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I. SOLUTION OF THE INTEGRAL EQUATION (2.16) IN THE MAIN TEXT

It is explained in the main text that, in order to calculate the pressure jump across the airfoil, namely,

∆ pa(x, t) = ρ
∂Γa

∂t
+ ρU∞

∂Γa

∂x
= ρ

∂

∂ t

(∫ x

0

γa(x0, t) dx0

)
+ ρU∞γa(x, t) (1)

as well as the unsteady lift and the torque,

ℓ(t) =

∫ c

0

∆ pa(x, t) dx and m(t) =

∫ c

0

x∆ pa(x, t) dx , (2)

we first need to solve the integral equation

w′
a(x, z = 0±, t) = −d h

d t
− U∞α(t)− dα

d t
(x− xe) =

=
1

2π

∫ c

0

γa(x0, t)

x0 − x
dx0 −

1

2π

∫ t

0

dΓe/dt0
c+ U∞ (t− t0)− x

dt0 ,

(3)

with

Γe(t) =

∫ c

0

γa(x, t) dx (4)

indicating the circulation around the airfoil, making use of the expansion

γa(x, t)

U∞
= A0(t)

√
1− x/c

x/c
+

∞∑
n=1

An(t) sin(nθ) = A0(t)
1 + cos θ

sin θ
+

∞∑
n=1

An(t) sin(nθ) , (5)

where we have introduced the change of variables

x

c
=

1− cos θ

2
⇒ dx =

c

2
sin θ dθ (6)

and, therefore, θ = 0 at x = 0 and θ = π at x = c.
Before we do so, let us first express the circulation Γa(x, t), ℓ(t) and m(t) in terms of θ and of the coefficients Ai(t)

making use of equations (1), (2), (5) and (6), with dots denoting, from now on, time derivatives with respect to the
dimensionless time τ , defined as

τ = t
2U∞

c
and τ0 = t0

2U∞

c
(7)

obtaining the following results:

Γa(x, t) =

∫ x

0

γa(x0, t) dx0 =
U∞ c

2

∫ θ

0

(
A0

1 + cos θ0
sin θ0

+

∞∑
n=1

An sin(nθ0)

)
sin θ0 dθ0 =

=
U∞ c

2

[
A0 (θ + sin θ) +

∞∑
n=1

An

2

∫ θ

0

(cos[(n− 1)θ0]− cos[(n+ 1)θ0]) dθ0

]
=

=
U∞ c

2

[
A0 (θ + sin θ) +

A1

2

(
θ − sin(2θ)

2

)
+

∞∑
n=2

An

2

(
sin((n− 1)θ)

n− 1
− sin((n+ 1)θ)

n+ 1

)]
,

(8)

ℓ(t) =
ρU∞c2

4

d

d t

∫ π

0

sin θ

(
A0 (θ + sin θ) +

A1

2
θ +

A2

2
sin θ

)
dθ + ρU∞Γe(t) =

=
ρU2

∞c π

2

(
3 Ȧ0

2
+

Ȧ1

2
+

Ȧ2

4
+

(
A0 +

A1

2

))
with Γe(t) = Γa(θ = π, t) ,

m(t) = ρ
d

dt

∫ c

0

xΓa dx+ ρU∞

∫ c

0

x
∂Γa

∂ x
dx = ρ

d

dt

∫ c

0

xΓa dx+ ρU∞Γe c− ρU∞

∫ c

0

Γa dx

=
ρU2

∞c2π

4

(
3 Ȧ0

2
+

Ȧ1

2
+

Ȧ2

4

)
+

ρU2
∞c2π

4

(
Ȧ0

4
+

3Ȧ1

16
− Ȧ3

16

)
− ρU2

∞c2π

4

(
3A0

2
+

A1

2
+

A2

4

)
+ ρU∞Γe(t) c ,

(9)
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and where we have taken into account that∫ π

0

θ sin θ dθ = π ,

∫ π

0

θ sin(2θ) dθ = −π

2
,

∫ π

0

sin2(nθ) dθ =
π

2
,

∫ π

0

sin(nθ) sin(mθ) dθ = 0 for n ̸= m.

(10)
Moreover, in order to deduce equation (9), we have also taken into account that the particularization of equation

(8) at θ = π yields the following expression for the circulation around the airfoil:

Γe(t) = Γa(x = c, t) = Γa(θ = π, t) =
π U∞c

2

(
A0 +

A1

2

)
. (11)

Hence, the substitution of the results in equations (5) and (11) into equation (3) provides with the following integral
equation for the coefficients Ai(t):

w′(x, z = 0±, t) =
1

2π

∫ c

0

γa(x0, t)

x0 − x
dx0 −

π U∞c

4π

∫ t

0

d (A0 +A1/2) /dt0
c+ U∞ (t− t0)− x

dt0 =

U∞

2π

∫ π

0

sin θ0
cos θ − cos θ0

(
A0

1 + cos θ0
sin θ0

+

∞∑
n=1

An sin(nθ0)

)
dθ0 −

U∞

2

∫ τ

0

Ȧ0 + Ȧ1/2

1 + (τ − τ0) + cos θ
dτ0 ,

(12)

where we have made use of the definitions of the dimensionless times τ and τ0 in equation (7).
Before solving equation (12) we first need to calculate the value of integrals of the type

∫ π

0

cos(nθ) dθ

1 + (τ − τ0) + cos θ
=

1

2

∫ 2π

0

ei nθ

1 + (τ − τ0) + cos θ
, (13)

which can be easily evaluated using the calculus of residues by applying Cauchy’s theorem once the integral in equation
(13) is evaluated carrying out the line integral along the unit circle z = eiθ in the complex plane. Indeed, introducing
the change of variables

z = eiθ ⇒ dz = ieiθ dθ ⇒ dθ =
−i dz

z
, einθ = zn , cos θ =

1

2

(
z +

1

z

)
, (14)

equation (13) can be written as

1

2

∫ 2π

0

ei nθ dθ

1 + (τ − τ0) + cos θ
= −i

∫ 2π

0

zn dz

z2 + 2 z (1 + (τ − τ0)) + 1
=

∫ 2π

0

−i zn dz

(z − z1) (z − z2)
, (15)

with

z1 = − (1 + (τ − τ0)) +

√
(τ − τ0)

2
+ 2 (τ − τ0) and z2 = − (1 + (τ − τ0))−

√
(τ − τ0)

2
+ 2 (τ − τ0) . (16)

Since τ0 < τ , |z1| < 1, i.e., the pole z1 is included within the unit circle and hence, the calculus of residues yields that∫ 2π

0

−i zn dz

(z − z1) (z − z2)
= 2π i

−i zn1
z1 − z2

= π

(
−B +

√
B2 − 1

)n
√
B2 − 1

with B = 1 + (τ − τ0) (17)

and, therefore,

n = 0 ,

∫ π

0

dθ

1 + (τ − τ0) + cos θ
= π

1√
B2 − 1

,

n = 1 ,

∫ π

0

cos(θ)dθ

1 + (τ − τ0) + cos θ
= π

(
1− B√

B2 − 1

)
,

n = 2 ,

∫ π

0

cos(2θ)dθ

1 + (τ − τ0) + cos θ
= π

(
−2B +

2B2 − 1√
B2 − 1

)
,

n = 3 ,

∫ π

0

cos(3θ)dθ

1 + (τ − τ0) + cos θ
= π

(
4B2 − 1− 2B

√
B2 − 1−B

2B2 − 1√
B2 − 1

)
,

with B = 1 + (τ − τ0) .

(18)
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Let us also recall here that

sin(nθ) sin θ =
cos((n− 1)θ)− cos((n+ 1)θ)

2
, (19)

and also that the value of the so-called Glauert integral is:

IG(n) =

∫ π

0

cos(nθ0) dθ0
cos θ0 − cos θ

= π
sin(nθ)

sin θ
, (20)

and, hence,

U∞

2π

∫ π

0

sin θ0
cos θ − cos θ0

(
A0

1 + cos θ0
sin θ0

+

∞∑
n=1

An sin(nθ0)

)
dθ0 = −U∞

2

(
A0 −

∞∑
n=1

An cos(nθ)

)
. (21)

The expressions for Ai are obtained once the result of equation (21) is introduced into equation (12) and the resulting
integral equation is projected in cos(mθ), namely:∫ π

0

w′(θ, z = 0±, t) cos(mθ) dθ =− U∞

2

(
A0

π

2
F (0,m)−Am

π

2
F (n,m)

)
−

− U∞

2

∫ τ

0

d

dτ0

(
A0 +

A1

2

)(∫ π

0

cos(mθ) dθ

1 + (τ − τ0) + cos θ

)
dτ0

(22)

where we have taken into account that∫ π

0

cos(nθ) cos(mθ) dθ =
π

2
F (n,m) with F (0, 0) = 2 , F (n, n) = 1 or F (n,m) = 0 if n ̸= m. (23)

The expressions for ℓ(t) and m(t) in equation (9) reveal that the aerodynamic force and torque depend on the values
of the coefficients Ai, with 0 ≤ i ≤ 3 and then, the particularization of equation (22) for m = 0, 1, 2, 3 yields:

m = 0 ,
1

U∞

(
U∞α(t) +

dh

dt
−
(
xe −

c

2

) dα

dt

)
=

A0

2
+

I1
2

m = 1 ,
c

4U∞

dα

dt
= −A0

2
+

I1
2

+
I2
2

m = 2 , 0 =
A2

4
+A0 +

A1

2
− I1

2
+

∫ τ

0

(τ − τ0)
(
Ȧ0 + Ȧ1/2

)
dτ0 −

∫ τ

0

(
Ȧ0 + Ȧ1/2

)√
B2 − 1 dτ0

m = 3 , 0 =
A3

4
− 3

2

(
A0 +

A1

2

)
+

I1 + I2
2

+ 2

∫ τ

0

(
Ȧ0 + Ȧ1/2

)√
B2 − 1 dτ0+

+ 2

∫ τ

0

(τ − τ0)
(
Ȧ0 + Ȧ1/2

)√
B2 − 1 dτ0 − 2

∫ τ

0

(τ − τ0)
2
(
Ȧ0 + Ȧ1/2

)
dτ0 − 4

∫ τ

0

(τ − τ0)
(
Ȧ0 + Ȧ1/2

)
dτ0

with I1(τ) =

∫ τ

0

(
Ȧ0(τ0) +

Ȧ1(τ0)

2

)
dτ0√
B2 − 1

, I2(τ) =

∫ τ

0

(
Ȧ0(τ0) +

Ȧ1(τ0)

2

)
τ − τ0√
B2 − 1

dτ0 , B = 1 + (τ − τ0) ,

(24)

where we have made use of the results in equation (18) and of∫ π

0

w′(θ, z = 0±, t) cos(mθ) dθ =

∫ π

0

(
−dh

dt
− U∞α(t)− dα

dt

(
x− c

2

)
+

dα

d t

(
xe −

c

2

))
cos(mθ) dθ =

=

(
−dh

dt
− U∞α(t) +

dα

dt

(
xe −

c

2

)) π

2
F (0,m) +

dα

dt

c

2
F (1,m)

π

2

(25)

with the values of F (n,m) given in equation (23), w′(x, z = 0±, t) given in equation (3) and where we have taken into
account that ∫ τ

0

(
Ȧ0(τ0) +

Ȧ1(τ0)

2

)
dτ0 = A0(τ) +

A1

2
(τ) (26)
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because, at τ = 0, Γe = 0, with Γe the circulation around the airfoil given in equation (11).
With the purpose of finding the expressions for ℓ(t) and m(t) notice first that Leibniz’s rule for the derivative of

time-dependent integrals yields:

d

dτ

(∫ τ

0

(τ − τ0)
(
Ȧ0 + Ȧ1/2

)
dτ0

)
=

∫ τ

0

(
Ȧ0 + Ȧ1/2

)
dτ0 = A0 +

A1

2
,

d

dτ

(∫ τ

0

(τ − τ0)
2
(
Ȧ0 + Ȧ1/2

)
dτ0

)
= 2

∫ τ

0

(τ − τ0)
(
Ȧ0 + Ȧ1/2

)
dτ0 ,

d

dτ

(∫ τ

0

(
Ȧ0 + Ȧ1/2

)√
B2 − 1 dτ0

)
= I1(τ) + I2(τ) ,

d

dτ

(∫ τ

0

(τ − τ0)
(
Ȧ0 + Ȧ1/2

)√
B2 − 1 dτ0

)
= 2

∫ τ

0

(
Ȧ0 + Ȧ1/2

)√
B2 − 1 dτ0 − I2(τ).

(27)

Notice also that the addition of the first and second of the equations in (24) yields that

1

U∞

(
U∞α(t) +

dh

dt
−
(
xe −

3c

4

)
dα

dt

)
= I1(τ) +

I2(τ)

2
⇒ I1(τ) +

I2(τ)

2
=

−w′(x = 3c/4, z = 0±, t)

U∞
, (28)

where we have made use of the expression for w′ given in equation (3). It will be discussed below that the solution
of the integral equation (28) provides with the circulation around the airfoil Γe(t). Moreover, the addition of the first
and third equations in equation (24) yields,

1

U∞

(
U∞α(t) +

dh

dt
−
(
xe −

c

2

) dα

dt

)
=

3A0

2
+

A1

2
+

A2

4
+

∫ τ

0

(τ − τ0)
(
Ȧ0 + Ȧ1/2

)
dτ0−

−
∫ τ

0

(
Ȧ0 + Ȧ1/2

)√
B2 − 1 dτ0 ⇒

c

2U∞

d

dt

(
1

U∞

(
U∞α(t) +

dh

dt
−
(
xe −

c

2

) dα

dt

))
=

3Ȧ0

2
+

Ȧ1

2
+

Ȧ2

4
+A0 +

A1

2
− (I1 + I2)

(29)

where we have made use of the results in equation (27).
The substitution of the results in equations (28)-(29) into the expression for ℓ(t) given in equation (9) provides with

the following equation for the unsteady lift:

ℓ(t) =
ρc2 π

4

d

dt

(
U∞α(t) +

dh

dt
+
( c
2
− xe

) dα

dt

)
+

ρU2
∞c π

2
(I1(τ) + I2(τ)) = ℓa(t) + ℓc(t) . (30)

The result for the unsteady lift in equation (30) reveals that ℓ(t) results from the addition of two different terms:
the first term at the right hand side of equation (30), ℓa(t), represents the contribution to the lift associated with the
acceleration of the airfoil in the vertical direction; it will be termed, in what follows, as added mass term. The second
term at the right hand side of equation (30), ℓc, is the so-called circulatory lift and represents the contribution of the
wake to the lift force. For those cases in which the airfoil does not accelerate, the only lift force experienced by the
airfoil is associated with the effect of the wake vortices, quantified through the integrals I1(τ) and I2(τ).

With the purpose of finding the expression for the time-dependent torque m(t), notice first that the subtraction of
the equations corresponding to m = 1 and m = 3 in (24) yields,

A0(τ) +
3A1(τ)

4
− A3(τ)

4
=

c

4U∞

dα

dt
+ 2

∫ τ

0

(
Ȧ0 + Ȧ1/2

)√
B2 − 1 dτ0 + 2

∫ τ

0

(τ − τ0)
(
Ȧ0 + Ȧ1/2

)√
B2 − 1 dτ0−

− 2

∫ τ

0

(τ − τ0)
2
(
Ȧ0 + Ȧ1/2

)
dτ0 − 4

∫ τ

0

(τ − τ0)
(
Ȧ0 + Ȧ1/2

)
dτ0 ⇒ Ȧ0(τ) +

3Ȧ1(τ)

4
− Ȧ3(τ)

4
=

c2

8U2
∞

d2α

d t2
+

+ 2 I1 + 4

∫ τ

0

(
Ȧ0 + Ȧ1/2

)√
B2 − 1 dτ0 − 4

∫ τ

0

(τ − τ0)
(
Ȧ0 + Ȧ1/2

)
dτ0 − 4

(
A0 +

A1

2

)
,

(31)

where we have made use of the results in equation (27). In addition, equation (29) expresses that:

3A0

2
+
A1

2
+
A2

4
=

1

U∞

(
U∞α(t) +

dh

dt
−
(
xe −

c

2

) dα

dt

)
−
∫ τ

0

(τ − τ0)
(
Ȧ0 + Ȧ1/2

)
dτ0+

∫ τ

0

(
Ȧ0 + Ȧ1/2

)√
B2 − 1 dτ0 .

(32)



6

The substitution of equations (31)-(32) into the equation for the torque calculated at x = 0, m(t), given in equation
(9), and using the expression for ℓ(t) also given in equation (9) yields:

m(t) =
ρU2

∞c2π

4

(
3 Ȧ0

2
+

Ȧ1

2
+

Ȧ2

4

)
+

+
ρU2

∞c2π

16

(
c2

8U2
∞

d2α

d t2
+ 2 I1 + 4

∫ τ

0

(
Ȧ0 + Ȧ1/2

)√
B2 − 1 dτ0 − 4

∫ τ

0

(τ − τ0)
(
Ȧ0 + Ȧ1/2

)
dτ0 − 4

(
A0 +

A1

2

))
−

− ρU2
∞c2π

4

(
1

U∞

(
U∞α(t) +

dh

dt
−
(
xe −

c

2

) dα

dt

)
−
∫ τ

0

(τ − τ0)
(
Ȧ0 + Ȧ1/2

)
dτ0 +

∫ τ

0

(
Ȧ0 + Ȧ1/2

)√
B2 − 1 dτ0

)
+

+
ρU2

∞ c2

2

(
A0 +

A1

2

)
=

ρU2
∞c2π

4

(
3 Ȧ0

2
+

Ȧ1

2
+

Ȧ2

4
+A0 +

A1

2

)
+

ρc4π

128

d2α

d t2
+

+
ρU2

∞c2π

4

(
I1
2

− 1

U∞

(
U∞α(t) +

dh

dt
−
(
xe −

c

2

) dα

dt

))
=

c ℓ(t)

2
+

ρc4π

128

d2α

d t2
+

ρU∞c3π

16

dα

d t
− ρU2

∞c2π

8
(I1 + I2) ,

(33)

where the last term in equation (33) has been deduced adding the equations corresponding to m = 0 and m = 1 in
equation (24). Hence, making use of the result in equation (30) for ℓ(t), the torque m(t) can be calculated as,

m(t) =
c

2
× ρc2 π

4

d

dt

(
U∞α(t) +

dh

dt
+
( c
2
− xe

) dα

dt

)
+

ρc4π

128

d2α

d t2
+

ρU∞c3π

16

dα

d t
+

ρU2
∞c2π

8
(I1(τ) + I2(τ))

=
c

2
ℓa(t) +

c

4
ℓc(t) +

ρc4π

128

d2α

d t2
+

ρU∞c3π

16

dα

d t
.

(34)

II. THE CIRCULATORY LIFT ℓc(t)

The values of ℓ(t) and m(t) in equations (30) and (34) depend on the value of the circulation around the airfoil
Γe(τ), given by -see equations (8) and (11):

Γe(τ) =
π U∞c

2

(
A0(τ) +

A1

2
(τ)

)
. (35)

The circulation around the airfoil, Γe(τ), is calculated solving the integral equation (28), reproduced here for clarity
purposes:

1

U∞

(
U∞α(t) +

dh

dt
−
(
xe −

3c

4

)
dα

dt

)
= I1(τ) +

I2(τ)

2
⇒

I1(τ) +
I2(τ)

2
=

−w′(x = 3c/4, z = 0±, t)

U∞
=

−w′
3/4

U∞
with w′(x = 3c/4, z = 0±, t) = w′

3/4 .

(36)

The integrals I1(τ) and I2(τ) in equation (36), which depend on Γ̇e(τ), are defined in equation (24). We will firstly
solve equation (36) for the case of a general time-dependent function −w′

3/4 making use of the fact that any function

F (t) can be expressed as:

F (t) = F (0)H(t) +

∫ t

0

dF

d t′
H(t− t′) d t′ , (37)

with the Heaviside function H(τ) defined as

H(τ) = 1 if τ ≥ 0 and H(τ) = 0 if τ < 0 , (38)

and hence, the right hand side of equation (36) can be expressed as:

−w′
3/4

U∞
(τ) =

−w′
3/4

U∞
(0)H(τ)−

∫ τ

0

dw′
3/4/U∞

dτ0
H(τ − τ0) dτ0 . (39)
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Therefore, since the integral equation (36) is linear in the unknown Ȧ0(τ) + Ȧ1(τ)/2, the addition of solutions is also
a solution of equation (36). Consequently, due to the fact that equation (39) expresses that any function −w′

3/4(τ)

can be expressed as a linear combination of Heaviside functions H(τ), the general solution of equation (36) can be
expressed as the linear combination of the function ge(τ) which results from the solution of equation (36) particularized
for the case in which the forcing term is a Heaviside function:

I1W +
I2W
2

=

∫ τ

0

ġe(τ0)
1 + (τ − τ0) /2√

(τ − τ0)
2
+ 2 (τ − τ0)

dτ0 = H(τ) = 1 , (40)

where we have made use of the definition of the integrals I1 and I2 in equation (24).
Once ge(τ) with ge(τ < 0) = 0 is known from the solution of equation (40), we first notice that the solution of

equation (40) when the right hand side is H(τ − τ0) is nothing but ge(τ − τ0). This said, we can straightforwardly
calculate the general expression of the circulatory lift. Indeed, let us first define the so-called Wagner function as:

ϕ(τ) =
I1W (τ) + I2W (τ)

2
=

1

2

∫ τ

0

ġe(τ0)
1 + (τ − τ0)√

(τ − τ0)
2
+ 2 (τ − τ0)

dτ0 , (41)

which is now a known function because ge(τ) is determined solving the integral equation (40). Next, notice that,
in view of equation (39), the general solution of equation (36) can be expressed in terms of the following linear
combination of the known function ge(τ) as:

Ȧ0(τ1) +
Ȧ1(τ1)

2
=

−w′
3/4

U∞
(0) ġe(τ1)−

∫ τ1

0

dw′
3/4/U∞

dτ0
ġe(τ1 − τ0) dτ0 =

=
−w′

3/4

U∞
(0) ġe(τ1)−

∫ τ

0

dw′
3/4/U∞

dτ0
ġe(τ1 − τ0) dτ0 ,

(42)

where we have taken into account that, for τ > τ1, ġe(τ1 − τ0) = 0 when τ0 > τ1. Therefore, since the circulatory lift
in equation (30) is given by

ℓc(τ) =
ρU2

∞cπ

2

∫ τ

0

(
Ȧ0(τ1) +

Ȧ1(τ1)

2

)
1 + (τ − τ1)√

(τ − τ1)
2
+ 2 (τ − τ1)

dτ1 , (43)

the substitution of equation (42) into equation (43) yields,

ℓc(τ) =
ρU2

∞cπ

2
×

×
∫ τ

0

(
−w′

3/4

U∞
(0) ġe(τ1)−

∫ τ

0

dw′
3/4(τ0)/U∞

dτ0
ġe(τ1 − τ0) dτ0

)
1 + τ − τ1√

(τ − τ1)
2
+ 2 (τ − τ1)

dτ1

= ρU2
∞cπ

(
−w′

3/4(0)

U∞
ϕ(τ)

)
−

− ρU2
∞cπ ×

∫ τ

0

dw′
3/4(τ0)/U∞

dτ0
dτ0

∫ τ

0

ġe(τ1 − τ0)

2

1 + (τ − τ0 − (τ1 − τ0))√
(τ − τ0 − (τ1 − τ0))

2
+ 2 (τ − τ0 − (τ1 − τ0))

dτ1

= ρU2
∞cπ

(
−w′

3/4(0)

U∞
ϕ(τ)

)
−

− ρU2
∞cπ ×

∫ τ

0

dw′
3/4(τ0)/U∞

dτ0
dτ0

∫ τ−τ0

0

ġe(τ
′
1)

2

1 + (τ − τ0 − τ ′1)√
(τ − τ0 − τ ′1)

2
+ 2 (τ − τ0 − τ ′1)

dτ ′1 ,

(44)

where we have exchanged the order of integration in equation (44) by performing first the integration with respect to
τ1 and have made the change of variables τ ′1 = τ1 − τ0 taking into account that ġe(τ1 − τ0 < 0) = 0. Consequently,
making use of the definition of the Wagner function in equation (41), the general expression for the circulatory lift is:

ℓc(τ) = ρU2
∞cπ

(
−w′

3/4(0)

U∞
ϕ(τ)

)
− ρU2

∞cπ

∫ τ

0

dw′
3/4(τ0)/U∞

dτ0
ϕ(τ − τ0) dτ0 . (45)
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Equation (45) reveals that the circulatory lift can be calculated as a convolution integral in terms of the Wagner
function defined in equation (41).

Notice that, for the particular case in which a symmetric airfoil changes the angle of attack to α with ḣ = 0 namely,
when −w′

3/4/U∞ = αH(τ), the particularization of equation (45) yields

ℓcW (τ) = ρU2
∞cπαϕ(τ) ⇒ ϕ(τ) =

ℓcW (τ)

1/2ρU2
∞c2πα

=
ℓcW (τ)

ℓcW (τ → ∞)
. (46)

Since the added mass lift is zero for τ > 0 when −w′
3/4/U∞ = αH(τ), the Wagner function can be calculated as the

ratio between the transient lift experienced by the airfoil at the instant τ divided by the lift on the airfoil reached
when the flow around the airfoil is steady: this is, in fact, the way Wagner function is calculated numerically using
the code provided below. Clearly, in view of equation (46), ϕ(τ → ∞) = 1.

Here we will also make use of the well-known, approximate expression given by Jones (1938) [1] of the Wagner
function:

ϕ(τ) = 1− 0.165 e−0.0455 τ − 0.335 e−0.3τ , (47)

which, as it can be depicted in figure 1, is an excellent approximation to the numerical solution found by means of
the numerical code, based on the vortex-lattice method, detailed below.

In the following, we will calculate the value of the Wagner function in the limit τ ≪ 1 in two different ways. Indeed,
the so-called Wagner function obtained as the solution of Eq. (40), needs to be calculated numerically but it is also
possible to find its analytical expression in the limit τ ≪ 1, for which:∫ τ

0

ġe(τ0)
1 + (τ − τ0) /2√

(τ − τ0)
2
+ 2 (τ − τ0)

dτ0 =
1√
2

∫ τ

0

ġe(τ0)

√
1 + (τ − τ0)/2√

τ − τ0
dτ0 = 1 ⇒

for τ ≪ 1 ⇒ 1√
2

∫ τ

0

ġe(τ0)
1 + (τ − τ0)/4√

τ − τ0
dτ0 = 1

(48)

In this case, we seek for solutions of Eq. (48) of the type

ge(τ) = 2 g0τ
1/2 +

2

3
g1τ

3/2 + ... ⇒ ġe(τ) = g0τ
−1/2 + g1 τ

1/2 + ... , (49)

and, hence, introducing the expansion for ġe(τ) into equation (48) and taking into account that∫ τ

0

τ
−1/2
0

dτ0√
τ − τ0

= 2

∫ 1

0

d
√
τ0/τ√

1− τ0/τ
= 2

∫ π/2

0

cos θ dθ√
1− sin2 θ

= π ,∫ τ

0

τ
1/2
0

dτ0√
τ − τ0

= τ

∫ 1

0

(τ0/τ)
1/2 d (τ0/τ)√

1− τ0/τ
= τ

∫ π/2

0

sin θ
2 sin θ cos θ dθ

cos θ
=

π

2
τ ,∫ τ

0

τ
−1/2
0

√
τ − τ0 dτ0 = τ

∫ 1

0

(τ0/τ)
−1/2

√
1− τ0/τ d (τ0/τ) = τ

∫ π/2

0

2 sin θ cos2 θ dθ

sin θ
=

π

2
τ∫ τ

0

τ
1/2
0

√
τ − τ0 dτ0 = τ2

∫ 1

0

(τ0/τ)
1/2
√
1− τ0/τ d (τ0/τ) = 2τ2

∫ π/2

0

(
sin(2θ)

2

)2

dθ =
π

8
τ2 ,

(50)

where the values of the different integrals in Eq. (50) have been found making the change of variables
√
τ0/τ = sin θ

and, then, d
√

τ0/τ = cos θ dθ and d(τ0/τ) = 2 sin θ cos θ dθ, we obtain the following equation for the coefficients g0
and g1:

g0√
2
π +

g1√
2

π

2
τ +

g0

4
√
2

π

2
τ +O(τ2) = 1 ⇒ g0√

2
π = 1 ,

g1√
2

π

2
τ +

g0

4
√
2

π

2
τ = 0 ⇒ g1 = −g0

4
. (51)

By virtue of the definition of the Wagner function in equation (41), the integral equation (48) can be written as:

ϕ(τ) +
1

2

∫ τ

0

ġe(τ0)
1√

(τ − τ0)
2
+ 2 (τ − τ0)

dτ0 = 1 ⇒

for τ ≪ 1 ⇒ ϕ(τ) +
1

2
√
2

∫ τ

0

ġe(τ0)
1− (τ − τ0)/4√

τ − τ0
dτ0 = 1 .

(52)
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The substitution of the values of the integrals (50) and of the values of g0 and g1 in equation (51) into equation (52)
yields:

ϕ(τ ≪ 1) = 1− 1

2

(
g0√
2
π +

g1√
2

π

2
τ − g0

4
√
2

π

2
τ +O(τ2)

)
≃ 1

2
+

1

8
τ +O(τ2) . (53)

Clearly, additional terms could be added to the analytical solution in equation (53) by taking additional terms in
the expansion of ġe(τ) in equation (49), but we prefer to calculate the value of ϕ(τ) either numerically or using the
approximation in equation (85).

Indeed, the comparison between the value of the Wagner function in Eq. (46), which has been calculated nu-
merically using the vortex lattice method detailed below, the value calculated using the well-known approximate
expression given by Jones (1938) [1] in Eq. (85) and the value calculated by means of the analytical expression given
in Eq. (53), valid for τ ≪ 1, is shown in figure 1.

It is interesting to note that the expression of the circulatory lift force experienced by an airfoil whose angle of
attack varies suddenly at t = 0 i.e., α(τ) = αH(τ) can be easily calculated at τ → 0+ using the alternative procedure
described next, which makes use of the result in Appendix A of the main text, reproduced here for clarity purposes.
Indeed, the fact that the value of the circulation at τ = 0+ namely, right after the angle of attack has changed to a
value α ̸= 0, is Γe(τ = 0+) = 0, means that the flow around the airfoil is symmetric with respect to x = c/2. The
potential flow which satisfies this requirement corresponds to the one generated by a distribution of vortices with a
circulation per unit length given by

γ(x) = U∞A′
0

(√
1− x/c

x/c
−

√
x/c

1− x/c

)
= U∞ A′

0

1− 2x/c√
x/c (1− x/c)

, . (54)

Indeed, notice that Eq. (54) expresses a symmetric distribution of γ around x = c/2 and also that the flow turns
around both the leading and trailing edges of the airfoil.

The value of A′
0 in Eq. (54) is determined by imposing the linearized impenetrability condition namely,

w′ = −U∞ α =
U∞ A′

0

2π

∫ c

0

1− 2x0/c√
x/c (1− x/c)

dx0

x0 − x
=

U∞ A′
0

2π

∫ π

0

sin θ0
2

2 cos θ0
sin θ0

dθ0
1/2 (cos θ − cos θ0)

=
−2π U∞ A′

0

2π
,

(55)
where we have made use of the value of the Glauert integral (20) and, consequently, the perturbed potential satisfying
the condition that the circulation around the airfoil is zero is given by, see Eq. (54),

γ(x) = U∞α
1− 2x/c√
x/c (1− x/c)

. (56)

However, the solution expressed by Eq. (56) does not satisfy the Kutta condition because γ(x = c) → ∞ as a
consequence of the fact that, as it was explained above, the solution in Eq. (56) the flow is symmetric around x = c/2
and, hence, the flow turns around both the leading and trailing edges, a fact implying that the Kutta condition is
not fulfilled by the potential flow generated by the distribution of vortices with γ(x) given by Eq. (56). Then, how
is it possible to fulfill at the same time the following two conditions namely, a zero initial circulation, which implies
a symmetric flow around the airfoil and also the Kutta condition? The solution to this apparent paradox is the
following: it is possible to comply with both conditions when we seek for a symmetric potential flow around an airfoil
with a length increasing in time as dc/dt = U∞: in this case, the flow turns around the leading edge of the airfoil but
not the trailing edge. Indeed, whereas the trailing edge is located at any instant of time at x = c, the potential flow
generated by the distribution of γ(x, t) given by

γa(x, t) = U∞α
1− 2x/c(t)√

x/c(t) (1− x/c(t))
with

dc

dt
= U∞ . (57)

corresponds to a potential flow which turns around x = c + U∞ dt namely, a potential flow which turns around the
stating vortex, which is located downstream the leading edge and it is transported with a velocity U∞.

Hence,

ℓc(t = 0+) =

∫ c

0

∆ pa(x, t) dx with ∆ pa(x, t) = ρ
∂Γa

∂t
+ ρU∞

∂Γa

∂x
⇒ ℓ(t = 0+) = ρ

d

dt

∫ c

0

Γa dx (58)
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because ∫ c

0

∂Γa

∂x
dx = Γa(x = c)− Γa(x = 0) = 0 (59)

for the potential flow generated by the symmetric distribution given in Eq. (57). Now, notice that

Γa(x, t) =

∫ x

0

γadx = c(t)

∫ x/c(t)

0

U∞α
1− 2x/c(t)√

x/c(t) (1− x/c(t))
d (x/c(t)) = 2U∞α c(t)

√
x/c(t)− (x/c(t))

2
(60)

with dc(t)/dt = U∞ and, therefore, the substitution of the result in Eq. (60) in Eq. (58) yields,

ℓc(t = 0+) = 2ρU∞ α
d

dt

(
c2(t)

∫ x/c(t)

0

√
x/c(t) (1− x/c(t)) d (x/c(t))

)
= 2ρU∞ α

d

dt

(
c2(t)

∫ π

0

√
1− cos2 θ

4
dθ

)
=

= 2ρU∞ α
d

dt

(
c2(t)

∫ π

0

sin2 θ

4
dθ

)
= 2ρU∞ α

d

dt

(
c2(t)

∫ π

0

1− cos(2θ)

8
dθ

)
= 2ρU∞ α

d

dt

(
π c2(t)

8

)
=

=
π

2
ρU∞

dc

dt
c(t = 0+)α =

π

2
αρU2

∞c ,

(61)

where we have made use of the change of variables x/c(t) = (1− cos θ) /2 → d(x/c(t)) = 1/2 sin θ dθ. The result in
Eq. (61) shows that the initial lift around an airfoil which experiences a sudden change of the angle of attack is,
indeed, one-half the lift force corresponding to steady flow.

One of the advantages of using this alternative way of finding the value of ℓ(t = 0+), is that it reveals the idea
that, in order to satisfy Kutta’s condition, the potential flow needs to turn around, not at the trailing edge but at
the starting vortex, which is convected downstream at a velocity U∞. Notice also that the local distribution of γ(x, t)
around the starting vortex is identical to that at the leading edge of the airfoil.

III. EQUATION FOR A0(t)

The subtraction of the first two equations in (24) yields,

A0 −
I2
2

=
−w′

3/4

U∞
− c

2U∞

dα

d t
⇒ A0(t) =

−w′
3/4

U∞
− c

2U∞

dα

d t
+

I2
2
. (62)

In order to determine I2/2 in equation (62), we make use of equation (36),

I1 +
I2
2

=
−w′

3/4

U∞
⇒ I1 =

−w′
3/4

U∞
− I2

2
⇒ ℓc(t) =

ρU2
∞cπ

2

(
−w′

3/4

U∞
+

I2
2

)
=

ρU2
∞cπ

2

(
A0(t) +

c

2U∞

dα

dt

)
, (63)

where we have made use of equation (62) and we have made use of the definition of the circulatory lift, ℓc(t) in
equation (30), namely

ℓc(t) =
ρU2

∞cπ

2
(I1 + I2) , (64)

with ℓc(t) calculated by means of equation (45) as a function of −w′
3/4/U∞ and as a function of the Wagner function

defined in equation (41), which can be approximated using equation (85). Consequently, making use of the results in
equation (63), the equation for A0 is

A0(t) =

(
ρU2

∞cπ

2

)−1

ℓc(t)−
c

2U∞

dα

d t
= 2

(
ℓc(t)

1/2ρU2
∞c2πα(t)

α(t)− c

4U∞

dα

dt

)
(65)

and, therefore, the suction force at the leading edge is given by

−ρU2
∞π c

A2
0(t)

4
= −ρU2

∞πc

(
ℓc(t)

1/2ρU2
∞c2πα(t)

α(t)− c

4U∞

dα

dt

)2

, (66)
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FIG. 1. Wagner function calculated in three different ways: numerically, using the vortex-lattice code detailed below (blue),
using the analytical solution, valid for τ ≪ 1 given in equation (53) (red) or using the classical approximation by R.T. Jones
[1], reproduced in equation (85) (black).

with ℓc(t) calculated through the Duhamel integral in equation (45).
For the particular case in which −w′

3/4/U∞ = αH(t), equation (45) reduces to

ℓc(τ) = ρU2
∞cπαϕ(τ) (67)

and therefore, the substitution of equation (67) into equations (65) and (66) yields

A0(τ) = 2αϕ(τ) , d(t) = ℓ(t)α(t)− ρU2
∞πc

(
A0

2

)2

= ρU2
∞cπα2ϕ(τ)− ρU2

∞π cϕ2(τ)α2 = ρU2
∞cπα2

(
ϕ(τ)− ϕ2(τ)

)
.

(68)
Due to the fact that ϕ(τ → ∞) → 1, equation (68) recovers the well known result that the drag force around an airfoil
in a potential, steady flow, is zero.

Figure 6 in the main text compares the suction force predicted by equation (68) with the values of the suction force
obtained by means of the vortex impulse theory, calculated numerically using the vortex-lattice code detailed below.

IV. MATLAB CODES FOR: WAGNER PROBLEM AND FOR THE CASE OF AN OSCILLATING
PLUNGING PLATE, THE MEAN THRUST OF OSCILLATING AIRFOILS CALCULATED USING THE

VORTEX LATTICE METHOD AND THE MEAN THRUST CALCULATED USING EQUATIONS
(4.20)-(4.22) IN THE MAIN TEXT.

A. Vortex Lattice method for unsteady flows: numerical values of the Wagner function and of the suction
force at the leading edge

Equation (3) can be written as

w(x, t) = lim
ϵ→0

1

2π

∫ c+U∞t

0

γ(x0, t)

x0 − x+ ϵ
dx0 = lim

ϵ→0

1

2π

∫ c+U∞t

0

∂

∂ x0

(
Γ(x0, t)

x0 − x+ ϵ

)
+

Γ(x0, t)

(x0 − x+ ϵ)
2 dx0 =

= lim
ϵ→0

1

2π

∫ c+U∞t

0

Γ(x0, t)

(x0 − x+ ϵ)
2 dx0 ,

(69)

where we have made use of the fact that Γ(x = 0) = Γ(x = c + U∞t) = 0. Next, we divide both the airfoil and the
wake in N panels of identical width h, bounded by x0i and x0i + h where Γ is constant and equal to the value at the
midpoint of the panel, Γi. Hence, the integral in (69) can be approximated as

lim
ϵ→0

1

2π

∫ c+U∞t

0

Γ(x0, t)

(x0 − x+ ϵ)
2 dx0 =

1

2π

N∑
i=1

Γi(t)

(
1

x0i − x
− 1

x0i + h− x

)
. (70)
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The number of unknowns is the number of panels at the airfoil, Np. In order to calculate the Np values of Γ at the
airfoil at the instant τ , the values of x in equation (70) are particularized at the midpoints of the Np panels namely,
x = xj , with j varying from 1 to Np, where the perturbed vertical velocity is known, w′(xj , t) = w′

a(xj , t). The values
of Γ at the wake panels can be expressed as a function of Γ(x = c, t) = Γi=Np(t) because, by virtue of the Euler
Bernouilli equation,

∂Γ

∂t
+ U∞

∂Γ

∂x
= 0 ⇒ Γ(x = c+ U∞ (t− t0) , t) = Γ(x = c, t = t0) = Γi=Np(t0) . (71)

The numerical code detailed below compares the values of

∆tG =
TG(t) + α(t)ℓ(t)

ρU2
∞c

= π
A2

0(t)

4
(72)

and of

∆tV I =
TV I(t) + α(t)ℓ(t))

ρU2
∞c

=

=
1

ρU2
∞c

×

[
ρU2

∞cπ

(
C

2

)2

− ρ

∫ c

0

γaw
′
a dx− ρ

∫ c+U∞t

c

γww
′
w dx

]
=

=
1

ρU2
∞c

×

[
ρU2

∞cπ

(
C

2

)2

− ρ

2π

∫ c+U∞t

0

γa,w(x, t)dx

∫ c+U∞t

0

γa,w(x0, t)

x0 − x
dx0

]
,

(73)

where γa,w(x, t) = ∂Γa,w/∂x is calculated using second-order finite differences.
Notice also that, for the case of Wagner problem in the main text, the value of A0(τ) in (72) has been calculated

by means of the analytical expression given in equation (68), see also the numerical code below, with ϕ(τ) calculated
using the classical approximation by R.T. Jones [1], given in equation (85).

For the case of plunging airfoils the suction force at the leading edge given in equation (72) is calculated numerically
once the value of A0(τ) is determined through equation (2.17) in the main text, which expresses the perturbed potential
in the neighborhood of the leading edge is:

2ϕ′ = Γ = 2U∞cA0(t) (r/c)
1/2

cos (β/2) . (74)

Indeed, using the result in equation (74),

Γ(x/c = 3h/4)

U∞c
= A0(τ)

√
3h , (75)

with h indicating the width of the panels in the numerical method and Γ(x/c = 3h/4) denoting the numerical value
of the circulation at the point located the closest to the leading edge.

We also provide below the numerical codes used to calculate the mean thrust for the case of airfoils oscillating
periodically using: i) the vortex lattice method -in this code we have made use of equation (2.22) in the main text
for the case of Garrick’s mean thrust and of equations (4.1) and (4.3) in the main text for the mean thrust calculated
using the vortex impulse theory- and ii) the theoretical values given by the original Garrick’s theory or our prediction
in equation (4-20). This latter code also includes the calculation of the mean thrust coefficient deduced by Fernández-
Feria as well as the exact and approximate values of Theodorsen’s function as a function of the reduced frequency,
see sections V and VI below.

Section V below solves Theodorsen’s problem and section VI solves the so-called flutter problem using the simplified
Theodorsen functions deduced in section V.

% JM GORDILLO , UNSTEADY VORTEX -LATTICE: WAGNER PROBLEM , PLUNGING AIRFOIL , H=
ALPHA*COS(OMEGA*T) OR H=ALPHA*SIN(OMEGA*T)

%
clear all; close all; clc;
%
N=200;
h=1/N;

x(1:N)=h/4+((1:N) -1)*h;
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x0(1:N)=3*h/4+((1:N) -1)*h;
alpha =5*pi /180;

for j=1:N
for i=1:N

R(j,i)=-1/(x0(j)-x(i))+1/(x0(j) -(x(i)+h));
end

end

R=R/(2*pi);
Rinv=inv(R);

dtau =2*h;

Nsteps =20/ dtau;

Clunsteadym1 =0;
Cmunsteadym1 =0;
sumphinant =0;
Gamma1start =0;

COS =1;
WAGNER =0;
XE=0;
DOTALPHA =0; %W'=-DOTH -ALPHA -DOTALPHA(X-XE)

for I=0: Nsteps
for j=1:N

if I>0
tau=I*dtau;
tv(I)=tau;
if(WAGNER ==1)

Westela=-alpha; %WAGNER PROBLEM: AIRFOIL SUDDENLY CHANGES THE
ANGLE OF ATTACK

else
if(COS ==1)

Westela=-alpha*cos (2*tv(I)); %OSCILLATING PLUNGING AIRFOIL
SUDDENLY SET INTO MOTION

else
Westela=-alpha*sin (2*tv(I)); %OSCILLATING PLUNGING AIRFOIL

SMOOTHLY SET INTO MOTION
end

end

b(j)=Westela;
for i=1:I

b(j)=b(j)+(1/(2* pi))*Gammaestela(i)*(1/(1+0.25*h+0.5* dtau*(I-i
+1)-x0(j)) -1/(1+0.25*h+0.5* dtau*(I-i)-x0(j)));

end
else

if(WAGNER ==1 || COS ==1)
b(j)=-alpha;

else
b=zeros();

end
end

end
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gammai=Rinv*b';

Gammaestela(I+1)=gammai(N);

Clunsteady =0;
for j=1:N-1

Clunsteady=Clunsteady+h*gammai(j);
end
Clunsteady=Clunsteady+gammai(N)*3*h/4;

Cmunsteady=gammai (1)*h*h*9/40;
for j=2:N-1

Cmunsteady=Cmunsteady+h*gammai(j)*x0(j);
end
Cmunsteady=Cmunsteady +3*h/4*x0(N)*gammai(N);

Cl=2*( Clunsteady -Clunsteadym1)/dtau+gammai(N);
Cm=2*( Cmunsteady -Cmunsteadym1)/dtau+gammai(N)-Clunsteady;

Clunsteadym1=Clunsteady;
Cmunsteadym1=Cmunsteady;

if I>0
Clv(I)=Cl/(pi*alpha);
A0(I)=gammai (1)/sqrt (3*h);
Clteor1(I)=1 -0.165* exp ( -0.0455* tau) -0.335* exp (-0.3* tau);
A0th(I)=2* alpha*Clteor1(I);

% CONTRIBUTION TO THE THRUST BY THE SUCTION AT THE LEADING EDGE:
% CASE CORRESPONDING TO THE DIRECT INTEGRATION OF PRESSURE
% DISTRIBUTION:

if(WAGNER ==1)
destelateor(I)=pi*A0th(I)*A0th(I)/4;

else
destelateor(I)=pi*A0(I)*A0(I)/4;

end
end

% VORTEX IMPULSE THEORY:
% NEXT , WE CALCULATE THE VERTICAL VELOCITY AT THE AIRFOIL AND THE
% WAKE AND ALSO THE CONTRIBUTION TO THE THRUST FORCE OF THE VORTICES
% EXTENDING ALONG THE AIRFOIL AND THE WAKE.

if I>0
xT(1:N+I)=h/4+((1:N+I) -1)*h;
x0T(1:N+I)=3*h/4+((1:N+I) -1)*h;
GammaT (1:N+I)=zeros();

wT(1:N+I)=zeros();
for i=1:N+I

if i<N+1
GammaT(i)=gammai(i);

else
GammaT(i)=Gammaestela (1+I+N-i);

end
end
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for j=1:I+N
for i=1:N+I

wT(j)=wT(j)+(1/(2* pi))*GammaT(i)*(1/(xT(i)-x0T(j)) -1/(xT(i)+h-
x0T(j)));

end
end

% IN THE CASE W'WAKE=0, THIS WOULD BE THE ONLY TERM IN THE VORTEX
% IMPULSE THEORY
sumphin=Westela*GammaT(N)+DOTALPHA*Clunsteady;

% HOWEVER , DUE TO THE FACT THAT THE VERTICAL VELOCITIES ALONG
% THE WAKE ARE DIFFERENT FROM ZERO , IT IS NECESSARY TO ADD THE
% CONTRIBUTION OF THE FORCE EXRTED BY THE VORTICIES IN THE WAKE

sumphin=sumphin +0.5*wT(N)*( GammaT(N+1)-GammaT(N-1))*0.5;
for i=N+1:N+I-1

sumphin=sumphin+wT(i)*( GammaT(i+1)-GammaT(i-1))*0.5;
end
sumphin=sumphin+wT(I+N)*(3* GammaT(I+N) -4*GammaT(I+N-1)+GammaT(I+N-2))

*0.5;

% FOR THE CASES IN WHICH THE AIRFOIL IS SUDDENLY SET INTO MOTION
% WE NEED TO ADD THE CONTRIBUTION OF THE STARTING VORTEX

sumphinOK=sumphin -pi*alpha ^2/4;

% FINALLY , THE CONTRIBUTION TO THE THRUST FORCE OF THE VORTICES
% ALONG THE AIRFOIL AND THE WAKE
% CALCULATED USING THE VORTEX IMPULSE THEORY IS:

destelaNOOK(I)=-sumphin;
destelaOK(I)=-sumphinOK;

end
end

figure
plot(x0T ,GammaT ,'-','linewidth ',2,'Color ','b');
figure
plot(x0T ,wT ,'-','linewidth ',2,'Color ','r');

figure
plot(tv,destelateor ,'-','linewidth ',2,'Color ','b');
hold on;
if(COS ==1 || WAGNER ==1)

plot(tv,destelaOK ,'-','linewidth ',2,'Color ','black ');
hold on

end
plot(tv,destelaNOOK ,'-','linewidth ',2,'Color ','r');

% WAGNER FUNCTION

if (WAGNER ==1)
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figure
plot(tv,Clv);
hold on;
plot(tv,Clteor1);

end

% JM GORDILLO , UNSTEADY VORTEX -LATTICE: MEAN THRUST CORRESPONDING TO GARRICK 'S
PREDICTION IN %EQUATION (4.21) AND TO THE PREDICTION IN EQUATION (4.20) ,
DEDUCED FROM (4.1). FOR THE CASE OF %EQUATION (4.20) , DEDUCED USING THE
VORTEX -IMPULSE THEORY , WE DO NOT INCLUDE THE CONTRIBUTION OF %THE STARTING
VORTEX AND , HENCE , THIS CONTRIBUTION IS NOT INCLUDED IN THE PRESENT NUMERICAL
CODE.

% THIS CONTRIBUTION CAN BE EASILY ADDED USING EQUATION (2.36) IN THE MAIN TEXT
WITH THE VALUE OF C % DEDUCED IN APPENDIX A OF THE MAIN TEXT.

clear all; close all; clc;
%
N=200;
h=1/N;

x(1:N)=h/4+((1:N) -1)*h;

x0(1:N)=3*h/4+((1:N) -1)*h;
alpha0 =6*pi/180;
h0=6*pi /180;
phi=pi/2;
a= -1/2;

for j=1:N
for i=1:N

R(j,i)=-1/(x0(j)-x(i))+1/(x0(j) -(x(i)+h));
end

end

R=R/(2*pi);
Rinv=inv(R);

dtau =2*h;

CTmean=zeros (1:12);
CTmeanG=zeros (1:12);
vecK=zeros (1:12);

Clunsteadym1 =0;
Cmunsteadym1 =0;
sumphinant =0;
Gamma1start =0;

COS =0;
WAGNER =0;
XE =0.5*(1+a); %XE=(1+a)c/2
DOTALPHA =0; %W'=-DOTH -ALPHA -DOTALPHA(X-XE)

for contK =1:12

K=0.5* contK;
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vecK(contK)=K;

Nsteps =12*pi/(K*dtau);
DeltaT =10*pi/K;
Tmean =0;
TmeanG =0;

for I=0: Nsteps

for j=1:N
if I>0

tau=I*dtau;
tv(I)=tau;
if(WAGNER ==1)

Westela=-alpha0; %WAGNER PROBLEM: AIRFOIL SUDDENLY CHANGES THE
ANGLE OF ATTACK

else
if(COS ==1)

Westela=-alpha0*cos (2*tv(I)); %OSCILLATING PLUNGING AIRFOIL
SUDDENLY SET INTO MOTION

else
Westela=-alpha0*sin (2*tv(I)); %OSCILLATING PLUNGING

AIRFOIL SMOOTHLY SET INTO MOTION
end

end

dhdt(I)=-2*h0*K*sin(K*tv(I));
alpha(I)=alpha0*cos(K*tv(I)+phi);
dalpha(I)=-2* alpha0*K*sin(K*tv(I)+phi);

b(j)=-dhdt(I)-dalpha(I)*(x0(j)-XE)-alpha(I);

for i=1:I
b(j)=b(j)+(1/(2* pi))*Gammaestela(i)*(1/(1+0.25*h+0.5* dtau*(I-i

+1)-x0(j)) -1/(1+0.25*h+0.5* dtau*(I-i)-x0(j)));
end

else
if(WAGNER ==1 || COS ==1)

b(j)=-alpha;
else

b=zeros();
end

end
end

gammai=Rinv*b';

Gammaestela(I+1)=gammai(N);

Clunsteady =0;
for j=1:N-1

Clunsteady=Clunsteady+h*gammai(j);
end
Clunsteady=Clunsteady+gammai(N)*3*h/4;

Cmunsteady=gammai (1)*h*h*9/40;
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for j=2:N-1
Cmunsteady=Cmunsteady+h*gammai(j)*x0(j);

end
Cmunsteady=Cmunsteady +3*h/4*x0(N)*gammai(N);

Cl=2*( Clunsteady -Clunsteadym1)/dtau+gammai(N);
Cm=2*( Cmunsteady -Cmunsteadym1)/dtau+gammai(N)-Clunsteady;

Clunsteadym1=Clunsteady;
Cmunsteadym1=Cmunsteady;

if I>0
Clv(I)=Cl/(pi*alpha0);
A0(I)=gammai (1)/sqrt (3*h);
Clteor1(I)=1 -0.165* exp ( -0.0455* tau) -0.335* exp (-0.3* tau);
A0th(I)=2* alpha0*Clteor1(I);

% CONTRIBUTION TO THE THRUST BY THE SUCTION AT THE LEADING EDGE:
% CASE CORRESPONDING TO THE DIRECT INTEGRATION OF PRESSURE
% DISTRIBUTION:

if(WAGNER ==1)
destelateor(I)=pi*A0th(I)*A0th(I)/4-alpha(I)*Cl;

else
destelateor(I)=pi*A0(I)*A0(I)/2-2* alpha(I)*Cl;

end
end

% MEAN THRUST CALCULATED BY MEANS OF GARRICK 'S THEORY OR
% USING THE VORTEX IMPULSE THEORY FOR THE CASE IN WHICH VORTICES IN THE WAKE
% ARE CONVECTED WITH THE FREE STREAM VELOCITY

if I>0
Westela=-dhdt(I)-dalpha(I)*(1-XE)-alpha(I);
sumphin =-2*( alpha(I)*Cl+Westela*gammai(N)+dalpha(I)*Clunsteady);
destelaOK(I)=sumphin;
if tv(I) >2*pi/K

Tmean=Tmean+dtau*sumphin/DeltaT;
TmeanG=TmeanG+dtau*destelateor(I)/DeltaT;

end
end
end
CTmean(contK)=Tmean;
CTmeanG(contK)=TmeanG;
CTmean(contK)
vecK(contK)

end

plot(vecK (1:12) ,CTmean (1:12) ,'-.g','linewidth ' ,4);
hold on;
plot(vecK (1:12) ,CTmeanG (1:12) ,'-.y','linewidth ' ,4);

% JM Gordillo: Theodorsen functions F and G, approximate Theodorsen
% functions Fw and Gw, new functions Fg and Gg, our thrust coefficient CT
% calculated by means of the vortex impulse theory using equation (4.20) ,
% FF 's thrust coefficient CTFF calculated using equation (4.22) and
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% thrust coefficient using Garrick 's theory , CTG , using equation (4.21)
%
%

clear all;
close all;
clc;

i=sqrt(-1);
Nsteps =600;
Deltak =0.01;
a0=6*pi /180;
h0c =6*pi /180;
phi=pi/2;
a= -1/2;
%h0c=0;
%a0=0;

for s=1: Nsteps
K(s)=s*Deltak;
F(s)=real(besselk(1,i*K(s))/( besselk(0,i*K(s))+besselk(1,i*K(s))));
G(s)=imag(besselk(1,i*K(s))/( besselk(0,i*K(s))+besselk(1,i*K(s))));
Gg(s)=real((exp(-i*K(s))/(i*K(s)))/( besselk(0,i*K(s))+besselk(1,i*K(s))));
Fg(s)=-imag((exp(-i*K(s))/(i*K(s)))/( besselk(0,i*K(s))+besselk(1,i*K(s))));
Fw(s)=real (1 -0.165*i*K(s)/(i*K(s)+0.0455) -0.335*i*K(s)/(0.3+i*K(s)));
Gw(s)=imag (1 -0.165*i*K(s)/(i*K(s)+0.0455) -0.335*i*K(s)/(0.3+i*K(s)));
Termino2(s)=(Gg(s)*sin(phi)-K(s)*Fg(s)*sin(phi)/2-Fg(s)*cos(phi));
CT(s)=4*pi*K(s)*K(s)*Gg(s)*(h0c ^2+ cos(phi)*a0*h0c *(3/4-a)+a0^2*(1-a)*(1/2-a)

/4) +2*pi*K(s)*a0*h0c*Termino2(s)-pi*Fg(s)*K(s)*a0*a0*(1-a);
TerminoFF(s)=(F(s)-Gg(s)-K(s)*Fg(s)/2);
Diferencia(s)=-2*pi*TerminoFF(s)*(a0^2+2* a0*h0c*K(s)*sin(phi));
CTG(s)=4*pi*K(s)*K(s)*h0c ^2*(F(s)*F(s)+G(s)*G(s))+pi*a0*a0*((F(s)*F(s)+G(s)*

G(s))*(1+K(s)*K(s)*(1/2 -a)^2)+(a-1/2) *(F(s) -1/2)*K(s)*K(s) -(a+1/2)*K(s)*G
(s)-F(s));

CTG(s)=CTG(s)+pi*a0*h0c *(4*K(s)*(F(s)*F(s)+G(s)*G(s))*sin(phi)+4*K(s)*K(s)
*(1/2-a)*(F(s)*F(s)+G(s)*G(s))*cos(phi) -2*K(s)*K(s)*(G(s)*sin(phi)+F(s)*
cos(phi))+2*K(s)*(G(s)*cos(phi)-F(s)*sin(phi))+K(s)*K(s)*cos(phi));

end

figure
semilogy(K(1: Nsteps),CT(1: Nsteps),'-r','linewidth ' ,3)
hold on
plot(K(1: Nsteps),CT(1: Nsteps)+Diferencia (1: Nsteps),'-.k','linewidth ' ,3)
hold on
plot(K(1: Nsteps),CTG (1: Nsteps),'-b','linewidth ' ,3)

grid on;

V. THEODORSEN’S FUNCTION

In order to calculate the aerodynamic force and torque experienced by an airfoil oscillating periodically, we seek for
the real parts of the time-dependent, complex functions h(τ), α(τ) and also of the time derivative of the circulation
around the airfoil,

h(τ) = H eiωτ , α(τ) = ᾱ eiωτ , Ȧ0 + Ȧ1/2 = Geiωτ (76)
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with ω ≡ k the dimensionless frequency, also named reduced frequency, k, in the main text, which is related with the
dimensional frequency ω∗ through the equation

ωτ = ω∗t ⇒ ω t
2U∞

c
= ω∗ t ⇒ ω ≡ k =

ω∗c

2U∞
. (77)

In this case, the substitution of Γ̇e in Eq. (76) into the integral equation (28) provides with the following equation
for G:

I1 +
I2
2

= G

∫ τ

0

eiωτ0 (1 + 1/2 (τ − τ0))√
(τ − τ0)

2
+ 2 (τ − τ0)

dτ0 =
−w̄′

3/4

U∞
eiωτ ⇒

Geiωτ

∫ τ

0

(1 + 1/2 (τ − τ0))√
(τ − τ0)

2
+ 2 (τ − τ0)

e−iω(τ−τ0) dτ0 =
−w̄′

3/4

U∞
eiωτ ⇒

G =
−w̄′

3/4

U∞

∫ τ

0

(1 + 1/2 (τ − τ0))√
(τ − τ0)

2
+ 2 (τ − τ0)

e−iω(τ−τ0) dτ0

−1

,

(78)

where

1

U∞

(
U∞α(t) +

dh

dt
−
(
xe −

3c

4

)
dα

dt

)
=

−w′
3/4

U∞
(τ) and

−w′
3/4

U∞
(τ) = eiωτ −w̄′

3/4

U∞
. (79)

We are looking for solutions corresponding to dimensionless values of τ large enough so that the solution is not affected
by initial conditions and, hence, since τ is such that 1 + τ → ∞, we introduce the change of variables ξ = τ − τ0 + 1
into Eq. (78) for G, which now reads:

G =
−w̄′

3/4

U∞

(
1

2

∫ ∞

1

(1 + ξ)√
ξ2 − 1

e−iω(ξ−1) dξ

)−1

. (80)

Now that G is known as a function of −w′
3/4/U∞ through Eq. (80), the circulatory component of the lift force in

the limit τ + 1 → ∞ can be calculated in terms of I1 + I2 using Eq. (30):

(I1 + I2) = eiωτ G

∫ τ

0

1 + τ − τ0√
(τ − τ0)

2
+ 2 (τ − τ0)

e−iω(τ−τ0) dτ0 = eiωτ G

∫ ∞

1

ξ√
ξ2 − 1

e−iω(ξ−1) dξ =

= eiωτ −w̄′
3/4

U∞

(∫ ∞

1

ξ√
ξ2 − 1

e−iω ξ dξ

)(
1

2

∫ ∞

1

(1 + ξ)√
ξ2 − 1

e−iωξ dξ

)−1

=

=
−w′

3/4

U∞

(∫ ∞

1

ξ√
ξ2 − 1

e−iω ξ dξ

)(
1

2

∫ ∞

1

(1 + ξ)√
ξ2 − 1

e−iωξ dξ

)−1

,

(81)

where we have made use of the equation for G in Eq. (80) and of Eq. (79). Then, introducing Eq. (81) into Eq. (30),
the lift force and the torque calculated at x = 0 for the case of oscillatory motion are given by the real parts of -see
Eqs. (30) and (34):

ℓ(t) =
ρc2 π

4

d

dt

(
U∞α(t) +

dh

dt
+
( c
2
− xe

) dα

dt

)
+ ρU∞c π

(
−w′

3/4

)
C(ω) = ℓa(t) + ℓc(t)

m(t) =
c

2
ℓa(t) +

c

4
ℓc(t) +

ρc4π

128

d2α

d t2
+

ρU∞c3π

16

dα

d t
,

(82)

with

ℓc(t) = ρU∞c π
(
−w′

3/4

)
C(ω) and C(ω) =

(∫ ∞

1

ξ√
ξ2 − 1

e−iω ξ dξ

)(∫ ∞

1

(1 + ξ)√
ξ2 − 1

e−iωξ dξ

)−1

, (83)
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the so-called Theodorsen function, which can be expressed in terms of modified Bessel functions of the second kind.
Indeed, using the integral form of the Kn-Bessel function of order n, Theodorsen’s function, defined in Eq. (83), can
be expressed as:

C(ω) =
K1(iω)

K0(iω) +K1(iω)
. (84)

Theodorsen’s function, which arises as the contribution of the wake to the force and torque, can also be expressed in
terms of Wagner’s function ϕ(τ) using the Duhamel’s integral in Eq. (45). Indeed, the numerical solution of Wagner’s
problem, depicted in figure 1, reveals that ϕ(τ) can be well approximated by:

ϕ(τ) = 1− 0.165 e−0.0455 τ − 0.335 e−0.3τ , (85)

and, hence, by virtue of Eq. (45), the circulatory lift ℓc(t), which can be calculated in the limit τ → ∞ taking
−w′

3/4/U∞ = Ceiωτ , is given by

ℓc(τ) = −ρU∞cπ w′
3/4(0)ϕ(τ)− ρU2

∞cπ

∫ τ

0

dw′
3/4(τ0)/U∞

dτ0
ϕ(τ − τ0) dτ0 =

= −ρU∞cπ w′
3/4(0)ϕ(τ)− ρU∞cπ w′

3/4

∫ τ

0

iω e−iω(τ−τ0) ϕ(τ − τ0) dτ0 ≃

≃ −ρU∞cπ w′
3/4(0)ϕ(τ)− ρU∞cπ w′

3/4

∫ τ

0

iω e−iω(τ−τ0)
(
1− 0.165 e−0.0455 (τ−τ0) − 0.335 e−0.3(τ−τ0)

)
dτ0

= −ρU∞cπ w′
3/4(0)ϕ(τ)− ρU∞cπ w′

3/4(0)e
iωτ

∫ τ

0

iω e−iωτ ′
(
1− 0.165 e−0.0455τ ′

− 0.335 e−0.3τ ′
)
dτ ′ ,

(86)

where we have made use of Eq. (85). Then, since ϕ(τ → ∞) → 1, see Eq. (85),

ℓc(τ → ∞) = −ρU∞cπ w′
3/4(0)− ρU∞cπ w′

3/4(0)

(
−1 + eiωτ − 0.165 iω eiωτ

iω + 0.0455
− 0.335 iω eiωτ

iω + 0.3

)
=

= −ρU∞cπ w′
3/4

(
1− 0.165 iω

iω + 0.0455
− 0.3355 iω

iω + 0.3

)
.

(87)

Therefore, the comparison between Eq. (82) and Eq. (87) indicates that Theodorsen’s function, given in Eq. (84)
can be approximated by

C(ω) =
K1(iω)

K0(iω) +K1(iω)
= F (ω) + iG(ω) ≃ 1− 0.165 iω

iω + 0.0455
− 0.335 iω

iω + 0.3
, (88)

which is an excellent approximation to the exact result, as it is shown in figure 2, where the real and imaginary
parts of Theodorsen’s function, C(ω) in equation (88), are compared with the approximate expression, also given in
equation (88).
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FIG. 2. The real and imaginary parts of Theodorsen’s function, C(ω), plotted using green lines, are compared with the
corresponding approximate expressions, plotted using black dashed lines, defined in equation (88).

VI. FLUTTER: THE RESULTS PRESENTED IN THIS SECTION DO NOT AFFECT AT ALL TO ANY
OF THE RESULTS IN THE MAIN TEXT OR IN THE REST OF THIS SUPPLEMENTARY MATERIAL.

IT IS ADDED HERE ONLY FOR THE PURPOSE OF COMPLETENESS.

This section is devoted to determine the conditions under which small perturbations on the vertical distance h(t)
and on the angle of attack α(t) of the airfoil depicted in figure 1 of the main text, whose elastic axis and center of mass
are respectively located at the distances xe and xg from the leading edge respectively, either grow or decay in time.
For this purpose, we first write the two equations characterizing the time evolution of the two degrees of freedom,
which result from projecting the force and momentum balances over the unit cartesian vectors, finding that:

m
(
ḧ+ α̈ (xg − xe)

)
= −ℓ(t)− kh h(t) ⇒ m

(
ḧ+ α̈ (xg − xe)

)
+ kh h(t) + ℓ(t) = 0

Ieα̈+mḧ (xg − xe) = −me(t)− kαα(t) ⇒ Ieα̈+mḧ (xg − xe) + kαα(t) +me(t) = 0 ,
(89)

where m refers to the mass per unit length of the airfoil, Ie = Ig + m(xe − xg)
2 is the moment of inertia of the

airfoil calculated at xe, with Ig indicating the moment of inertia at the center of mass, kh and kα indicate the elastic
constants corresponding to the vertical and angular deflections, ℓ(t) is the aerodynamic lift force and me(t) refers to
the aerodynamic torque calculated at xe. Using the following definitions for the semi-chord, for the dimensionless
distance a, and for the dimensionless distance xα

b =
c

2
, xe = b (1 + a) , xg − xe = bxα (90)

equations (30) and (34) read

me(t) = m(t)− xeℓ(t) = bℓa(t) +
b

2
ℓc(t)− b((1 + a) (ℓa(t) + ℓc(t)) +

ρb4π

8

d2α

d t2
+

ρU∞b3π

2

dα

d t
, (91)

with

ℓ(t) = ρb2 π
d

dt

(
U∞α(t) +

dh

dt
+ (b− b(1 + a))

dα

dt

)
+ ℓc(t) = ρb2 π

(
U∞α̇+ ḧ− baα̈

)
+ ℓc(t) = ℓa(t) + ℓc(t) (92)
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and, therefore, the substitution of Eq. (92) into Eq. (91) yields

me(t) = ρb3πa
(
−U∞α̇− ḧ+ baα̈

)
− b

(
1

2
+ a

)
ℓc(t) +

ρb4π

8

d2α

d t2
+

ρU∞b3π

2

dα

d t
=

= −ρb3πaḧ+ ρb4π

(
1

8
+ a2

)
α̈− ρb3π U∞

(
a− 1

2

)
α̇− b

(
1

2
+ a

)
ℓc(t)

(93)

Equations (92)-(93) reveal that both the lift and the torque depend on the time-dependent variables α(t) and
h(t). Consequently, the substitution of Eqs. (92)-(93) into the two linear ordinary differential equations in Eq. (89)
indicates that the resulting system for the two unknowns h(t) and α(t), is homogeneous. Then, in order to determine
whether perturbations grow in time or not, we just seek for the real parts of solutions of the type

α(τ) = ᾱeiωτ , h(τ) = bh̄eiωτ (94)

which implies(
ḣ, α̇

)
=

U∞

b

(
dh

dτ
,
dα

dτ

)
= iω

U∞

b

(
bh̄, ᾱ

)
eiωτ and

(
ḧ, α̈

)
=

(
U∞

b

)2(
d2h

dτ2
,
d2α

dτ2

)
= −ω2

(
U∞

b

)2 (
bh̄, ᾱ

)
eiωτ .

(95)

Moreover, the type of solutions (94) imply that the circulatory lift is given by -see Eq. (83)

ℓc(t) = 2πρU∞b
(
−w′

3/4

)
C(ω) = 2πρU∞b

(
ḣ+ αU∞ + α̇

(
3

2
b− b(1 + a)

))
C(ω) =

= 2πρU∞b

(
ḣ+ αU∞ + α̇b

(
1

2
− a)

))
C(ω) ,

(96)

The substitution of the type of harmonic solutions (94)-(95) into the linear system of ODEs (89) and into the
equations describing both me(t) and ℓ(t), given by Eqs. (92)-(93) and (96) yields:

m

(
−U2

∞
b

ω2h̄− U2
∞
b

xαω
2ᾱ

)
+ khbh̄+ ρb2π

(
U2
∞
b

iωᾱ− U2
∞
b

ω2h̄+
U2
∞
b

a ω2ᾱ

)
+

+ 2πρU∞b

(
U∞iωh̄+ U∞ᾱ+ U∞iω

(
1

2
− a

)
ᾱ

)
C(ω) = 0

− Ie
U2
∞
b2

ω2ᾱ−mU2
∞xαω

2h̄+ kαᾱ+ ρb2πaU2
∞ ω2h̄− ρb2πU2

∞

(
1

8
+ a2

)
ω2ᾱ− ρb2πU2

∞iω

(
a− 1

2

)
ᾱ−

− 2πρU∞b2
(
1

2
+ a

)(
U∞iωh̄+ U∞ᾱ+ U∞iω

(
1

2
− a

)
ᾱ

)
C(ω) = 0

(97)

Grouping terms, the system (97) for the two unknowns, h̄ and ᾱ, depends on the following dimensionless parameters,

m̄ =
m

ρπb2
, Ω̄2 =

khb
2

mU2
∞

, Ī =
Ie

ρπb4
, k̄ =

kα
b2 kh

(98)

and reads (
(m̄+ 1)ω2 − 2iωC(ω)− m̄Ω̄2

)
h̄+

(
(m̄ xα − a)ω2 − iω − 2

(
1 + iω

(
1

2
− a

))
C(ω)

)
ᾱ = 0(

(m̄ xα − a)ω2 + 2

(
1

2
+ a

)
iω C(ω)

)
h̄+

+

((
Ī +

1

8
+ a2

)
ω2 + iω

(
a− 1

2

)
− k̄m̄Ω̄2 + 2

(
1

2
+ a

)
C(ω) + 2iω

(
1

4
− a2

)
C(ω)

)
ᾱ = 0 .

(99)

Notice that the system (99) will possess a solution different from the trivial one, h̄ = ᾱ = 0, only for certain values
of ω(a, xα, m̄, Ī, Ω̄2, k̄), with these values constituting the eigenvalues of the system. In order to simplify as much as
possible the determination of such eigenvalues, we will make use here of the approximate expression of the Theodorsen
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function given in Eq. (88). Then, if the two algebraic equations in (99) are multiplied by (0.0455 + iω) (0.3 + iω) and
we define the function

C ′(ω) = (0.0455 + iω) (0.3 + iω)C(ω) = (0.0455 + iω) (0.3 + iω)−0.165iω (0.3 + iω)−0.335iω (0.0455 + iω) , (100)

the solution of the system (99) will be different from the trivial one only for those values of ω satisfying the equation∣∣∣∣ A C
D B

∣∣∣∣ = 0 (101)

namely, for values of ω satisfying the equation

AB − CD = 0 (102)

where

A = (0.0455 + iω) (0.3 + iω)
(
(m̄+ 1)ω2 − m̄Ω̄2

)
− 2iωC ′(ω)

B = (0.0455 + iω) (0.3 + iω)

((
Ī +

1

8
+ a2

)
ω2 + iω

(
a− 1

2

)
− k̄m̄Ω̄2

)
+ 2

(
1

2
+ a

)(
1 + iω

(
1

2
− a

))
C ′(ω)

C = (0.0455 + iω) (0.3 + iω)
(
(m̄ xα − a)ω2 − iω

)
− 2

(
1 + iω

(
1

2
− a

))
C ′(ω)

D = (0.0455 + iω) (0.3 + iω)
(
(m̄ xα − a)ω2

)
+ 2

(
1

2
+ a

)
iω C ′(ω) .

(103)

The solution of equation (102) will provide with eight different values of ω namely, with eight different eigenvalues, for
a given set of values of the dimensionless parameters (a, xα, m̄, Ī, Ω̄2, k̄). The phenomenon known as flutter will take
place when any of these eight eigenvalues possesses a negative imaginary part with a real part different from zero.
Those eigenvalues with a real part equal to zero and with a negative imaginary part will correspond to conditions for
which the incident velocity exceeds the so-called divergence velocity.

Notice that, if the imaginary part of an eigenvalue is negative, the small perturbations on h and α will grow
exponentially in time due to the fact that the value of any of such eigenvalues can be written as

ω = ωr + iωi (104)

and, by virtue of Eq. (94)

h(τ)

b
= ℜ

(
h̄eiωrτ

)
e−iωiτ and α(τ) = ℜ

(
ᾱeiωrτ

)
e−iωiτ . (105)

In order to determine the minimum value of U∞ for which an airfoil flutters -or reaches the divergence velocity- for
a given set of dimensionless parameters (a, xα, m̄, Ī, k̄) we will proceed as follows: equation (102)-(103) is solved for a
very large value of Ω̄2, which can be viewed as the value of the dimensionless frequency corresponding to a very small
value of U∞. If all eight eigenvalues possess positive imaginary parts, then, Eq. (102)-(103) is solved for decreasing
values of Ω̄2 until at least one of the eigenvalues possesses an imaginary part equal to zero for a critical value of Ω̄2,

which we will denote here as Ω̄∗2 = Ω̄∗2(a, xα, m̄, Ī, k̄). The critical flutter velocity is then determined as:

Ω̄∗2 =
khb

2

mU∗2
∞

⇒ U∗
∞ = b

√
kh

mΩ̄∗2 (106)

whereas the flutter frequency is calculated from

ω∗
flutter = ω∗

r

U∗
∞
b

, (107)

where ω∗
r indicates the real part of the first eigenvalue whose imaginary part is zero.

The numerical code provided below calculates the eight eigenvalues for a given set of dimensionless control param-
eters.
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A. Eigenvalues

% JM GORDILLO , ALGEBRAIC EQUATION TO SEEK FOR THE EIGENVALUES IN THE FLUTTER
PROBLEM

%
clear all; close all; clc;
%
% DEFINITION OF THE DIMENSIONAL PARAMETERS AND VARIABLES
% a xalpha madim=m/(\rho \pi b^2) Iadim=Ie/(\rho \pi b^4) kadim=kalpha /(b^2
% kh) Fh=kh b^2/(m U^2_\infty)

syms a xalpha madim Iadim kadim Fh k A B C D Ck F G Gb

kcrit=zeros (1,8);
Fhcrit=zeros (1,8);

Ck=(i*k+0.0455) *(i*k+0.3) -0.165*i*k*(0.3+i*k) -0.335*i*k*(i*k+0.0455);
A=(i*k+0.0455) *(i*k+0.3) *(madim *(k^2-Fh)+k^2) -2*i*k*Ck;
B=(i*k+0.0455) *(i*k+0.3)*(-Iadim*k^2+ madim*kadim*Fh -(0.125+a^2)*k^2-(a-0.5)*i*k)

-2*(0.5+a)*(1+i*k*(0.5-a))*Ck;
C=(i*k+0.0455) *(i*k+0.3) *(madim*k^2*xalpha -i*k-a*k^2) -2*(1+i*k*(0.5 -a))*Ck;
D=(i*k+0.0455) *(i*k+0.3)*(-madim*xalpha*k^2+a*k^2) -2*(0.5+a)*i*k*Ck;

F=A*B-C*D;

% EXAMPLE: SPECIFIC VALUES OF THE %CONTROL PARAMETERS

Fnum =0.5;
b=0.5;
rho =1;
Fmin =0.5674*b^2/(1.5708);
ap= -0.47;
xalphap =0.4;
mp =1.5708/( rho*pi*b^2);
Ip =0.08/( rho*pi*b^4);
kp =1/(0.5674*b^2);

%UD=\sqrt(kalpha /(\rho b^2 2\pi %(1/2+a)): DIMENSIONLESS FREQUENCY %
CORRESPONDING TO THE DIVERGENCE %VELOCITY

FhD =(1+2* ap)/(mp*kp);

%Ratio OF DIMENSIONLESS FREQUENCIES , R=kh Ie/(m kalpha)=Iadim /(madim
%kadim)

R=Ip/(mp*kp);

%PARAMETER INDICATING WHETHER THE %DIVERGENCE VELOCITY IS SMALLER OR %LARGER
THAN THE FLUTTER VELOCITY

%

FhD

true =1;

while true
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Fnum=Fnum -0.005
FhD

G=expand(subs(F,[a xalpha madim Iadim kadim Fh],[ap xalphap mp Ip kp Fnum]))
;

p=coeffs(G);
p = fliplr(p);
r=roots(p);
s=double(r);

plot(real(r),imag(r),'o')
axis([-2 2 -0.05 0.5])
grid on
pause (0.01)
hold on

cont =0;
for i=1:8

if imag(s(i))<0
cont=cont +1;
kcrit(cont)=s(i);
Fhcrit(cont)=Fnum;
true =0;

end
end

end

for i=1: cont
kcrit(i)
Fhcrit(i)

end

[1] R. T. Jones, NACA TN 667 , 347– (1938).
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