | -0.05       |
| Albedo (-)                      | -0.36           | -0.33              | -0.51        | -0.24    | -0.80        | <u>-0.81</u> | <u>-0.84</u>       | -0.59       |
| Minimum albedo (-)              | -0.44           | -0.43              | <u>-0.63</u> | -0.21    | <u>-0.61</u> | -0.59        | <u>-0.65</u>       | -0.37       |
| $L_{in} \ (\mathrm{Wm}^{-2})$   | 0.41            | 0.21               | 0.02         | 0.19     | 0.04         | 0.03         | -0.02              | 0.13        |
| $DDAF (^{\circ}C)$              | 0.48            | 0.47               | 0.50         | 0.19     | 0.48         | 0.39         | 0.44               | 0.76        |
| Daily $N_{ep}$ (-)              | 0.06            | 0.09               | -0.03        | 0.22     | -0.23        | -0.22        | -0.28              | -0.17       |
| Daily $N_{eff}$ (-)             | 0.25            | 0.07               | -0.16        | 0.27     | 0.05         | 0.04         | 0.00               | 0.01        |
| Precipitation (mm w.e.)         | -0.13           | -0.20              | -0.35        | 0.10     | 0.06         | 0.09         | 0.05               | -0.04       |
| Foehn hours (h)                 | 0.45            | 0.43               | <u>0.60</u>  | 0.08     | 0.45         | 0.40         | 0.45               | 0.55        |
| $S_{net} \; (\mathrm{Wm}^{-2})$ | 0.23            | 0.25               | 0.50         | 0.09     | 0.76         | 0.77         | 0.81               | 0.57        |
| $L_{net} \; (\mathrm{Wm}^{-2})$ | 0.17            | -0.01              | -0.27        | 0.11     | -0.45        | -0.47        | -0.54              | -0.25       |
| $Q_G \ (\mathrm{Wm}^{-2})$      | -0.37           | -0.26              | -0.01        | -0.10    | 0.01         | 0.18         | 0.21               | -0.09       |
| $Q_P \ (\mathrm{Wm}^{-2})$      | 0.20            | 0.24               | 0.48         | 0.08     | 0.72         | 0.74         | $\underline{0.75}$ | 0.55        |
| $SH \ (\mathrm{Wm^{-2}})$       | 0.28            | 0.28               | 0.25         | 0.04     | -0.34        | -0.43        | -0.46              | -0.03       |
| $LH \ (Wm^{-2})$                | -0.19           | -0.16              | -0.40        | -0.09    | <u>-0.63</u> | <u>-0.57</u> | <u>-0.70</u>       | -0.43       |

Table S4: Correlations as in Table 2, but with 3 additional runs with parameter settings given in Table S2.

### 3 Surface temperature performance



Figure S1: Modelled vs observed surface temperature at TARM (a) and COHM (b) between 2013-2018 when thermal infrared surface temperature observations were available.

# 4 Minimum albedo and winter foehn



Figure S2: Summer minimum albedo (orange) and the preceding winter foehn wind occurence (black) at COHM.