Gravity currents under oscillatory forcing

Cem Bingol¹, Matias Duran-Matute¹, Rui Zhu^{2,3} Eckart Meiburg³, and Herman J. H. $Clercx^1\dagger$

¹Fluids and Flows group and J.M. Burgers Center for Fluid Dynamics, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

²Ocean College, Zhejiang University, Zhoushan 316021, PR China ³Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, USA

1. Movie

The Supplementary Material contains three movies (in separate files). Movie 1 shows the evolution of the gravity current with $KC_b = 50$ and $Fr = 1$ for $50 \le t \le 200$ complementing figure 4. Movie 2 provides a comparison of the density field evolution for the freely-evolving gravity current and those with $KC_b = 5, 10, 25, 50$ and 100. These animations cover the evolution between $t = 0$ and $t = 200$. Finally, movie 3 shows the evolution of the gravity current with $KC_b = 50$ and $Fr = 0, 0.25, 0.5, 1$ and 2 for $50 \leq t \leq 200.$

2. Other supplementary material

Other supplementary material contains complementary snapshots of the density field taken at $t = 200$, 300 and 400. The general characteristics of the density redistribution processes in the gravity current in the presence of oscillatory forcing is shown in figure 4 in Section 4.1. Here, we display the density field plots for different phases for simulations with $KC_b = 50$ and $Fr = 1$ for simulations ending at $t = 200, 300,$ and 400 (figures S1 -S3).

Similarly, in Section 4.2, we demonstrated the density fields at $\phi = 90^{\circ}$ (figure 5) for oscillations concluding at $t = 100$. Here, we are displaying density fields at $\phi = 90^\circ$ for oscillations ending at $t = 200, 300,$ and 400 (figures S4 - S6). In Section 4.2, we also showed the density fields of the zoomed front of the gravity current for oscillations ending at $t = 100$. Here, we are also including the density fields of the zoomed front at $\phi = 90^{\circ}$ for $t = 200, 300,$ and 400, see figures S7 - S9.

In Section 4.3, we have shown the density redistribution process in the gravity current in the second half of the oscillation cycle at $\phi = 360^{\circ}$ where it was coinciding with $t = 100$ for simulations with different KC_b values (figure 7). Here, we follow the same approach and display the density fields at $\phi = 360^{\circ}$ for $t = 200, 300,$ and 400 (figures S10 - S12).

Lastly, in Section 6.2 we briefly discuss a different cross-section of the $Fr - KC_b$ parameter space. We show some of the results in figures S13 - S16 (equivalents of figures 5, 7, 10 and 11).

2 C. Bingol and others

FIGURE S1. Dimensionless density fields for $KC_b = 50$ at different phases of the imposed ambient flow $(L_{AR} \approx 3.3)$: (a) $\phi = 0^{\circ}$ at $t = 150$, (b) $\phi = 90^{\circ}$ at $t = 162.5$, (c) $\phi = 180^{\circ}$ at $t = 175$, (d) $\phi = 270^{\circ}$ at $t = 187.5$, and (e) $\phi = 360^{\circ}$ at $t = 200$. The value of the density (with $0 \leq \rho \leq 1$ is indicated by the color bar.

FIGURE S2. As in figure S1 with (a) $\phi = 0^{\circ}$ at $t = 250$, (b) $\phi = 90^{\circ}$ at $t = 262.5$, (c) $\phi = 180^{\circ}$ at $t = 275$, (d) $\phi = 270^{\circ}$ at $t = 287.5$, and (e) $\phi = 360^{\circ}$ at $t = 300$.

FIGURE S3. As in figure S1 with (a) $\phi = 0^{\circ}$ at $t = 350$, (b) $\phi = 90^{\circ}$ at $t = 362.5$, (c) $\phi = 180^{\circ}$ at $t = 375$, (d) $\phi = 370^{\circ}$ at $t = 387.5$, and (e) $\phi = 360^{\circ}$ at $t = 400$.

FIGURE S4. Dimensionless density fields $(L_{AR} \approx 1.4)$ for the non-oscillating case, panel (a), and those for different KC_b , panels (b)-(f). For the oscillating cases they are all obtained at the same phase of the forcing cycle, $\phi = 90^\circ$. The time instance for the snapshots of the density fields are: (a) $t = 196.25$, (b) $t = 196.25$ (KC_b = 5), (c) $t = 192.5$ (KC_b = 10), (d) $t = 181.25$ $(KC_b = 25)$, (e) $t = 162.5$ $(KC_b = 50)$, and (f) $t = 125$ $(KC_b = 100)$. The value of the density (with $0 \le \rho \le 1$) is indicated by the color bar.

4 C. Bingol and others

Figure S5. As in Fig S4. The time instance for the snapshots of the density fields are: (a) $t = 296.25$, (b) $t = 296.25$ $(KC_b = 5)$, (c) $t = 292.5$ $(KC_b = 10)$, (d) $t = 281.25$ $(KC_b = 25)$, (e) $t = 262.5$ ($KC_b = 50$), and (f) $t = 225$ ($KC_b = 100$).

Figure S6. As in Fig S4. The time instance for the snapshots of the density fields are: (a) $t = 396.25$, (b) $t = 396.25$ (KC_b = 5), (c) $t = 392.5$ (KC_b = 10), (d) $t = 381.25$ (KC_b = 25), (e) $t = 362.5$ $(KC_b = 50)$, and (f) $t = 325$ $(KC_b = 100)$.

Figure S7. Dimensionless density fields for the non-oscillating case, panel (a), and those for different KC_b , panels (b)-(f) zoomed in at the front of gravity current ($L_{AR} = 1$). For the oscillating cases they are all obtained at the same phase of the forcing cycle, $\phi = 90^\circ$. The time instance for the snapshots of the density fields are: (a) $t = 196.25$, (b) $t = 196.25$ (KC_b = 5), (c) $t = 192.5 \ (KC_b = 10),$ (d) $t = 181.25 \ (KC_b = 25),$ (e) $t = 162.5 \ (KC_b = 50),$ and (f) $t = 125$ $(KC_b = 100)$. The value of the density (with $0 \le \rho \le 1$) is indicated by the color bar.

Figure S8. As in Fig S7. The time instance for the snapshots of the density fields are: (a) $t = 296.25$, (b) $t = 296.25$ (KC_b = 5), (c) $t = 292.5$ (KC_b = 10), (d) $t = 281.25$ (KC_b = 25), (e) $t = 262.5$ ($KC_b = 50$), and (f) $t = 225$ ($KC_b = 100$).

Figure S9. As in Fig S7. The time instance for the snapshots of the density fields are: (a) $t = 396.25$, (b) $t = 396.25$ (KC_b = 5), (c) $t = 392.5$ (KC_b = 10), (d) $t = 381.25$ (KC_b = 25), (e) $t = 362.5$ ($KC_b = 50$), and (f) $t = 325$ ($KC_b = 100$).

FIGURE S10. Dimensionless density fields at $t = 200$ which coincides with $\phi = 360^{\circ}$ for cases with different period of oscillations ($L_{AR} \approx 1.4$). (a) Non-oscillating case, (b) $KC_b = 5$, (c) $KC_b = 10$, (d) $KC_b = 25$, (e) $KC_b = 50$, (f) $KC_b = 100$. The value of the density (with $0 \leq \rho \leq 1$) is indicated by the color bar.

FIGURE S11. As in Fig S10 but at $t = 300$.

FIGURE S12. As in Fig S10 but at $t = 400$.

FIGURE S13. Dimensionless density fields (with $L_{AR} \approx 1.8$) for the non-oscillating case, panel (a), and those for different KC_b and $Fr = 1$, but with $Fr/KC_b = 0.02$), panels (b)-(f). For the oscillating cases they are all obtained at the same phase of the forcing cycle, $\phi = 90^\circ$. The time instance for the snapshots of the density fields are: (a) $t = 96.25$, (b) $t = 96.25$ (gone through 19.25 oscillation cycles; $KC_b = 5$, (c) $t = 92.5$ (9.25 cycles; $KC_b = 10$), (d) $t = 81.25$ (3.25 cycles; $KC_b = 25$, (e) $t = 62.5$ (1.25 cycle; $KC_b = 50$), and (f) $t = 25$ (0.25 cycle; $KC_b = 100$). For panel (f) we plot the density field for $25 \le x \le 45$ since the front of the gravity current is located at $x \approx 40$. The value of the density (with $0 \le \rho \le 1$) is indicated by the color bar.

FIGURE S14. Dimensionless density fields (with $L_{AR} \approx 1.3$) for the non-oscillating case, panel (a), and those for different KC_b and $Fr = 1$, but with $Fr/KC_b = 0.02$), panels (b)-(f). They are all shown for $t = 100$, which coincides with $\phi = 360^{\circ}$ for the oscillating cases. For panel (f) we plot the density field for $50 \leq x \leq 65$ since the front of the gravity current (although not very well defined) is located near $x \approx 65$. The value of the density (with $0 \le \rho \le 1$) is indicated by the color bar.

FIGURE S15. (a) The average maximum lifting area $\langle A_{l,max} \rangle$ (red symbols) and average minimum lifting area $\langle A_{l,min} \rangle$ (black symbols) as function of $FrKC_b$. For all cases, $Fr/KC_b = 0.02$ (based on the combinations shown in figures S13 and S14). (b) Scaling of the average maximum lifting area $\langle A_{l,max}\rangle$; the black dashed line indicates a scaling $\langle A_{l,max} \rangle \propto (FrKC_b)^{1.0}$. The fit is based on nonlinear least squares from the data $FrKC_b \in (2, 1)$ 12.5, 50, 200).

FIGURE S16. (a) The average current thickness $h_t(t)$ of the gravity current front, and (b) the average density $\rho_a(t)$ in the gravity current front for the freely-evolving gravity current and the five cases with an externally-applied oscillating pressure gradient. For all cases, $Fr/KC_b = 0.02$ (based on the combinations shown in figures S13 and S14). The horizontal extent of the gravity current front is taken as $\Delta L = 15$. The inset in (a) shows the current thickness averaged over the times $200, 250, \ldots, 400$. Estimated error margins are included. The inset in (b) shows the density relaxation time τ_{ρ} for the same cases. For both insets, the values for the freely-evolving case are on the vertical axis.