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This supplemental information provides some key measures of the flow and some
figures involved in the main text.

1 Key measures of the flow

For the sake of simplicity, the definitions of some statistic operators are briefly de-
scribed below. The spatial average is defined by

〈 〉A =
1

4π2

∫ 2π

0

∫ 2π

0

dxdy, (S1)

the temporal average is defined by

〈 〉t =
1

T2 − T1

∫ T2

T1

dt, (S2)

and the spatiotemporal average is defined by

〈 〉 =
1

4π2(T2 − T1)

∫ 2π

0

∫ 2π

0

∫ T2

T1

dxdydt, (S3)

respectively, where T1 = 100 and T2 = 300 are chosen in the main text for an interval
of time corresponding to a relatively stable state of the turbulent flow.

For the turbulent two-dimensional Kolmogorov flow considered in this paper,
vorticity is given by the stream function

ω(x, y, t) = ∇2ψ(x, y, t). (S4)

We also focus on the kinetic energy

E(x, y, t) =
1

2
[u2(x, y, t) + v2(x, y, t)], (S5)
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enstrophy

Ω(x, y, t) =
1

2
ω2, (S6)

the kinetic energy dissipation rate

D(x, y, t) =
1

2Re

∑
i,j=1,2

[
∂iuj(x, y, t) + ∂jui(x, y, t)

]2
, (S7)

and enstrophy dissipation rate

DΩ(x, y, t) =
1

Re
|∇ω|2, (S8)

where u1(x, y, t) = u(x, y, t), u2(x, y, t) = v(x, y, t), ∂1 = ∂/∂x, and ∂2 = ∂/∂y.

The stream function can be expanded as the Fourier series

ψ(x, y, t) ≈
bN/3c∑

m=−bN/3c

bN/3c∑
n=−bN/3c

Ψm,n(t) exp(imx) exp(iny), (S9)

where m, n are integers, b c stands for a floor function, i =
√
−1 denotes the imaginary

unit, and for dealiasing Ψm,n = 0 is imposed for wavenumbers outside the above
domain

∑
. Note that for the real number ψ, Ψ−m,−n = Ψ∗m,n must be satisfied, where

Ψ∗m,n is the conjugate of Ψm,n. Therefore, the kinetic energy spectrum is defined as

Ek(t) =
∑

k−1/2≤
√
m2+n2<k+1/2

1

2
(m2 + n2) | Ψm,n(t) |2, (S10)

where the wave number k is a non-negative integer. Noth that, if the stream function ψ
is obtained via the difference between two velocity fields, such as ∆u = uCNS∗−uDNS,
the corresponding kinetic energy spectrum is denoted by E∆(k, t).

Filter-Space-Technique (FST) is employed in this investigation to extract the

scale-to-scale energy and enstrophy fluxes, denoted as Π
[l]
E and Π

[l]
Z (see definitions

below), respectively. FST, initially developed for large eddy simulation in the 1970s
[1], involves applying a low-pass filter to the velocity field. Mathematically, it is
expressed as:

f [l](x, t) =

∫
G[l](x− x′)f(x′, t)dx′, (S11)

where f represents u or v for the two-dimensional velocity field, x = (x, y) denotes the
coordinate vector, and G[l] is chosen to be a round Gaussian filter for the scale l [2–4].
For the incompressible Navier-Stokes equations, scale-to-scale energy and enstrophy
fluxes can be derived analytically as:

Π
[l]
E = −

∑
i,j=1,2

[
(uiuj)

[l] − u[l]
i u

[l]
j

] ∂u[l]
i

∂xj
, (S12)
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Π
[l]
Z = −

∑
i=1,2

[
(uiω)[l] − u[l]

i ω
[l]
] ∂ω[l]

∂xi
, (S13)

respectively. Note that the sign of Π
[l]
E or Π

[l]
Z reveals the direction of energy or

enstrophy transfer: a positive value indicates a cascade from the larger scale (> l)
to the smaller scale (< l), i.e. the direct cascade, while a negative value signifies the
reverse, i.e. the inverse cascade.

2 Figures
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Figure S1: (a) Time history of the spatially averaged error/uncertainty energy
〈E∆〉A = 〈|∆u|2/2〉A. (b) Kinetic energy spectra of ∆u, i.e. E∆(k), at different
times. In both (a) and (b), ∆u = uCNS∗ − uDNS, where uCNS∗ and uDNS correspond
to the velocity fields given by CNS∗ and DNS, respectively.
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Figure S2: Probability density functions (PDFs) of (a) the enstrophy dissipation rate
DΩ(x, y, t) and (b) the enstrophy Ω(x, y, t) of the 2D turbulent Kolmogorov flow, given
by DNS using the following four uniform meshes: 1024 × 1024 (red line), 512 × 512
(black circle), 256× 256 (blue inverted triangle), and 128× 128 (orange triangle).
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Figure S3: Spatiotemporal-averaged scale-to-scale enstrophy fluxes 〈Π[l]
Ω 〉 of the 2D

turbulent Kolmogorov flow, given by DNS using the following four uniform meshes:
1024 × 1024 (red line), 512 × 512 (black circle), 256 × 256 (blue inverted triangle),

and 128 × 128 (orange triangle), where the black dashed line denotes 〈Π[l]
Ω 〉 = 0 and

the black dash-dot line denotes the forcing scale l = lf = π/nK = 0.196.
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