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SI.1. Distribution of the 𝜆+ and 𝐴+ for the riblets
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Supplementary Information SI.3

SI.2. Local control volume analysis inside the grooves for obtaining
spanwise-averaged wall shear stress

Since we do not have access to the velocity profiles inside the grooves to capture the shear
stress distribution, we use a simple control volume, bounded by the riblet wall on the bottom,
and cut at the peak level of 𝑛 = 0, with an infinitesimal depth of 𝛿𝑥, such as the one shown
in figure SI.2(b). Using this, we can write

−
∫ 𝑥+𝛿𝑥

𝑥

∫ 𝜆

0
𝜏
𝑛=0 (𝑥, 𝑛 = 0, 𝑧)𝑑𝑧𝑑𝑥 +

∫ 𝑥+𝛿𝑥

𝑥

∫
riblet

𝜏w𝑑ℓ𝑑𝑥+∫
inlet/Outlet

𝑝(𝑥) − 𝑝(𝑥 + 𝛿𝑥)𝑑𝑆 =
∑︁
𝑖

∫
𝑆𝑖

𝜌u(u · n𝑆)𝑑𝑆𝑖
(SI.2.1)

where 𝜏𝑛=0 is the shear stress distribution on the top boundary which is included instead of
the cut, 𝜏w is the shear stress distribution on the riblet wall, 𝑝 is the pressure, and n𝑆 is the unit
normal to the wall of the boundaries of control surfaces, and 𝑖 ∈ [Top, Inlet,Outlet,Riblet].
For this control volume, at the limit of 𝛿𝑥 → 0 on the top boundary at 𝑛 = 0∫ 𝑥+𝛿𝑥

𝑥

∫ 𝜆

0
(𝜌𝑢𝑣)𝑑𝑧𝑑𝑥 ≈ 0 (SI.2.2)

and we also assume that with the slow down of the flow inside the grooves, between the inlet
and outlet the variations in the velocity and pressure inside the grooves are also very small
𝑢(𝑥; 𝑦, 𝑧) ≈ 𝑢(𝑥 + 𝛿𝑥; 𝑦, 𝑧) and 𝑝(𝑥; 𝑦, 𝑧) ≈ 𝑝(𝑥 + 𝛿𝑥; 𝑦, 𝑧) and

∫
inlet, 𝑥

(𝜌𝑢2)𝑑𝑆 ≈
∫

outlet, 𝑥+𝛿𝑥
(𝜌𝑢2)𝑑𝑆 (SI.2.3)∫

inlet/Outlet
𝑝(𝑥) − 𝑝(𝑥 + 𝛿𝑥)𝑑𝑆 ≈ 0 (SI.2.4)

Thus,

−
∫ 𝑥+𝛿𝑥

𝑥

∫ 𝜆

0
𝜏𝑛=0(𝑥, 𝑧)𝑑𝑧𝑑𝑥 +

∫ 𝑥+𝛿𝑥

𝑥

∫
riblet

𝜏w𝑑ℓ𝑑𝑥 = 0 (SI.2.5)

and

⟨𝜏𝑛=0⟩(𝑥) =
∫ 𝜆

0 𝜏𝑛=0(𝑥, 𝑧)𝑑𝑧
𝜆

≈
∫

riblet 𝜏w(ℓ)𝑑ℓ
𝜆

= ⟨𝜏w⟩. (SI.2.6)

Hence, just by having access to the average shear stress on the plane at the 𝑛 = 0, we can
evaluate the spanwise-averaged shear stress experienced by the riblet surface.

To test for the impact of the eliminated terms in the control volume analysis inside the
grooves, we use the magnitudes of the PIV data right outside the grooves as upper-bounds of
the distribution of the magnitude of the variables inside the grooves (with the other bound
being zero) in the following format:

For the momentum term crossing the inlet/outlets, using the RHS of equation (SI.2.1), at
the limit of 𝛿𝑥 → 0 we use the Taylor expansion:
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Figure SI.2: (a) Distribution of the tangential velocity profiles and their 95% confidence
intervals, at 8 different location along the suction side of the [1.0, 0.0] sample at

Re𝐿 = 18, 500, and the FS fits to the profiles and the extrapolations below the peak levels
showing the location of 𝑛0. Dashed and dash-dotted black lines correspond to the design
and measured location of the troughs respectively. (b) A control volume inside the riblets,

cut at the peak of the grooves with a thickness of 𝛿𝑥 in the 𝑥 direction.

𝜌

∫
𝑆

(𝑢(𝑥 + 𝛿𝑥)2 − 𝑢(𝑥)2)𝑑𝑆 = 𝜌

∫
𝑆

(
𝑢(𝑥) 𝜕𝑢(𝑥)

𝜕𝑥
𝛿𝑥 + O(𝛿𝑥2)

)
𝑑𝑆 ≈ 𝜌𝛿𝑥

∫
𝑆

𝑢(𝑥) 𝜕𝑢(𝑥)
𝜕𝑥

𝑑𝑆

(SI.2.7)
Since we don’t have access to the 𝑢(𝑥, 𝑦, 𝑧) inside the grooves, we use magnitude of

⟨𝑢𝑛=0⟩
𝜕⟨𝑢𝑛=0⟩

𝜕𝑥
= ⟨𝑢⟩(𝑥, 𝑛 = 0) 𝜕⟨𝑢⟩

𝜕𝑥

����
(𝑥,𝑛=0)

(SI.2.8)

as the magnitude of the bound of this term and where considering the sign we get

⟨𝑢𝑛=0⟩
𝜕⟨𝑢𝑛=0⟩

𝜕𝑥
⩾ 0 ⇒ 0 ⩽

(
𝑢(𝑥) 𝜕𝑢(𝑥)

𝜕𝑥

)
⩽

(
⟨𝑢𝑛=0⟩

𝜕⟨𝑢𝑛=0⟩
𝜕𝑥

)
(SI.2.9)

⟨𝑢𝑛=0⟩
𝜕⟨𝑢𝑛=0⟩

𝜕𝑥
⩽ 0 ⇒

(
⟨𝑢𝑛=0⟩

𝜕⟨𝑢𝑛=0⟩
𝜕𝑥

)
⩽

(
𝑢(𝑥) 𝜕𝑢(𝑥)

𝜕𝑥

)
⩽ 0. (SI.2.10)

We find this velocity using the PIV results and assuming the entire distribution within the
area “𝑆” is captured by either of the bounds, the integral of equation (SI.2.7) is bounded by

⟨𝑢𝑛=0⟩
𝜕⟨𝑢𝑛=0⟩

𝜕𝑥
⩾ 0 ⇒ 0 ⩽ 𝜌𝛿𝑥

∫
𝑆

(
𝑢(𝑥) 𝜕𝑢(𝑥)

𝜕𝑥

)
𝑑𝑆 ⩽ 𝜌

(
⟨𝑢𝑛=0⟩

𝜕⟨𝑢𝑛=0⟩
𝜕𝑥

)
𝛿𝑥𝑆

(SI.2.11)

⟨𝑢𝑛=0⟩
𝜕⟨𝑢𝑛=0⟩

𝜕𝑥
⩽ 0 ⇒ 𝜌

(
⟨𝑢𝑛=0⟩

𝜕⟨𝑢𝑛=0⟩
𝜕𝑥

)
𝛿𝑥𝑆 ⩽ 𝜌𝛿𝑥

∫
𝑆

(
𝑢(𝑥) 𝜕𝑢(𝑥)

𝜕𝑥

)
𝑑𝑆 ⩽ 0

(SI.2.12)

where 𝑆 is the cross-sectional area of the riblets.
For the pressure gradient, similarly, using third term of the LHS of equation (SI.2.1), at

the limit of 𝛿𝑥 → 0, we use the Taylor expansion:
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∫
𝑆

𝑝(𝑥) − 𝑝(𝑥 + 𝛿𝑥)𝑑𝑆 =

∫
𝑆

(
𝜕𝑝

𝜕𝑥
𝛿𝑥 + O(𝛿𝑥2)

)
𝑑𝑆 ≈ 𝛿𝑥

∫
𝑆

(
𝜕𝑝

𝜕𝑥

)
𝑑𝑆 (SI.2.13)

Here, while we don’t have access to measurements inside the groove, we use the pressure
information from the same horizontal line (parallel to the Flat portion of the samples)
discussed in section 3.4.1 of the manuscript as calculated using the procedure described in
section 2.4.3. The line is at a height of 𝑦 = ±0.6ℎ which is at a distance of 0.1ℎ or 𝜆/2 from
the Flat part of the surface on either side, where the 3D effects of the riblets have mostly
faded away and it is safe to assume that u(𝑥, 𝑦, 𝑧) = ⟨u⟩(𝑥, 𝑦) and 𝑝(𝑥, 𝑦, 𝑧) = ⟨𝑝⟩(𝑥, 𝑦). We
use this as the magnitude of the bound of the pressure distribution inside the grooves. Thus,
with the substantial slow down of the flow inside the grooves as discussed, we assume the
pressure is bounded between the

𝜕𝑝

𝜕𝑥

����
𝑦=±0.6ℎ

⩾ 0 ⇒ 0 ⩽
𝜕𝑝(𝑥, 𝑦, 𝑧)

𝜕𝑥
⩽

𝜕𝑝

𝜕𝑥

����
𝑦=±0.6ℎ

(SI.2.14)

𝜕𝑝

𝜕𝑥

����
𝑦=±0.6ℎ

⩽ 0 ⇒ 𝜕𝑝

𝜕𝑥

����
𝑦=±0.6ℎ

⩽
𝜕𝑝(𝑥, 𝑦, 𝑧)

𝜕𝑥
⩽ 0 (SI.2.15)

and thus equation (SI.2.13) is written as

𝜕𝑝

𝜕𝑥

����
𝑦=±0.6ℎ

⩾ 0 ⇒ 0 ⩽ 𝛿𝑥

∫
𝑆

(
𝜕𝑝

𝜕𝑥

)
𝑑𝑆 ⩽ 𝛿𝑥𝑆

𝜕𝑝

𝜕𝑥

����
𝑦=±0.6ℎ

(SI.2.16)

𝜕𝑝

𝜕𝑥

����
𝑦=±0.6ℎ

⩽ 0 ⇒ 𝛿𝑥𝑆
𝜕𝑝

𝜕𝑥

����
𝑦=±0.6ℎ

⩽ 𝛿𝑥

∫
𝑆

(
𝜕𝑝

𝜕𝑥

)
𝑑𝑆 ⩽ 0. (SI.2.17)

For the contribution of the velocity in the normal direction, on the top boundary of the
control volume, we can use a trapezoidal integration

𝜌

∫ 𝜆

0

∫ 𝑥+𝛿𝑥

𝑥

𝑢𝑣𝑑𝑥𝑑𝑧 ≈ 𝜌

∫ 𝜆

0

𝑢(𝑥 + 𝛿𝑥)𝑣(𝑥 + 𝛿𝑥) + 𝑢(𝑥)𝑣(𝑣)
2

𝛿𝑥𝑑𝑧

≈ 𝜌

∫ 𝜆

0
(𝑢(𝑥)𝑣(𝑥)𝛿𝑥 + O(𝛿𝑥2))𝑑𝑧 ≈ 𝜌

∫ 𝜆

0
𝑢(𝑥)𝑣(𝑥)𝑑𝑧𝛿𝑥

(SI.2.18)

where using the Cauchy-Shwarz inequality we can write

𝜌

���� ∫ 𝜆

0
𝑢(𝑥)𝑣(𝑥)𝑑𝑧

����𝛿𝑥 ⩽ 𝜌

���� ∫ 𝜆

0
𝑢(𝑥)𝑑𝑧

�������� ∫ 𝜆

0
𝑣(𝑥)𝑑𝑧

����𝛿𝑥 (SI.2.19)

𝜌𝛿𝑥

����⟨𝑢𝑣⟩(𝑥, 𝑛 = 0)
���� ⩽ 𝜌𝛿𝑥

����⟨𝑣⟩(𝑥, 𝑛 = 0)
��������⟨𝑢⟩(𝑥, 𝑛 = 0)

���� = 𝜌𝛿𝑥⟨𝑢𝑛=0⟩
����⟨𝑣𝑛=0⟩

���� (SI.2.20)

Using these bounds and knowing from the results that ⟨𝑢⟩(𝑥, 𝑛 = 0) = ⟨𝑢𝑛=0⟩ ⩾ 0,
equation (SI.2.18) is bounded by
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⟨𝑣𝑛=0⟩ ⩾ 0 ⇒ 0 ⩽ 𝜌𝛿𝑥⟨𝑢𝑣⟩(𝑥, 𝑛 = 0) ⩽ 𝜌𝛿𝑥⟨𝑢𝑛=0⟩⟨𝑣𝑛=0⟩ (SI.2.21)
⟨𝑣𝑛=0⟩ ⩽ 0 ⇒ 𝜌𝛿𝑥⟨𝑢𝑛=0⟩⟨𝑣𝑛=0⟩ ⩽ 𝜌𝛿𝑥⟨𝑢𝑣⟩(𝑥, 𝑛 = 0) ⩽ 0 (SI.2.22)

As for the shear stress terms in equation (SI.2.1) in the appendix, first using the definition
of the spanwise averaging we have∫ 𝜆

0
𝜏𝑛=0𝑑𝑧 = ⟨𝜏𝑛=0⟩𝜆 (SI.2.23)

and now, substituting the two above terms into the first term of equation (SI.2.1) and using
trapezoidal method for integration and Taylor expansion∫ 𝑥+𝛿𝑥

𝑥

∫ 𝜆

0
(𝜏𝑛=0)𝑑𝑧𝑑𝑥 =

∫ 𝑥+𝛿𝑥

𝑥

⟨𝜏𝑛=0⟩𝜆𝑑𝑥 ≈ (⟨𝜏𝑛=0⟩(𝑥) + ⟨𝜏𝑛=0⟩(𝑥 + 𝛿𝑥)) 𝛿𝑥
2

𝜆

≈
2⟨𝜏𝑛=0⟩(𝑥)𝛿𝑥 +

𝜕⟨𝜏𝑛=0⟩(𝑥)
𝜕𝑥

𝛿𝑥2

2
𝜆 ≈ ⟨𝜏𝑛=0⟩(𝑥)𝛿𝑥𝜆 + O(𝛿𝑥2)

(SI.2.24)

For the other shear stress term, with∫
riblet

𝜏w(ℓ)𝑑ℓ = ⟨𝜏w⟩𝜆 (SI.2.25)

for the second term on the LHS of equation (SI.2.1) we have∫ 𝑥+𝛿𝑥

𝑥

∫
riblet

𝜏w(ℓ)𝑑ℓ𝑑𝑥 =

∫ 𝑥+𝛿𝑥

𝑥

⟨𝜏w⟩𝜆𝑑𝑥 ≈ ⟨𝜏w⟩(𝑥)𝛿𝑥𝜆 + O(𝛿𝑥2) (SI.2.26)

Then, substituting all the above terms back into equation (SI.2.1) neglecting the O(𝛿𝑥2)
and reorganizing we have

⟨𝜏w⟩(𝑥) − ⟨𝜏𝑛=0⟩(𝑥) =
𝜌

𝜆

∫
𝑆

(
𝑢
𝜕𝑢

𝜕𝑥
+ 𝜕𝑝

𝜕𝑥

)
𝑑𝑆 + 𝜌⟨𝑢𝑣⟩ = B (SI.2.27)

Now, using the bounds found in equations (SI.2.12), (SI.2.11), (SI.2.16), (SI.2.16), (SI.2.21),
and (SI.2.22), and the sign of each of the terms we can evaluate the bounds of ⟨𝜏w⟩(𝑥) −
⟨𝜏𝑛=0⟩(𝑥) via the bounds of the B and thus

Blower(𝑥) + ⟨𝜏𝑛=0⟩(𝑥) ⩽ ⟨𝜏w⟩(𝑥) ⩽ Bupper(𝑥) + ⟨𝜏𝑛=0⟩(𝑥). (SI.2.28)

Lastly, integrating the results on either side of the sample:∫ 𝐿

0

(
⟨𝜏𝑛=0⟩Front + BFront

lower (𝑥)
)
𝑑𝑥 ⩽

∫ 𝐿

0
⟨𝜏w⟩Front𝑑𝑥 ⩽

∫ 𝐿

0

(
⟨𝜏𝑛=0⟩Front + BFront

upper(𝑥)
)
𝑑𝑥

(SI.2.29)

and
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∫ 𝐿

0

(
⟨𝜏𝑛=0⟩Back + BBack

lower(𝑥)
)
𝑑𝑥 ⩽

∫ 𝐿

0
⟨𝜏w⟩Back𝑑𝑥 ⩽

∫ 𝐿

0

(
⟨𝜏𝑛=0⟩Back + BBack

upper(𝑥)
)
𝑑𝑥

(SI.2.30)

Using the above equations we plot ⟨𝜏𝑛=0⟩ and the upper and lower bounds in figure SI.3.
We also add the sums of the integrals of the BFront

upper(𝑥) + BBack
upper(𝑥) and BFront

lower (𝑥) + BBack
lower(𝑥)

as error-bars on the bar plots of the decomposed drag force as shown in figure 4 of the main
text. As it can be seen from figures SI.3 and 4 of the main text, even with consideration of
upper/lower bounds for the momentum and pressure changes across a thin slice of the groove,
the location of the bounds are very close to each other for shallow R = 0.5 riblet family. For
the R = 1.0 family, a slight difference is visible, but mostly confined to the trailing edge of
the body and more pronounced for the [1.0, 1.0] sample. For the sharpest R = 1.5 family,
the [1.5, 0.0] and [1.5, 1.5] see larger differences between the upper and lower bounds,
but they also have the largest cross-sectional riblet areas among all the samples. Again, to
emphasize, if the distributions of momentum and pressure could be replaced with the bounds
for the entire 𝑆, then these are the bounds of the ⟨𝜏w⟩. However, we know that pressure and
momentum components will have distributions as functions of (𝑦, 𝑧) at every cross-section
and the magnitude of the total integral of the terms over the cross-sectional area will be
smaller than these bounds.

In addition, as it can be seen from figure 4 of the main text, the ultimate contributions of the
upper and lower bounds to the integrals will have a limited effect on the 𝐶 𝑓

𝐷
of the samples,

and the largest effect is seen for the [1.5, 1.5] sample with the largest cross-sectional area.
Note that the range of variation given by the error-bars of 𝐶 𝑓

𝐷
are in the similar range or even

smaller than 95% confidence intervals found for the profile drag and total drag. Thus, here,
with the given PIV data available, we use ⟨𝜏𝑛=0⟩ to characterize the ⟨𝐶 𝑓 ⟩ inside the grooves.
Future experimental setups with 3D access to inside the grooves, or numerical simulations
can further validate the above assumption.
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SI.3. Distribution of the spanwise average shear stress and the percentage changes
in the shear stress compared to the smooth reference
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SI.4. Distribution of 𝑚 parameter for all the samples
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SI.5. Spanwise-averaged Navier-Stokes equations in the Flat region
In the Flat region of the riblet samples, we use the Cartesian form of the Navier-Stokes
equation in the 𝑥 direction and apply the spanwise-averaging operation defined as

⟨. . .⟩ = 1
𝜆

∫ 𝜆

0
. . . 𝑑𝑧 (SI.5.1)

to get

𝜌

(〈
𝑢
𝜕𝑢

𝜕𝑥

〉
+

〈
𝑣
𝜕𝑢

𝜕𝑦

〉
+

〈
𝑤
𝜕𝑢

𝜕𝑧

〉)
= −

〈
𝜕𝑝

𝜕𝑥

〉
+ 𝜇

(〈
𝜕2𝑢

𝜕𝑥2

〉
+

〈
𝜕2𝑢

𝜕𝑦2

〉
+

〈
𝜕2𝑢

𝜕𝑧2

〉)
(SI.5.2)

The derivatives in the 𝑥 and 𝑦 direction and the averaging operation can commute thus

𝜌

(〈
𝑢
𝜕𝑢

𝜕𝑥

〉
+

〈
𝑣
𝜕𝑢

𝜕𝑦

〉
+

〈
𝑤
𝜕𝑢

𝜕𝑧

〉)
= −𝜕⟨𝑝⟩

𝜕𝑥
+ 𝜇

(
𝜕2⟨𝑢⟩
𝜕𝑥2 + 𝜕2⟨𝑢⟩

𝜕𝑦2 +
〈
𝜕2𝑢

𝜕𝑧2

〉)
. (SI.5.3)

Using the product rule 〈
𝑢
𝜕𝑢

𝜕𝑥

〉
=
𝜕⟨𝑢𝑢⟩
𝜕𝑥

−
〈
𝑢
𝜕𝑢

𝜕𝑥

〉
(SI.5.4)〈

𝑣
𝜕𝑢

𝜕𝑦

〉
=
𝜕⟨𝑢𝑣⟩
𝜕𝑛

−
〈
𝑢
𝜕𝑣

𝜕𝑦

〉
(SI.5.5)〈

𝑤
𝜕𝑢

𝜕𝑧

〉
=

〈
𝜕 (𝑢𝑤)
𝜕𝑧

〉
−

〈
𝑢
𝜕𝑤

𝜕𝑧

〉
. (SI.5.6)

Due to the periodicity of the velocity in the 𝑧 direction, 𝑢(𝑧 = 𝜆) = 𝑢(𝑧 = 0) and 𝑤(𝑧 = 𝜆) =
𝑤(𝑧 = 0) and we get〈

𝜕𝑢𝑤

𝜕𝑧

〉
=

1
𝜆

∫ 𝜆

0

𝜕𝑢𝑤

𝜕𝑧
𝑑𝑧 =

1
𝜆

(
𝑢𝑤

����
𝑧=0

− 𝑢𝑤

����
𝑧=𝜆

)
= 0 (SI.5.7)

and using equations (SI.5.4), (SI.5.5), (SI.5.6), and continuity, the left hand side of equation
(SI.5.3) is simplified to

𝜌

(〈
𝑢
𝜕𝑢

𝜕𝑥

〉
+

〈
𝑣
𝜕𝑢

𝜕𝑦

〉
+

〈
𝑤
𝜕𝑢

𝜕𝑧

〉)
= 𝜌

(
𝜕⟨𝑢𝑢⟩
𝜕𝑥

+ 𝜕⟨𝑢𝑣⟩
𝜕𝑦

)
. (SI.5.8)

On the right hand side, with symmetry and periodicity, for |𝑦 | > ℎ/2 (see figure SI.6(a)), and
the fact that outside the riblets, above the peaks, the velocity gradient needs to be continuous
everywhere, we have

𝜕𝑢

𝜕𝑧

����
𝑧=𝜆+

=
𝜕𝑢

𝜕𝑧

����
𝑧=𝜆−

=
𝜕𝑢

𝜕𝑧

����
𝑧=0+

=
𝜕𝑢

𝜕𝑧

����
𝑧=0−

= 0 (SI.5.9)

resulting in〈
𝜕2𝑢

𝜕𝑧2

〉
=

1
𝜆

∫ 𝜆

0

𝜕2𝑢

𝜕𝑧2 𝑑𝑧 =
1
𝜆

(
𝜕𝑢

𝜕𝑧

����
𝑧=𝜆

− 𝜕𝑢

𝜕𝑧

����
𝑧=0

)
=
−2
𝜆

𝜕𝑢

𝜕𝑧

����
𝑧=0

= 0 (SI.5.10)

Inside the grooves, for 𝑦trough ⩽ |𝑦 | ⩽ ℎ/2, where the walls start at a later 𝑧w1 ⩾ 0 and
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terminate at an earlier 𝑧w2 ⩽ 𝜆 (where 𝜆 − 𝑧w2 = 𝑧w1, see figure SI.6(a)), with symmetry we
have 〈

𝜕2𝑢

𝜕𝑧2

〉
=

1
𝜆

∫ 𝜆

0

𝜕2𝑢

𝜕𝑧2 𝑑𝑧 =
1
𝜆

(
𝜕𝑢

𝜕𝑧

����
𝑧=𝑧−w2

− 𝜕𝑢

𝜕𝑧

����
𝑧=𝑧+w1

)
=
−2
𝜆

𝜕𝑢

𝜕𝑧

����
𝑧=𝑧+w1

(SI.5.11)

Therefore, equation (SI.5.3) is written as

𝜌

(
𝜕⟨𝑢𝑢⟩
𝜕𝑥

+ 𝜕⟨𝑢𝑣⟩
𝜕𝑦

)
= −𝜕⟨𝑝⟩

𝜕𝑥
+ 𝜇

(
𝜕2⟨𝑢⟩
𝜕𝑥2 + 𝜕2⟨𝑢⟩

𝜕𝑦2

)
+ Z (SI.5.12)

with

Z =


− 2𝜇

𝜆

𝜕𝑢

𝜕𝑧

����
𝑧=𝑧+w1

𝑦trough ⩽ |𝑦 | ⩽ ℎ/2

0 |𝑦 | > ℎ/2.
(SI.5.13)

Ultimately we re-write the equations in the form

𝜌

(
⟨𝑢⟩ 𝜕⟨𝑢⟩

𝜕𝑥
+ ⟨𝑣⟩ 𝜕⟨𝑢⟩

𝜕𝑦

)
= −𝜕⟨𝑃∗⟩

𝜕𝑥
+ 𝜇

(
𝜕2⟨𝑢⟩
𝜕𝑦2

)
(SI.5.14)

where −𝜕⟨𝑃∗⟩/𝜕𝑥 is an equivalent pressure gradient term defined as

−𝜕⟨𝑃∗⟩
𝜕𝑥

= − 𝜕⟨𝑝⟩
𝜕𝑥

+ 𝜇
𝜕2⟨𝑢⟩
𝜕𝑥2 + Z + 𝜌

(
⟨𝑢⟩ 𝜕⟨𝑢⟩

𝜕𝑥
+ ⟨𝑣⟩ 𝜕⟨𝑢⟩

𝜕𝑦
− 𝜕⟨𝑢𝑢⟩

𝜕𝑥
− 𝜕⟨𝑢𝑣⟩

𝜕𝑦

)
.

(SI.5.15)
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SI.6. Spanwise-averaged Navier-Stokes equations in the curved leading edge
For a surface with the local contour curvature defined as 𝜅(𝑠) = 1/𝑅(𝑠) and for an
incompressible fluid (Schlichting & Gersten 2016), the Navier-Stokes equation in the
direction tangent to the wall is written as (see figure SI.6(b))

Figure SI.6: (a) Schematic of a riblet surface and the boundary conditions for
characterizing the viscous diffusion in the 𝑧 direction as part of the averaging operation.

(b) Schematic of the leading edge of the plate and the coordinate system tangent and
normal to the wall. 𝜅(𝑠) is the local curvature of the curved leading edge and is a function

of the 𝑠 direction.

𝜌

(
1

1 + 𝜅𝑛
𝑢𝑠

𝜕𝑢𝑠

𝜕𝑠
+ 𝑣𝑛

𝜕𝑢𝑠

𝜕𝑛
+ 𝜅

1 + 𝜅𝑛
𝑢𝑠𝑣𝑛 + 𝑤

𝜕𝑢𝑠

𝜕𝑧

)
=

− 1
1 + 𝜅𝑛

𝜕𝑝

𝜕𝑠
+ 1
(1 + 𝜅𝑛)

(
𝜕𝜏𝑠𝑠

𝜕𝑠
+ 1
(1 + 𝜅𝑛)

𝜕

𝜕𝑛

[
(1 + 𝜅𝑛)2𝜏𝑠𝑛

] )
+ 𝜇

𝜕2𝑢𝑠

𝜕𝑧2

(SI.6.1)

where

𝜏𝑠𝑠 =
2𝜇

1 + 𝜅𝑛

(
𝜕𝑢𝑠

𝜕𝑠
+ 𝜅𝑣𝑛

)
(SI.6.2)

and

𝜏𝑠𝑛 = 𝜇

(
𝜕𝑢𝑠

𝜕𝑛
− 𝜅𝑢𝑠

1 + 𝜅𝑛
+ 1

1 + 𝜅𝑛

𝜕𝑣𝑛

𝜕𝑠

)
(SI.6.3)

First, in the absence of riblets, 𝑤 = 0, 𝜕𝑢𝑠/𝜕𝑧 = 0, and 𝜕2𝑢𝑠/𝜕𝑧2 = 0, and the equations
return back to 2D forms. Substituting equations (SI.6.2) and (SI.6.3) in the viscous diffusion
terms

𝜕𝜏𝑠𝑠

𝜕𝑠
=

2𝜇
(1 + 𝜅𝑛)

𝜕2𝑢𝑠

𝜕𝑠2 + 2𝜇𝜅
(1 + 𝜅𝑛)

𝜕𝑣𝑛

𝜕𝑠
+ 2𝜇K ′ (SI.6.4)

where K ′ combines all the terms that include the effect of the 𝜕𝜅/𝜕𝑠:

K ′ =
1

(1 + 𝜅𝑛)2

(
−𝑛𝜕𝑢𝑠

𝜕𝑠
+ 𝑣𝑛

)
𝜕𝜅

𝜕𝑠
(SI.6.5)

and (
1

(1 + 𝜅𝑛)
𝜕

𝜕𝑛
[(1 + 𝜅𝑛)2𝜏𝑠𝑛]

)
= (1 + 𝜅𝑛) 𝜕𝜏𝑠𝑛

𝜕𝑛
+ 2𝜅𝜏𝑠𝑛 =

𝜇(1 + 𝜅𝑛) 𝜕
2𝑢𝑠

𝜕𝑛2 + 𝜇𝜅
𝜕𝑢𝑠

𝜕𝑛
− 𝜅2𝜇

1 + 𝜅𝑛
𝑢𝑠 +

𝜇𝜅

(1 + 𝜅𝑛)
𝜕𝑣𝑛

𝜕𝑠
+ 𝜇

𝜕2𝑣𝑠
𝜕𝑠𝜕𝑛

(SI.6.6)
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Adding the two viscous terms of equations (SI.6.4) and (SI.6.6) together and collecting and
reorganizing some of the terms and dividing by (1 + 𝜅𝑛)

𝜇

(
𝜕2𝑢𝑠

𝜕𝑠2 + 𝜕2𝑢𝑠

𝜕𝑛2

)
+ 𝜇

(1 + 𝜅𝑛)
𝜕

𝜕𝑠

(
1

1 + 𝜅𝑛

𝜕𝑢𝑠

𝜕𝑠
+ 𝜕𝑣𝑛

𝜕𝑛
+ 𝜅

1 + 𝜅𝑛
𝑣𝑛

)
+ 𝜇K ′

(1 + 𝜅𝑛) +

𝜇

(
(−2𝜅𝑛 − 𝜅2𝑛2)

(1 + 𝜅𝑛)2
𝜕2𝑢𝑠

𝜕𝑠2 + 𝜅

(1 + 𝜅𝑛)
𝜕𝑢𝑠

𝜕𝑛
+ 2𝜅
(1 + 𝜅𝑛)2

𝜕𝑣𝑛

𝜕𝑠
− 𝜅2

(1 + 𝜅𝑛)2 𝑢𝑠

) (SI.6.7)

where continuity dictates that(
1

1 + 𝜅𝑛

𝜕𝑢𝑠

𝜕𝑠
+ 𝜕𝑣𝑛

𝜕𝑛
+ 𝜅

1 + 𝜅𝑛
𝑣𝑛

)
= −𝜕𝑤

𝜕𝑧
(SI.6.8)

and for 2D flows, 𝜕𝑤/𝜕𝑧 = 0. As for the pressure gradient term:

− 1
1 + 𝜅𝑛

𝜕𝑝

𝜕𝑠
= −𝜕𝑝

𝜕𝑠
+ 𝜅𝑛

1 + 𝜅𝑛

𝜕𝑝

𝜕𝑠
(SI.6.9)

and thus the right hand side is simplified to

− 𝜕𝑝

𝜕𝑠
+ 𝜇

(
𝜕2𝑢𝑠

𝜕𝑠2 + 𝜕2𝑢𝑠

𝜕𝑛2

)
+ 𝜅𝑛

1 + 𝜅𝑛

𝜕𝑝

𝜕𝑠
+ 𝜇K ′

(1 + 𝜅𝑛) +

𝜇

(
(−2𝜅𝑛 − 𝜅2𝑛2)

(1 + 𝜅𝑛)2
𝜕2𝑢𝑠

𝜕𝑠2 + 𝜅

(1 + 𝜅𝑛)
𝜕𝑢𝑠

𝜕𝑛
+ 2𝜅
(1 + 𝜅𝑛)2

𝜕𝑣𝑛

𝜕𝑠
− 𝜅2

(1 + 𝜅𝑛)2 𝑢𝑠

)
.

(SI.6.10)

As for the left hand side, we can rewrite the terms in the form:

𝜌

(
1

1 + 𝜅𝑛
𝑢𝑠

𝜕𝑢𝑠

𝜕𝑠
+ 𝑣𝑛

𝜕𝑢𝑠

𝜕𝑛
+ 𝜅

1 + 𝜅𝑛
𝑢𝑠𝑣𝑛

)
=

𝜌

(
𝑢𝑠

𝜕𝑢𝑠

𝜕𝑠
+ 𝑣𝑛

𝜕𝑢𝑠

𝜕𝑛

)
− 𝜌

(
𝜅𝑛

1 + 𝜅𝑛
𝑢𝑠

𝜕𝑢𝑠

𝜕𝑠
− 𝜅

1 + 𝜅𝑛
𝑢𝑠𝑣𝑛

) (SI.6.11)

Thus equation (SI.6.1) is re-arranged as

𝜌

(
𝑢𝑠

𝜕𝑢𝑠

𝜕𝑠
+ 𝑣𝑛

𝜕𝑢𝑠

𝜕𝑛

)
= −𝜕𝑝

𝜕𝑠
+ 𝜇

(
𝜕2𝑢𝑠

𝜕𝑠2 + 𝜕2𝑢𝑠

𝜕𝑛2

)
+ K1 (SI.6.12)

where K1 captures all the terms involving the curvature term 𝜅:

K1 =𝜌

(
𝜅𝑛

1 + 𝜅𝑛
𝑢𝑠

𝜕𝑢𝑠

𝜕𝑠
− 𝜅

1 + 𝜅𝑛
𝑢𝑠𝑣𝑛

)
+ 𝜅𝑛

1 + 𝜅𝑛

𝜕𝑝

𝜕𝑠
+ 𝜇K ′

(1 + 𝜅𝑛) +

𝜇

(
(−2𝜅𝑛 − 𝜅2𝑛2)

(1 + 𝜅𝑛)2
𝜕2𝑢𝑠

𝜕𝑠2 + 𝜅

(1 + 𝜅𝑛)
𝜕𝑢𝑠

𝜕𝑛
+ 2𝜅
(1 + 𝜅𝑛)2

𝜕𝑣𝑛

𝜕𝑠
− 𝜅2

(1 + 𝜅𝑛)2 𝑢𝑠

)
.

(SI.6.13)

Similar to appendix SI.5 we can rewrite equation (SI.6.12) in the form of

𝜌

(
𝑢𝑠

𝜕𝑢𝑠

𝜕𝑠
+ 𝑣𝑛

𝜕𝑢𝑠

𝜕𝑛

)
= −𝜕𝑃∗

𝜕𝑠
+ 𝜇

(
𝜕2𝑢𝑠

𝜕𝑛2

)
(SI.6.14)

where the equivalent pressure gradient term is
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−𝜕𝑃∗

𝜕𝑠
= −𝜕𝑝

𝜕𝑠
+ 𝜇

(
𝜕2𝑢𝑠

𝜕𝑠2

)
+ K1 (SI.6.15)

and in the absence of curvature, 𝜅 → 0 and 𝜕𝜅/𝜕𝑠 → 0, K1 becomes zero and the equations
return back to that of the BL over the flat surface. Hence, in the curved region of the elliptical
leading edge, prior to the appearance of the riblets, the −𝜕𝑃∗/𝜕𝑠 term includes contributions
from the pressure gradient, the viscous diffusion terms in the streamwise direction, as well
as the curvature related terms as shown above and thus the 𝑚 parameter of the FS fit for the
velocity profiles will capture the effect of these components.

Now for the textured portion of the curved leading edge, or LET, we apply the spanwise-
averaging operation to the right hand side of equation (SI.6.1), and cannot neglect the effect
of the out of plane components:〈

𝜌

(
1

1 + 𝜅𝑛
𝑢𝑠

𝜕𝑢𝑠

𝜕𝑠
+ 𝑣𝑛

𝜕𝑢𝑠

𝜕𝑛
+ 𝜅

1 + 𝜅𝑛
𝑢𝑠𝑣𝑛 + 𝑤

𝜕𝑢𝑠

𝜕𝑧

)〉
=

𝜌

(
1

1 + 𝜅𝑛

〈
𝑢𝑠

𝜕𝑢𝑠

𝜕𝑠

〉
+

〈
𝑣𝑛

𝜕𝑢𝑠

𝜕𝑛

〉
+

〈
𝑤
𝜕𝑢𝑠

𝜕𝑧

〉
+ 𝜅

1 + 𝜅𝑛
⟨𝑢𝑠𝑣𝑛⟩

) (SI.6.16)

where using the product rule we substitute the first two terms with〈
𝑢𝑠

𝜕𝑢𝑠

𝜕𝑠

〉
=

𝜕⟨𝑢𝑠𝑢𝑠⟩
𝜕𝑠

−
〈
𝑢𝑠

𝜕𝑢𝑠

𝜕𝑠

〉
, (SI.6.17)〈

𝑣𝑛
𝜕𝑢𝑠

𝜕𝑛

〉
=

⟨𝜕𝑢𝑠𝑣𝑛⟩
𝜕𝑠

−
〈
𝑢𝑠

𝜕𝑣𝑛

𝜕𝑛

〉
(SI.6.18)〈

𝑤
𝜕𝑢𝑠

𝜕𝑧

〉
=

〈
𝜕𝑢𝑠𝑤

𝜕𝑠

〉
−

〈
𝑢𝑠

𝜕𝑤

𝜕𝑧

〉
(SI.6.19)

where using similar integral operation as discussed in appendix SI.5 in equation (SI.5.7),〈
𝜕𝑢𝑠𝑤

𝜕𝑠

〉
= 0 (SI.6.20)

Then, multiplying the continuity equation with 𝑢𝑠 and applying the spanwise-averaging
operation we can write:

1
1 + 𝜅𝑛

〈
𝑢𝑠

𝜕𝑢𝑠

𝜕𝑠

〉
+

〈
𝑢𝑠

𝜕𝑣𝑛

𝜕𝑛

〉
+

〈
𝑢𝑠

𝜕𝑤

𝜕𝑧

〉
= − 𝜅

1 + 𝜅𝑛
⟨𝑢𝑠𝑣𝑛⟩ (SI.6.21)

and thus using equations (SI.6.17), (SI.6.18), and (SI.6.21), we rewrite (SI.6.16) as

𝜌

(
1

1 + 𝜅𝑛

𝜕⟨𝑢𝑠𝑢𝑠⟩
𝜕𝑠

+ 𝜕⟨𝑢𝑠𝑣𝑛⟩
𝜕𝑛

+ 2𝜅
1 + 𝜅𝑛

⟨𝑢𝑠𝑣𝑛⟩
)

(SI.6.22)

which similar to earlier it can be divided into:

𝜌

(
𝜕⟨𝑢𝑠𝑢𝑠⟩

𝜕𝑠
+ 𝜕⟨𝑢𝑠𝑣𝑛⟩

𝜕𝑛

)
+ 𝜌

(
− 𝜅𝑛

1 + 𝜅𝑛

𝜕⟨𝑢𝑠𝑢𝑠⟩
𝜕𝑠

+ 2𝜅
1 + 𝜅𝑛

⟨𝑢𝑠𝑣𝑛⟩
)

(SI.6.23)

As for the left hand side, following similar steps as before, using equations (SI.6.7) and
(SI.6.8), we can write the viscous terms as



SI.16 S. Fu, and S. Raayai-Ardakani

〈
1

(1 + 𝜅𝑛)

(
𝜕𝜏𝑠𝑠

𝜕𝑠
+ 1
(1 + 𝜅𝑛)

𝜕

𝜕𝑛
[(1 + 𝜅𝑛)2𝜏𝑠𝑛]

)
+ 𝜇

𝜕2𝑢𝑠

𝜕𝑧2

〉
=

𝜇

(
𝜕2⟨𝑢𝑠⟩
𝜕𝑠2 + 𝜕2⟨𝑢𝑠⟩

𝜕𝑛2 +
〈
𝜕2𝑢𝑠

𝜕𝑧2

〉)
− 𝜇

1 + 𝜅𝑛

𝜕

𝜕𝑠

〈
𝜕𝑤

𝜕𝑧

〉
+ 𝜇⟨K ′⟩
(1 + 𝜅𝑛) +

𝜇

(
(−2𝜅𝑛 − 𝜅2𝑛2)

(1 + 𝜅𝑛)2
𝜕2⟨𝑢𝑠⟩
𝜕𝑠2 + 𝜅

(1 + 𝜅𝑛)
𝜕⟨𝑢𝑠⟩
𝜕𝑛

+ 2𝜅
(1 + 𝜅𝑛)2

𝜕⟨𝑣𝑛⟩
𝜕𝑠

− 𝜅2

(1 + 𝜅𝑛)2 ⟨𝑢𝑠⟩
)

(SI.6.24)

where 〈
𝜕𝑤

𝜕𝑧

〉
=

1
𝜆

∫ 𝜆

0

𝜕𝑤

𝜕𝑧
𝑑𝑧 = 𝑤(𝜆) − 𝑤(0) = 0 (SI.6.25)

and similar to (SI.5.13) in appendix SI.5

𝜇

〈
𝜕2𝑢𝑠

𝜕𝑧2

〉
= Z =


− 2𝜇

𝜆

𝜕𝑢𝑠

𝜕𝑧

����
𝑧=𝑧+w1

𝑛trough ⩽ 𝑛 ⩽ 𝑛peak

0 |𝑛| > 𝑛peak.

(SI.6.26)

As for the pressure gradient term similarly:

− 1
1 + 𝜅𝑛

𝜕⟨𝑝⟩
𝜕𝑠

= −𝜕⟨𝑝⟩
𝜕𝑠

+ 𝜅𝑛

1 + 𝜅𝑛

𝜕⟨𝑝⟩
𝜕𝑠

(SI.6.27)

and thus

𝜌

(
⟨𝑢𝑠⟩

𝜕⟨𝑢𝑠⟩
𝜕𝑠

+ ⟨𝑣𝑛⟩
𝜕⟨𝑢𝑠⟩
𝜕𝑛

)
= − 𝜕⟨𝑃∗⟩

𝜕𝑠
+ 𝜇

(
𝜕2⟨𝑢𝑠⟩
𝜕𝑛2

)
(SI.6.28)

where

− ⟨𝑃∗⟩
𝜕𝑠

= − 𝜕⟨𝑝⟩
𝜕𝑠

+ 𝜇

(
𝜕2⟨𝑢𝑠⟩
𝜕𝑠2

)
+ Z + K2+

𝜌

(
⟨𝑢𝑠⟩

𝜕⟨𝑢𝑠⟩
𝜕𝑠

+ ⟨𝑣𝑛⟩
𝜕⟨𝑢𝑠⟩
𝜕𝑛

− 𝜕⟨𝑢𝑠𝑢𝑠⟩
𝜕𝑠

− 𝜕⟨𝑢𝑠𝑣𝑛⟩
𝜕𝑛

) (SI.6.29)

and

K2 =𝜌

(
𝜅𝑛

1 + 𝜅𝑛

𝜕⟨𝑢𝑠𝑢𝑠⟩
𝜕𝑠

− 2𝜅
1 + 𝜅𝑛

⟨𝑢𝑠𝑣𝑛⟩
)
+ 𝜅𝑛

1 + 𝜅𝑛

𝜕⟨𝑝⟩
𝜕𝑠

+ 𝜇⟨K ′⟩
(1 + 𝜅𝑛) +

𝜇

(
(−2𝜅𝑛 − 𝜅2𝑛2)

(1 + 𝜅𝑛)2
𝜕2⟨𝑢𝑠⟩
𝜕𝑠2 + 𝜅

(1 + 𝜅𝑛)
𝜕⟨𝑢𝑠⟩
𝜕𝑛

+ 2𝜅
(1 + 𝜅𝑛)2

𝜕⟨𝑣𝑛⟩
𝜕𝑠

− 𝜅2

(1 + 𝜅𝑛)2 ⟨𝑢𝑠⟩
)
=

⟨K1⟩ −
𝜌𝜅

1 + 𝜅𝑛
⟨𝑢𝑠𝑣𝑛⟩.

(SI.6.30)
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SI.7. Distribution of G for all the samples
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SI.8. Distribution of the effective origin for all the samples
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SI.9. Distribution of the boundary layer thickness, 𝛿99, for all the samples
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