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A. Analytical reduction of our quasi-steady solution to Griffiths & Nilson's (1999) solution 

for electroosmotic flow only 

We here demonstrate how our solution for the quasi-steady dispersion coefficient reduces to 

that of Griffiths & Nilson (1999) for the case of pure electroosmotic flow (EOF; 0 = ). We begin 

with our expression for the dimensionless dispersion coefficient, (3.20) from the main paper:   
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Substituting 0 =  and re-arranging, we can rewrite (S1) as follows: 
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where the value of e  is given by (3.15) of the main paper. First, we consider the term ( )
22 1 . −
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Substituting (S3) into (S2), 
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Next, expanding the term 
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Lastly, substituting (S5) into (S4) and multiplying by 2 ,  
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The latter simplified equation is equivalent to equation (38) of Griffiths & Nilson (1999). Thus, in 

the restrictive case of EOF only, our solution for the coefficient of effective dispersion in the long-

time regime reduces to Griffiths & Nilson’s solution of the coefficient of effective dispersion 

 

B. Benchmark comparisons of quasi-steady solution and Brownian dynamics simulations 

for 20Pe =  and 1000Pe =  

We here present additional comparisons between our analytical solution for the two-

dimensional concentration field and Brownian dynamics simulations for the cases of 20Pe =  and 

1000.  Figure 4 presents a similar comparison for 100Pe = . Figure 5 presents a similar comparison 

for 100ePe = and 100pPe = − . The figures provided here are therefore complementary to figures 

4 and 5 of the main paper. As in the main paper, figures S1 and S2 each show solute distributions 

for three dimensionless times (in blue, orange and green). The top half of each channel is an 

example Brownian dynamics simulation, while the bottom half shows the analytical solution (from 

(3.40) of the main paper).  Figure S1 and S2 respectively show cases with Pe  of 20 and 1000. The 

values of   and   are indicated along the right of the figures.   
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Figure S1. Benchmark comparisons between Brownian dynamics simulations and the analytical solution of the quasi-

steady solute concentration field at three values of dimensionless time, 2tD a = . This is the equivalent of figures 4 

and S2 but created for 20Pe = . The plot shows dimensionless radius, *r , on the ordinate and dimensionless axial 

position, *x , on the abscissa. The top half of each subplot shows individual particles from the Brownian dynamics 

simulations and the bottom half of each subplot shows the concentration field predicted by the analytical solution in 

(3.40). Subplots show four combinations of the fraction of bulk velocity caused by pressure,  , and the tube radius 

scaled by Debye length,  . The far left of the subplots shows the flow profile used to generate the data for each row.  
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Figure S2. Benchmark comparisons between Brownian dynamics simulations and the analytical solution of the quasi-

steady solute concentration field at three values of dimensionless time, 2tD a = . This is the equivalent of figures 4 

and S1 but created for 1000Pe = . The plot shows dimensionless radius, *r , on the ordinate and dimensionless axial 

position, *x , on the abscissa. The top half of each subplot shows individual particles from the Brownian dynamics 

simulations and the bottom half of each subplot shows the concentration field predicted by the analytical solution in 

(3.40). Subplots show four combinations of the fraction of bulk velocity caused by pressure,  , and the tube radius 

scaled by Debye length,  . The far left of the subplots shows the flow profile used to generate the data for each row.  

 

As in figures 4 and 5 of the main paper, the analytical solution and Brownian dynamics simulations 

show excellent agreement for all combinations of parameters. 
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C. Nomenclature 

We here provide a comprehensive list of the nomenclature used in the main paper. 

Operators 

1

0

(.) 2 *(.)d *r r= = cross-sectional area average 

(.) ' (.) (.)= − =deviation from cross-sectional area average 

(.)*=dimensionless variable 

trns(.) = variable associated with transient solution (from method of moments) 

(.)c = evaluated at the axial centreline of the channel 

res(.) = evaluated in an electroneutral reservoir 

(.) (.) u= = normalization by bulk velocity 

Dimensional 

a =  inner radius of tube 

=a positional vector at the slipping plane 

A=cross-sectional area of tube 

( , , )c r x t =concentration of solute 

oc = scaling parameter for cross-sectionally averaged concentration field 

'oc = scaling parameter for deviation from cross-sectionally averaged concentration field 

=c positional vector at the axial centreline of the channel 

D =molecular diffusivity 

effD = coefficient of effective dispersion 

trns trns

eff eff ( )D D = =  coefficient of effective dispersion associated with transient solution 

e = elementary charge 

E = electric field 

Bk = Boltzmann constant 
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L =  a specific axial distance of interest 

0L =  initial width of a “top hat” solute zone 

( )in =r ionic density function of the ith species 

N =moles of solute in tube 

=r three-dimensional position vector 

T = absolute temperature 

( )eu r =  flow profile of the electroosmotic flow component 

( )pu r = flow profile of the pressure-driven flow component 

( ) ( ) ( )p eu r u r u r= + =  flow profile 

=eu bulk velocity from electroosmotic flow 

pu =bulk velocity from pressure-driven flow 

p eu u u= + = net bulk velocity 

HS eu E  = − =Helmholtz-Smoluchowski velocity scale 

=w positional vector within an electroneutral reservoir 

'x x u t= − =axial position in a moving frame at the net bulk velocity 

=x path between channel centreline and an electroneutral reservoir at constant electrochemical 

potential 

iz = valence number of the ith species 

e =permittivity of fluid 

 = zeta potential 

D =Debye length 

 =dynamic viscosity of fluid 

i = electrochemical potential of the ith species 
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( ) r = electric charge density function 

x = characteristic width of solute zone 

( )r = electric potential 

Dimensionless 

3*( *, *, ) ( *, *, )c r x a c r x N  = = dimensionless concentration of solute 

( )*( *, ) * *( *, *, )d *
n

nc r x c r x x 


−

=   nth moment of the concentration field integrated along the x -

axis  

eff eff

*D D D= =dimensionless coefficient of effective dispersion 

trns trns

eff eff

*D D D= =  dimensionless coefficient of effective dispersion associated with transient 

solution 

( )if r = eigenfunction associated with transient solution 

( ', | )iG x t x =Green’s function 

*L L a= =dimensionless distance of tube for optimization of Pe  

( )nM  =  nth moment of the concentration field 

Pe a u D=   =Péclet number based on net bulk velocity 

( )1e ePe a u D Pe=   = − =Péclet number based on electroosmotic flow bulk velocity 

p pPe a u D Pe=   = =Péclet number based on pressure-driven flow bulk velocity 

*r r a= =dimensionless radial coordinate 

( )nv  =  nth moment about the axial mean of the concentration field 

ix =Green’s function variable for axial dimension 

* = =x x a dimensionless x -position (for method of moments solution) 

*  = =xx x  x -position scaled by solute zone width (for quasi-steady state solution) 

i =  ith root of 1( )J z  
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pu u = = ratio of pressure-driven flow bulk velocity to net bulk flow velocity 

e =  coefficient that quantifies the contribution of electroosmotic flow to the dispersion 

p = coefficient that quantifies the contribution of pressure-driven flow to the dispersion 

pe =  coefficient that quantifies the contribution to dispersion associated with the coupling of 

pressure-driven flow and electroosmotic flow 

HS1 eu u = − = function relating Helmholtz-Smoluchowski velocity to electroosmotic bulk 

velocity 

i = eigenvalue associated with transient solution 

xa = = smallness parameter defined as the ratio between tube inner radius and solute zone 

width (used in quasi-steady state solution) 

2tD a = = dimensionless time 

o = characteristic dimensionless time of interest 

Da = = tube radius scaled by Debye length 

( *) ( *)
a

r u r
D

 = =  Péclet number in terms of the (radially varying) velocity profile 

Optima 

oPe = optimum value of Pe  to minimize variance for transporting solute (over an arbitrary axial 

distance) 

trns

oPe =  optimum value of Pe  to minimize variance for transporting solute (over a fixed axial 

distance) 

o =optimum value of  to minimize rate of increase of variance (for quasi-steady state 

solution) 

trns ( )o o  =  optimum value of  to minimize variance obtained from transient solution 

( )ou r = specific flow profile associated with o =  
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