
Supplementary Information for
Thickness model for viscous impinging liquid sheets

The basic assumption of this theory is that the velocity within the jet is uniform. As the
jet length increases, the velocity distribution evolves from a parabolic to a uniform profile
before impinging. The evolution of velocity profile is verified by direct numerical simulations.
Simulations are based on the open-source code OpenFOAM (https://openfoam.com), and it is
solved using the interIsoFoam solver. The simulation of a single jet is performed to verify the
evolution of the velocity profile within the jet. The effectiveness of this approach has been
validated in our previous numerical research[1]. Figure 1(a) illustrates the geometric model
used in the numerical simulation with the corresponding boundary conditions. The cylindrical
region represents the pipe through which the jet flows, with a diameter of 50 μm and a length
of 500 μm, ensuring the complete development of the jet. Figure 1(b) shows the mesh
configuration of the geometric model, with a background mesh size of 20 μm. Local mesh
refinements are applied near the wall, resulting in a smallest mesh size of 2 μm to ensure
accurate capture of the jet’s internal velocity. Figure 1(c) depicts the simulated single jet,
where L denotes the distance from the cylinder pipe outlet to the given section. The magnified
jet cross-section illustrates the velocity distribution.

Fig.1 (a) The geometry model for numerical simulations with boundary conditions. (b) Mesh
refinements for geometry model showing local mesh refinements at the wall. (c) The

simulation of a single jet indicating extraction of a velocity profile.
Figure 2 illustrates the evolution of the jet velocity profile with distance under three

different viscosity conditions. After the jet exits the pipe, all cases exhibit a transition from a
parabolic velocity profile to a uniform velocity profile. For the low-viscosity condition, the
velocity profile becomes uniform at L=1000 μm, as shown in Fig. 2(a). For the high-viscosity
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condition, the velocity profile becomes uniform at L=500 μm, as shown in Fig. 2(c).

(a) (b)

(c)
Fig.2 Evolution of jet velocity profile with distance at different viscosities, with (a) 1.97 cst,

(b) 4.85 cst, and (c) 8.25 cst.
We experimentally set the pre-impingement jet length to over 1 mm to ensure a uniform

jet velocity profile. Therefore, the jet velocity can be represented by a single variable ju .

Assuming a steady flow of the ultra-thin liquid sheet, the Navier-Stokes equations are
simplified to:
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, i.e. ( , ) ( )ru u  . Therefore, we can solve the following system of equations: (3)

and (4), which are simplified from (1) and (2), respectively; and (5), which represents the
conservation of flow at a specific point in the sheet:
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The equation (4) yields:
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Where R is the the boundary condition that u is equal to 0. We can add a

perturbation term to: 2 [1 , )]sin (jhr q r    , and substituting into (5):
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Combining (3) and (7):
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The result is derived by substituting equation (6) into equation (8):
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Separating the variables in equation (9):
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Here 2 2
j jQ R u is the jet flow rate,   / jU u u  is the dimensionless velocity

distribution, and  ,a U    ,  ,f r  are:
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Where R and 0r and 1r are undetermined parameters. Nevertheless, within the

physical scenario we are discussing, we can reasonably expect  , 1f r   . Expanding the

thickness to the viscosity: 0 1h h h    , and based on dimensional analysis, We can

express: 1
1 ( / , )j jh u R r   , and  is a dimensionless function. It is physically

reasonable to assume that  is bounded as 0jR  , so we can expand  given that

jR r : 0 1 /jR r     , and get:
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Comparing with equation (10), we see that:
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Therefore,  , 1f r   when we consider jR r . This indicats that equation (15)

exhibits weak dependence on r , and (10) can be expressed as:
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This is a universal conclusion, requiring only that u be a function of  , irrespective of
its specific form. In principle, it applies to liquid sheets under arbitrary impinging angles  .

A specific solution to  ,a U    necessitates determining the explicit form of u ,

which could be dependent on impinging angle  . Assuming a flat velocity distribution at
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Equation (17) should still be universal; however, ensuring mass, momentum, and energy
conservation when determining its coefficients requires specifying the value of b, potentially
dependent on  . In the case of 0.69 cotjb R  in our experiments, we obtain:
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This is effective within an azimuth range of ±50 degrees, which is sufficient because the
leaf-like shape of the liquid sheet concentrates most of its area within this angular range. The
subsequent analysis, which is clearly outlined in the article, will not be reiterated in this
document.

The sheet length mentioned in Fig. 4(h) in the article is defined as Fig.3 below. We also
provide a table of the composition and physical properties of the mixtures used in the
experiment.

Fig.3 Photograph of the generated liquid sheet and definitions of key terminology.



Table.1 Physical properties of the mixtures used in the experiment.
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