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S1. Otsu Thresholding Algorithm 

This section provides an overview of Otsu’s thresholding technique1 employed in the current study to 

binarize flame images, facilitating subsequent post-processing and analysis. 

Step-1: Histogram Calculation and Probability Distribution 

Compute the histogram of the image, which represents the frequency of each intensity level in the 

image. Then, calculate the probabilities of each intensity level, 𝑝(𝑖), by normalizing the histogram.  

In the current experiments, the images from the high-speed camera were converted into 8-bit grayscale 

images prior to post-processing. Hence, the intensity levels varied from 0 to 255, and correspondingly, 

the total number of intensity levels (𝐿) is 255 

Step-2: Class Statistics Estimation 

Define a threshold value (𝑡∗) and then categorise the image into two classes - Class-1 (𝐶1) wherein the 

pixel intensities are less than or equal to the threshold, and Class-2 (𝐶2) for which the pixel intensities 

are greater than 𝑡∗. The probabilities of each class can then be estimated as,  

𝑤1(𝑡∗) =  ∑ 𝑝(𝑖)𝑡∗

0  𝑤2(𝑡∗) =  ∑ 𝑝(𝑖)
(𝐿−1)
(𝑡∗+1)   (1) 

Likewise, the mean intensity of each class can be estimated as, 

𝜇1(𝑡∗) =
∑ 𝑖 𝑝(𝑖)𝑡∗

0

𝑤1(𝑡∗)
 𝜇2(𝑡∗) =

∑ 𝑖 𝑝(𝑖)
(𝐿−1)
(𝑡∗+1)

𝑤2(𝑡∗)
  (2) 

We can now define the variance within each class as, 

𝜎1
2(𝑡∗) =

∑ (𝑖−𝜇1(𝑡∗))
2

 𝑝(𝑖)𝑡∗
0

𝑤1(𝑡∗)
 𝜎2

2(𝑡∗) =
∑ (𝑖−𝜇2(𝑡∗))

2
 𝑝(𝑖)

(𝐿−1)
(𝑡∗+1)

𝑤2(𝑡∗)
  (3) 

The weighted sum of these intra-class variances (𝜎𝑊
2 ) can be defined as, 

𝜎𝑊
2 (𝑡∗) = 𝑤1(𝑡∗)𝜎1

2(𝑡∗) +  𝑤2(𝑡∗)𝜎2
2(𝑡∗)  (4) 

The inter-class variance (𝜎𝐵
2(𝑡∗)) measures how distinct or separable the two classes (𝐶1 and 𝐶2) are for 

a given threshold 𝑡∗. It quantifies the variance due to the difference between the mean intensity values 

of the two classes. 

𝜎𝐵
2(𝑡∗) = 𝑤1(𝑡∗)𝑤2(𝑡∗)[𝜇1(𝑡∗) − 𝜇2(𝑡∗)]2  (5) 



It should be noted that 𝑡∗ can assume any value between 0 and 255 for the 8-bit grayscale images used 

in the current study.  Thus, the above-mentioned statistical parameters can be estimated for all the values 

of 𝑡∗ ranging from 0 to 255. 

Step-3: Estimation of Optimal Threshold 

The value of 𝑡∗ that maximises the inter-class variance is the optimal threshold value (𝑡𝑜𝑝𝑡
∗ ) 

Step-4: Binarization of the Image based on the optimal threshold value 

𝑡𝑜𝑝𝑡
∗  is used to separate the image into two classes: Foreground and Background. Pixels with intensities 

greater than 𝑡𝑜𝑝𝑡
∗  are assigned as foreground, and pixels with intensity lesser than or equal to ≤ 𝑡𝑜𝑝𝑡

∗  are 

assigned as background. 

 

S2. Bach and Lee’s Analytical solution for Blast Waves 

This section details a simplified formulation for the analytical blast wave solution proposed by Bach 

and Lee2. The solution corresponds to unsteady 1-D blast waves propagating along the axis ‘𝑟’. We 

start off by defining non-dimensional parameters for the velocity (𝑢), pressure (𝑝) and density (𝜌) fields. 

𝜙(𝜉, 𝜂) =
𝑢(𝑟,𝑡)

𝑅𝑠̇(𝑡)
  (6) 

𝑓(𝜉, 𝜂) =
𝑝(𝑟,𝑡)

𝜌0𝑅𝑠
2̇

  (7) 

𝜓(𝜉, 𝜂) =
𝜌(𝑟,𝑡)

𝜌0
  (8) 

In the above equation, 𝜉 =
𝑟

𝑅𝑠(𝑡)
, 𝜂 =

𝑐𝑜
2

𝑅𝑠
2̇

=
1

𝑀𝑠
2 , 𝜌0 is the density of the gas at far-field, 𝑅𝑠 is the radius 

of the blast wave, 𝑐𝑜 is the speed of sound and 𝑀𝑠 is the Mach number of the blast wave. Additionally, 

we define two other non-dimensional parameters, 𝜃 and 𝑦. 

𝜃(𝜂) =
𝑅𝑠𝑅𝑠̈

𝑅𝑠
2̇

  (9) 

𝑦(𝜂) = (
𝑅𝑆

𝑅0
)

𝑗+1
  (10) 

𝑅0 in Equation 10 is the characteristic explosion length, which quantifies the initial energy deposited to 

generate the blast wave. Writing down the mass (Equation 11), momentum (Equation 12), and energy 

(Equation 13) conservation assuming the flow field to be adiabatic and the gas to be perfect, we get,  

(𝜙 − 𝜉) (
𝜕𝜓

𝜕𝜉
) + 𝜓 (

𝜕𝜙

𝜕𝜉
)  + 𝑗𝜙 (

𝜓

𝜉
) = 2𝜃𝜂

𝜕𝜓

𝜕𝜂
   (11) 

(𝜙 − 𝜉) (
𝜕𝜙

𝜕𝜉
) + 𝜃𝜙 + (

1

𝜓
)

𝜕𝑓

𝜕𝜉
= 2𝜃𝜂

𝜕𝜙

𝜕𝜂
    (12) 

(𝜙 − 𝜉) (
𝜕𝑓

𝜕𝜉
−

𝛾𝑓

𝜓
(

𝜕𝜓

𝜕𝜉
)) + 2𝜃𝑓 = 2𝜃𝜂 (

𝜕𝑓

𝜕𝜂
−

𝛾𝑓

𝜓
(

𝜕𝜓

𝜕𝜂
))  (13) 

Conserving the total mass and total energy enclosed by the blast wave at any instant of time, we get the 

following mass and energy integrals, 

Mass Intergral: ∫ 𝜓𝜉𝑗𝑑𝜉 =
1

𝑗+1

1

0
 (14) 



Energy Integral: 1 = 𝑦 (
𝐼

𝜂
−

1

𝛾(𝛾−1)(𝑗+1)
), where 𝐼 =  ∫ (

𝑓

𝛾−1
+

𝜓𝜙2

2
)

1

0
𝜉𝑗𝑑𝜉 (15) 

In the above equation, 𝑗 = 0, 1, 2 for planar, cylindrical and spherical waves. The boundary conditions 

at the shock front (𝜉 = 1) can be obtained from standard normal shock relations. 

𝜙(1, 𝜂) = [
2

𝛾+1
] (1 − 𝜂)   (16) 

𝑓(1, 𝜂) = [
2

𝛾+1
] − [

𝛾−1

𝛾(𝛾+1)
] 𝜂  (17) 

𝜓(1, 𝜂) =
𝛾+1

𝛾−1+2𝜂
   (18) 

We then assume a power law profile for the density field behind the blast wave. 

𝜓(𝜉, 𝜂) = 𝜓(𝜉, 𝜂)𝜉𝑞(𝜂)   (19) 

The exponent, 𝑞(𝜂), is determined by substituting Equation 19 into Equation 14 and solving for the 

mass integral. This yields the following equation for 𝑞(𝜂). 

𝑞(𝜂) = (𝑗 + 1)[𝜓(1, 𝜂) − 1]  (20) 

Simplifying Equation 11 by substituting for the density profile from Equation 19, we get, 

𝜕𝜙

𝜕𝜉
+ (𝑞 + 𝑗) (

𝜙

𝜉
) = 𝑞 +

2𝜃𝜂

𝜓(1,𝜂)
[1 + (𝑗 + 1)𝜓(1, 𝜂)𝑙𝑛𝜉] (

𝑑𝜓(1,𝜂)

𝑑𝜂
)  (21) 

Solving Equation 21, subject to the boundary condition that 𝜙(0, 𝜂) = 0, we can obtain an expression 

for the particle velocity profile. 

𝜙 = 𝜙(1, 𝜂)𝜉(1 − Θ𝑙𝑛𝜉)  (22) 

In the above equation, 

Θ = −
2𝜃𝜂

𝜙(1,𝜂)𝜓(1,𝜂)
(

𝑑𝜓(1,𝜂)

𝑑𝜂
)  (23) 

Substituting the density profile and particle velocity profile into Equation 12, we get the following 

expression for the pressure profile. 

𝑓(𝜉, 𝜂) = 𝑓(1, 𝜂) + 𝑓2(𝜉𝑞+2 − 1) + 𝑓3{𝜉𝑞+2[(𝑞 + 2)𝑙𝑛𝜉 − 1] + 1} 

+𝑓4{2 − 𝜉𝑞+2[(𝑞 + 2)2(𝑙𝑛𝜉)2 − 2(𝑞 + 2)𝑙𝑛𝜉 + 2]} (24) 

In the above equation, 

𝑓2 =
𝜓(1,𝜂)

𝑞+2
[(1 − Θ){𝜙(1, 𝜂) − 𝜙2(1, 𝜂)} − 𝜃 {𝜙(1, 𝜂) − 2𝜂 (

𝑑𝜙(1,𝜂)

𝑑𝜂
)}]  (25) 

𝑓3 =
𝜓(1,𝜂)

(𝑞+2)2 (𝜃 {Θ𝜙(1, 𝜂) − 2𝜂 (
𝑑

𝑑𝜂
[Θ𝜙(1, 𝜂)])} − Θ𝜙(1, 𝜂) − Θ2𝜙2(1, 𝜂) + 2Θ𝜙2(1, 𝜂)) (26) 

𝑓4 =
Θ2𝜙2(1,𝜂)𝜓(1,𝜂)

(𝑞+3)3
  (27) 

We then evaluate the 𝜃(𝜂) by substituting for the velocity, density and pressure profiles in the energy 

equation (Equation 13). 

𝑑𝜃

𝑑𝜂
=  −

1

2𝜂
{𝜃 + 1 − 2𝜙(1, 𝜂) −

𝐷1 + 4𝜂

𝛾 + 1
− (𝛾 − 1)(𝑗 + 1) [𝜙(1, 𝜂) −

(𝐷1 + 4𝜂)2 

4𝜃𝑦(𝛾 + 1)
]} 



+ 
𝐷1 + 4𝜂

8𝜂2(𝛾 + 1)
[
(𝐷1 + 4𝜂)𝜙(1, 𝜂)

𝜃
−

𝜙(1, 𝜂)(𝛾 + 1)

𝜃𝜓(1, 𝜂)
+ 2(𝜂 + 1) +

(𝛾 − 1)(𝑗 + 1)(𝛾 + 1)

2𝜃
𝜙2(1, 𝜂)] 

+ 
2𝜃[2+(𝛾−1)(𝑗+1)]

𝐷1+4𝜂
  (28) 

Where, 𝐷1 =  𝛾(𝑗 + 3) + (𝑗 − 1). In the above equation, the relation between 𝑦 and 𝜂 is unknown and 

can be obtained by differentiating Equation 10. 

𝑑𝑦

𝑑𝜂
= −(𝑗 + 1) (

𝑦

2𝜃𝜂
)   (29) 

To seek the solution of 𝜃(𝜂) and 𝑦(𝜂), these variables are expanded in a power series format and are 

solved numerically with the boundary condition at 𝜂 = 0 (𝜃(0) = 𝑦(0) = 0). Once the solutions of 

𝜃(𝜂) and 𝑦(𝜂) are obtained, we can estimate the flow field profiles (velocity and pressure fields) using 

equations 22 and 24.  

To determine the shock trajectory, we can integrate the expression, 𝑅𝑠̇ =
𝑑𝑅𝑠

𝑑𝑡
, to get the time evolution 

of 𝑅𝑠. This yields the following equation in terms of 𝜃(𝜂) and 𝑦(𝜂). 

𝑐0𝑡

𝑅0
= −

1

2
∫

𝑦
1

𝑗+1

𝜃√𝜂
𝑑𝜂

𝜂

0
  (30) 

These plots comparing the solution (blast wave evolution) from the analytical formulation against 

experimental observations are presented in Supplementary Section S3. 

  

S3. Calibrating the analytical blast wave solution for the current experimental configuration 

The analytical blast wave model developed by Bach and Lee2 requires an estimate of the characteristic 

explosion length (𝑅0), which characterises the energy deposited onto the copper wire for it to explode 

and generate a blast front of a characteristic strength. The value of 𝑅0 corresponding to a specific blast 

strength can be obtained by iteratively fitting 𝑅0 such that we obtain the desired value of the blast Mach 

number (𝑀𝑠) at a desired location (𝑅𝑠). In the current experiments, the blast wave Mach number at a 

distance of 264mm from the source of the explosion is known. This data is used to estimate 𝑅0 using 

an iterative fitting routine.  

Figure S3. The plot compares the experimentally observed temporal evolution of the blast wave 

radius (𝑅𝑠) and the blast wave Mach number (𝑀𝑠) against the analytical blast wave model for 

cylindrical and spherical blast fronts. Panels (a) and (b) correspond to charging voltages of 4kV 

and 7kV, respectively. In the figure, the scatter plot with the error boundaries represents 

experimental data, while the solid lines correspond to the cylindrical blast solution and the 

dashed lines signify the spherical blast solution. 



The theoretical blast wave model is then solved numerically to obtain the spatiotemporal evolution of 

the blast front, which is then compared against our experimental data. It is to be noted that the theoretical 

blast wave model is generalised for different geometries using a parameter, 𝑗, which assumes values of 

0, 1 and 2 for planar, cylindrical and spherical blast fronts, respectively. As evident from Fig. S3, the 

experimental trends are found to align closely with cylindrical blast waves in comparison with spherical 

blast waves. 

 

S4. Variation of 𝒗𝒊𝒏 and 𝚫𝒑𝒅𝒊𝒑 across different values of 𝑴𝒔,𝒓 

Fig. S4 (a) plots the variation of ∆𝑝𝑑𝑖𝑝 (the difference between the ambient pressure and the lowest sub-

ambient pressure imposed by the blast wave; marked in Fig. 4 of the manuscript) against 𝑀𝑠,𝑟, alongside 

𝑣𝑖𝑛. The plots reveal a monotonic rise in ∆𝑝𝑑𝑖𝑝 and 𝑣𝑖𝑛 against 𝑀𝑠,𝑟. When plotted on the log scale (Fig. 

S4 (b)), our experimental data reveals the following power-law correlation between ∆𝑝𝑑𝑖𝑝 and 𝑣𝑖𝑛. 

∆𝑝𝑑𝑖𝑝  ∝  𝑣𝑖𝑛
0.15 

 

S5. Schematic depicting the dynamics of Re-attachment and Extinction regimes 

 

Fig. S4: (a) Plot depicting the variation of 𝑣𝑖𝑛 and ∆𝑝𝑑𝑖𝑝 at different Mach numbers. (b) 𝑣𝑖𝑛 

and ∆𝑝𝑑𝑖𝑝 plotted on a log scale to illustrate their power law dependence.  

Fig. S5: (a, c) Schematics illustrating the Re-attachment Type-1 and Type-2 sub-regimes, 

respectively. (b, d) Schematics illustrating the Extinction Type-1 and Type-2 sub-regimes, 

respectively. 



S6. Pressure gradient imposed by the blast wave at the flame base location 

 

S7. Formulation of the scaling law for 𝒉𝒃,𝒍𝒇𝒕 and 𝒕𝒃,𝒍𝒇𝒕 

As the jet flame lifts off following the interaction with the induced flow, it develops an edge flame 

structure at its base. The structure forms as a result of the fuel (from the central jet) diffusing radially 

outward into the airstream and the entrainment of air into the central fuel jet (depicted in Fig. S7 (b)). 

This results in the formation of a fuel-air mixture fraction profile wherein we move from a fuel-rich 

zone to a fuel-lean zone as we move radially outward from the fuel jet axis. At the radial distance 

corresponding to the stoichiometric mixture fraction, a diffusion flame structure is established. Curved 

premixed flame branches encompass the diffusion front on the fuel-lean and fuel-rich side, resulting in 

the formation of an edge flame structure (depicted in Fig. S7 (b); right). Such flame structures in lifted 

non-premixed flames were explored in detail by Buckmaster et al3 and Vadlamudi et al4. 

Owing to the edge flame structure developed at the flame base, the lifted jet flame can propagate 

upstream with a characteristic velocity, which can be a multiple of the laminar unstretched flame speed3. 

Thus, during the process of lift-off, the lift-off rate of the flame base (𝑑𝑥𝑏/𝑑𝑡), can be scaled as the 

difference between the effective convective velocity of the reactant stream into the flame base (𝑣𝑓) and 

the effective upstream propagation velocity of the edge flame (𝑆𝐿,𝑏). This is expressed mathematically 

in Equation 31. 

Fig. S7: (a) Schematic of the co-axial jet approximation. Entrainment of air into the fuel stream 

is depicted on the right. (b) Equivalent single jet with the combined momentum flux as the co-

axial jets. The edge flame structure of the lifted flame is shown on the right, with the non-

premixed front sketched in orange and the premixed branches in grey.  

Fig. S6: (a) Variation of ∇𝑝/(𝜌𝑎𝑔) against 𝑀𝑠,𝑟. (b) Temporal variation of ∇𝑝/(𝜌𝑎𝑔). Beyond 

a timescale of ~1 𝑚𝑠, the pressure gradient imposed by the blast drops to levels below the 

gravitational pressure gradient 



|
𝑑𝑥𝑏

𝑑𝑡
| ~(𝑣𝑓 − 𝑆𝐿,𝑏)  (31) 

The above equation is valid for (𝑡0 + 𝑡𝑏,𝑟𝑎) > 𝑡 > 𝑡0 wherein the flame is in the lifted state. 𝑡0 is the 

time instant at which the flame base lifts off, and 𝑡𝑏,𝑟𝑎 is the time taken for the flame base to reattach 

to the nozzle tip following lift-off. Both 𝑣𝑓 and 𝑆𝐿,𝑏 are dependent on the extent of mixing between the 

central fuel stream and the surrounding air stream.  

Formulation of the scaling laws for 𝒉𝒃,𝒍𝒇𝒕 and 𝒕𝒃,𝒍𝒇𝒕 

Following Equation 31, we see that, when the flame reaches its maximum lift-off height (ℎ𝑏,𝑙𝑓𝑡) (i.e, 

when the term 
𝑑𝑥𝑏

𝑑𝑡
 becomes zero), the convective velocity of the reactant stream into the edge flame is 

balanced out by its upstream flame propagation velocity.  

𝑣𝑓(𝑟𝑓,𝑏 , ℎ𝑏,𝑙𝑓𝑡) ~ 𝑆𝐿,𝑏(𝑟𝑓,𝑏 , ℎ𝑏,𝑙𝑓𝑡)  (32) 

In the above equation, 𝑟𝑓,𝑏 is the radius of the flame base, and is depicted in Fig. S7 (b). The parameters 

𝑣𝑓(𝑟𝑓,𝑏 , ℎ𝑏,𝑙𝑓𝑡) and 𝑆𝐿,𝑏(𝑟𝑓,𝑏 , ℎ𝑏,𝑙𝑓𝑡) in Equation 32 can be modelled by approximating the induced flow 

as an impulsively started steady co-axial air flow around the jet flame during the period of flame lift-

off (Fig. S7 (a)). The rationale behind the approach is that only a portion of the induced flow in the 

immediate vicinity of the fuel jet interacts with the jet flame. Consequently, the induced flow can be 

treated as a coaxial jet characterized by an outer diameter (𝑑𝑜) and an inner diameter (𝑑𝑖), surrounding 

the fuel jet, as depicted in Fig. S7 (a). The outer diameter (𝑑𝑜) is further approximated to scale with the 

diameter of the flame base (𝑑𝑓,𝑏 = 2𝑟𝑓,𝑏). The problem thus reduces to that of steady co-axial jets, 

where the inner jet transports fuel (of density 𝜌𝑗) with a velocity of 𝑣𝑗, while the outer jet delivers air 

(of density 𝜌𝑎) at a velocity of 𝑣𝑖𝑛.  

Estimation of 𝒗𝒇(𝒓𝒇,𝒃, 𝒉𝒃,𝒍𝒇𝒕)  

We can now reduce the co-axial jet problem to that of an equivalent single open jet (with a velocity 

scale of 𝑣𝑓,0) that has the same momentum flux as the co-axial jets combined.  

𝑣𝑓,0 =  √(
𝜌𝑗

𝜌𝑎
) (

𝑑

𝑑𝑜
)

2
𝑣𝑗

2 + (
𝑑𝑜

2−𝑑2

𝑑𝑜
2 ) 𝑣𝑖𝑛

2   (33) 

Consequently, we can then estimate the velocity field of the equivalent single (open) jet by modelling 

it as a Schlichting jet5. 

𝑣𝑓(𝑟, 𝑥) =  
256𝜈

3

𝑅𝑒𝑓

(
32

3
)

2
(

𝑥

𝑅𝑒𝑓
)+𝑟(

𝑟𝑅𝑒𝑓

𝑥
)

3

+
64𝑟

3
(

𝑟𝑅𝑒𝑓

𝑥
)

  (34) 

In the above equation, 𝑅𝑒𝑓 is the Reynolds number of the equivalent single jet estimated based on 𝑣𝑓,0 

and 𝑑𝑜. Corresponding to our experimental conditions, where 𝑅𝑒𝑓 ≫ 1, Equation. 34, estimated at 𝑥 =

ℎ𝑏,𝑙𝑓𝑡 and 𝑟 = 𝑟𝑓,𝑏 (corresponding to the edge flame location at the maximum flame base lift-off height) 

reduces to, 

𝑣𝑓(𝑟𝑓,𝑏 , ℎ𝑏,𝑙𝑓𝑡) ~
(𝜈ℎ𝑏,𝑙𝑓𝑡)

3

𝑣𝑓,0
2 𝑑2𝑑𝑜

4   (35) 

Estimation of 𝑺𝑳,𝒃(𝒓𝒇,𝒃, 𝒉𝒃,𝒍𝒇𝒕)  

The flame speed of the upstream propagating edge flame can be expressed as a multiple (denoted as 

𝐴; ~𝑂(100)) of the unstretched flame speed. The unstretched flame speed can be estimated using flame 

speed correlations, provided the effective equivalence ratio at the flame base is determined. To achieve 



this, Villermaux’s mixing model6 for coaxial jets is applied to estimate the mixing between the fuel and 

air streams. The model estimates the mass flux of air (outer jet) entrained into the inner fuel jet as 𝜌𝑎𝑣𝑖𝑛 

(Fig. S7 (a)). This entrainment alters the effective equivalence ratio at the flame base (𝜙𝑏,𝑚), which can 

now be calculated based on the mass fluxes of the air and fuel streams into a cylindrical control volume 

of height 𝑥 enclosing the fuel stream (Fig. S7 (a)). 

𝜙𝑏,𝑚 = (
𝜌𝑗

𝜌𝑎
) (

𝑣𝑗

𝑣𝑖𝑛
) (

𝑑

4𝑥
) (

1

𝜒𝑠𝑡
)  (36) 

In the above equation, 𝜒𝑠𝑡 represents the stoichiometric fuel-to-air mass ratio for methane combustion 

and is a constant. It should be noted that Equation 36 only estimates the mean value of the equivalence 

ratio at an axial distance of 𝑥. To obtain the radial distribution of the equivalence ratio, we adopt the 

formulation of Vadlamudi et al.4, wherein a Gaussian profile is assumed for the normalised equivalence 

ratio (Φ =
𝜙

𝜙+1
) variation along the radial direction. The Gaussian profile is solved under the 

assumption that the air mass fraction at 𝑟 = 0 (centre of the fuel jet) is zero. Additionally, the solution 

ensures that the mean value of the equivalence ratio equals the above estimated value of 

Φ𝑏,𝑚 (=
𝜙𝑏,𝑚

1+𝜙𝑏,𝑚
).  

Φ(𝑟, 𝑥) = exp (−
𝑟2

𝑟𝑠
2(Φ𝑏,𝑚(𝑥))

)  (37) 

In the above equation, 𝑟𝑠 is the length scale that quantifies the radial spread of the Gaussian profile, and 

scales with the length scale associated with mass diffusion during the period of flame base lift-off 

(𝑟𝑠~√𝐷𝑡𝑏,𝑙𝑓𝑡~10−3𝑚; 𝐷 is the binary diffusion coefficient of methane in air).  

Equation. 37 is then evaluated at 𝑥 = ℎ𝑏,𝑙𝑓𝑡 and 𝑟 = 𝑟𝑓,𝑏, which corresponds to the location of the edge 

flame at the maximum flame base lift-off height.  

Φ(𝑟𝑓,𝑏 , ℎ𝑏,𝑙𝑓𝑡) = exp (
−𝑟𝑓,𝑏

2 [1+(
𝜌𝑗

𝜌𝑎
)(

𝑣𝑗

𝑣𝑖𝑛
)(

𝑑

4ℎ𝑏,𝑙𝑓𝑡
)(

1

𝜒𝑠𝑡
)]

𝑟𝑠
2[(

𝜌𝑗

𝜌𝑎
)(

𝑣𝑗

𝑣𝑖𝑛
)(

𝑑

4ℎ𝑏,𝑙𝑓𝑡
)(

1

𝜒𝑠𝑡
)]

)  (38) 

The resulting normalised equivalence ratio (Equation 38) is then used in the flame speed – equivalence 

ratio correlation7, to estimate the value of the flame speed of the edge flame at that equivalence ratio 

(Equation 39). 

𝑆𝐿,𝑏(𝑟𝑓,𝑏 , ℎ𝑏,𝑙𝑓𝑡) = 0.422𝐴 [
Φ(𝑟𝑓,𝑏,ℎ𝑏,𝑙𝑓𝑡)

1−Φ(𝑟𝑓,𝑏,ℎ𝑏,𝑙𝑓𝑡)
]

0.15

exp (−5.18 [
𝛷(𝑟𝑓,𝑏,ℎ𝑏,𝑙𝑓𝑡)

1−𝛷(𝑟𝑓,𝑏,ℎ𝑏,𝑙𝑓𝑡)
− 1.075]

2

) (39) 

Estimation of 𝒉𝒃,𝒍𝒇𝒕 and 𝒕𝒃,𝒍𝒇𝒕 

As stated earlier, at 𝑥 = ℎ𝑏,𝑙𝑓𝑡, 
𝑑𝑥𝑏

𝑑𝑡
= 0, and 𝑣𝑓(𝑟𝑓,𝑏 , ℎ𝑏,𝑙𝑓𝑡)~𝑆𝐿,𝑏(𝑟𝑓,𝑏 , ℎ𝑏,𝑙𝑓𝑡). Thus, from Equations 35 

and Equation 39, we get, 

ℎ𝑏,𝑙𝑓𝑡
3 ~

𝑣𝑓,0
2 𝑑2𝑑𝑜

4

𝜈3 0.422𝐴 [
Φ(𝑟𝑓,𝑏,ℎ𝑏,𝑙𝑓𝑡)

1−Φ(𝑟𝑓,𝑏,ℎ𝑏,𝑙𝑓𝑡)
]

0.15

exp (−5.18 [
𝛷(𝑟𝑓,𝑏,ℎ𝑏,𝑙𝑓𝑡)

1−𝛷(𝑟𝑓,𝑏,ℎ𝑏,𝑙𝑓𝑡)
− 1.075]

2

) (40) 

Evaluating the above equation in the limit of our experimental conditions, wherein 
ℎ𝑏,𝑙𝑓𝑡

𝑑
~(100 − 101), 

the term 0.422𝐴 [
Φ(𝑟𝑓,𝑏,ℎ𝑏,𝑙𝑓𝑡)

1−Φ(𝑟𝑓,𝑏,ℎ𝑏,𝑙𝑓𝑡)
]

0.15

exp (−5.18 [
𝛷(𝑟𝑓,𝑏,ℎ𝑏,𝑙𝑓𝑡)

1−𝛷(𝑟𝑓,𝑏,ℎ𝑏,𝑙𝑓𝑡)
− 1.075]

2

) reduces to a near constant 

value (denoted as 𝑘) across all experimental conditions explored in the current work. This reduces 

Equation 40 to, 



ℎ𝑏,𝑙𝑓𝑡~ (𝑘
𝑑2𝑑𝑜

4

𝜈3 )
1/3

𝑣𝑓,0
2/3

⇒
ℎ𝑏,𝑙𝑓𝑡

𝑑
~ (

𝑘𝑑𝑜
2

𝜈𝑑
)

1/3

𝑅𝑒𝑓
2/3

  (41) 

Following similar lines, an estimate for the timescale associated with flame base lift-off (𝑡𝑏,𝑙𝑓𝑡) can be 

obtained as, 

𝑡𝑏,𝑙𝑓𝑡~
ℎ𝑏,𝑙𝑓𝑡

𝑣𝑓(𝑟𝑓,𝑏,ℎ𝑏,𝑙𝑓𝑡)
  (42) 

Simplifying the above equation by substituting for 𝑣𝑓(𝑟𝑓,𝑏 , ℎ𝑏,𝑙𝑓𝑡) from Equation 35, we get, 

𝑡𝑏,𝑙𝑓𝑡

𝑡𝑑𝑖𝑓𝑓
~

1

𝑡𝑑𝑖𝑓𝑓
(

𝑑2𝑑𝑜
2

𝑘2𝜈
)

1/3

𝑅𝑒𝑓
2/3

  (43) 

In the above equation, 𝑡𝑑𝑖𝑓𝑓 is the characteristic diffusion time scale and is estimated as 𝑡𝑑𝑖𝑓𝑓 = 𝑑2/𝐷, 

and remains constant across the explored parametric space. 

For a more detailed derivation, the readers are referred to the work of Aravind et al.8, wherein the 

correlations are developed in a general framework that is applicable for both premixed and non-

premixed jet flames.   

 

S8. Estimation of 𝒅𝒖̅/𝒅𝒕 

𝑑𝑢̅/𝑑𝑡 can be estimated using the momentum conservation equation as shown below, 

𝑑𝑢̅

𝑑𝑡
=  −

∇𝑝

𝜌
+ (

𝜌 − 𝜌𝑎

𝜌
) 𝑔̅ + 𝜈∇2𝑢̅ 

As explained in Section 3.1 of the manuscript, ∇𝑝 = 0 in the above equation for quiescent conditions 

and in the presence of the induced flow. Neglecting viscous dissipation effects9, the above equation 

simplifies to, 

𝑑𝑢̅

𝑑𝑡
=  (

𝜌 − 𝜌𝑎

𝜌
) 𝑔̅ 
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