
Supplementary Material for Scaling Laws and Mechanisms of Hydrodynamic1

Dispersion in Porous Media2

Yang Liu1, Han Xiao1, Tomás Aquino2, Marco Dentz2,∗, and Moran Wang1,∗3

1Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China4

2Spanish National Research Council (IDAEA-CSIC), 08034, Barcelona, Spain5

(Dated: October 26, 2024)6

CONTENTS7

I. Continuous time random walk model 18

II. Global distribution of transition times 39

III. The asymptotic dispersion coefficient 510

IV. Network model for flow and dispersion 611

1. Network model for flow 612

2. Network model for dispersion 713

3. Validations of the network model 814

References 815

I. CONTINUOUS TIME RANDOM WALK MODEL16

The longitudinal dispersion coefficient is derived from the one-dimensional random walk of particles under Dirac-17

Delta injection. Particles move between pores through connecting throats, with longitudinal displacement ∆x and18

duration ∆t which are random variables characterized by the probability density functions (PDF) ω(x) and ψ(t),19

respectively. After n steps, the particle’s location and the evolution time are updated like20

xn+1 = xn +∆xn, tn+1 = tn +∆tn. (S1)

The continuous time random walk (CTRW) framework [1] provides the evolution equation of the particle distribution21

in the form of a partial differential equation as22

R(x, t) =

∫ +∞

−∞
dx′ ω(x− x′)

∫ t

0

dt′ ψ(t− t′)R(x′, t′) + δ(x− x0)δ(t), (S2)

23

p(x, t) =

∫ t

0

dt′ Ψ(t− t′)R(x, t′), (S3)
24

Ψ(t) = 1−
∫ t

0

dt′′ ψ(t′′), (S4)

where R(x, t) denotes the probability density of a particle reaching location x at time t and p(x, t) represents the25

concentration. δ denotes the Dirac delta function and x0 denotes the initial position of particles.26

The solution of the concentration in Fourier-Laplace space is given by [1]27

p̃∗(k, λ) =
1− ψ∗(λ)

λ

1

1− ω̃(k)ψ∗(λ)
, (S5)

with Fourier and Laplace transforms defined by28
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f̃(k) =

∫ +∞

−∞
eikxf(x)dx, (S6)

29

f∗(λ) =

∫ +∞

0

e−λtf(t)dt. (S7)

Spatial moments m∗
1(λ) and m

∗
2(λ) of the concentration plume in Laplace space are determined as30

m∗
1(λ) = −i ∂p̃

∗(k, λ)

∂k

∣∣∣∣
k=0

, m∗
2(λ) = − ∂2p̃∗(k, λ)

∂k2

∣∣∣∣
k=0

. (S8)

Substituting equation (S5) into (S8) we obtain31

m∗
1(λ) = v0λ

−2K∗(λ), (S9)
32

m∗
2(λ) = 2v20λ

−3[K∗(λ)]2 + 2D0λ
−2K∗(λ), (S10)

where we define33

K∗(λ) =
⟨t⟩λψ∗(λ)

1− ψ∗(λ)
, (S11)

and34

v0 =
⟨x⟩
⟨t⟩

, D0 =
⟨x2⟩
2⟨t⟩

, (S12)

with the moments defined as35

⟨t⟩ =
∫
t ψ(t) dt, ⟨t2⟩ =

∫
t2 ψ(t) dt, (S13)

and36

⟨x⟩ =
∫
xω(x) dx, ⟨x2⟩ =

∫
x2 ω(x) dx. (S14)

The moments m∗
1(λ) and m∗

2(λ) at the asymptotic limit (λ → 0) are determined by expanding K∗(λ) at the37

long-time limit [2],38

K∗(λ) ≈ K∗
∣∣∣∣
λ=0

+ λ
dK∗

dλ

∣∣∣∣
λ=0

= 1 + λK∞, (S15)
39

K∞ =
⟨t2⟩ − 2⟨t⟩2

2⟨t⟩
. (S16)

Substituting equations (S15-S16) into (S9) and (S10), respectively, we get40

m∗
1(λ) = v0λ

−2 (1 + λK∞) , (S17)
41

m∗
2(λ) = 2v20λ

−3 (1 + λK∞)
2
+ 2D0λ

−2 (1 + λK∞) . (S18)
Inverse Laplace transforms of equations (S17) and (S18) give42

m1(t) = v0(t+K∞), (S19)
43

m2(t) = v20(t+K∞)2 + 2D0(t+K∞) + 2v20K∞t+ v20K
2
∞. (S20)

The mean square displacement of the concentration plume is44

σ2
L(t) = m2(t)− (m1(t))

2 = 2D0(t+K∞) + 2v20K∞t+ v20K
2
∞. (S21)

Consequently, the asymptotic dispersion coefficient is calculated as45

DL =
1

2

dσ2
L(t)

dt
= D0 + v20K∞. (S22)

Substituting equation (S12) together with (S16) into (S22), we obtain46

DL =
⟨x2⟩
2⟨t⟩

+
⟨x⟩2

⟨t⟩2
⟨t2⟩ − 2⟨t⟩2

2⟨t⟩
=

⟨x⟩2

2⟨t⟩
(
⟨t2⟩ − ⟨t⟩2

⟨t⟩2
+

⟨x2⟩ − ⟨x⟩2

⟨x⟩2
). (S23)

Since ψ(t) generally exhibits a much broader distribution than ω(x) in porous media implying ⟨t2⟩−⟨t⟩2
⟨t⟩2 ≫ ⟨x2⟩−⟨x⟩2

⟨x⟩2 ,47

we approximate the longitudinal dispersion coefficient as48
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DL ≈ ⟨x⟩2

2⟨t⟩
⟨t2⟩ − ⟨t⟩2

⟨t⟩2
. (S24)

We define the global Péclet number as Pe = Uℓ/Dm. U denotes the average velocity, which is calculated as the49

Darcy velocity divided by porosity, and ℓ is the characteristic length, typically taken as the grain size. Equation (S24)50

highlights the critical role of ψ(t) in the scaling relationship between the dispersion coefficient DL and the Péclet51

number Pe. The function ψ(t) characterizes the statistical properties of particle transition times and is influenced by52

both intra-pore and inter-pore flow variabilies as well as molecular diffusion.53

II. GLOBAL DISTRIBUTION OF TRANSITION TIMES54

The global PDF ψ(t) of transition times is obtained by marginalization of the joint PDF ψt(t|τ)ψ̂τ (τ),55

ψ(t) =

∫ τmax

τmin

ψt(t|τ)ψ̂τ (τ) dτ. (S25)

Mode Ⅰ Mode Ⅱ Mode Ⅲ
,1,2,3

ψ
τ^ ψ
τ^ ψ
τ^

τmin τmax τmin τmax τmin τmax
τ τ τ

~τ-θ-2
~τ-θ-2

~τ-θ-2

τ0 τ0τD

FIG. 1. Schematic of particle transition patterns for networks with large ratios of τmax/τmin. The subfigures of ψ̂τ (τ) are
presented in a log-log plot. τ0 represents the advection time of the tube for which τ = τD,R.

When the ratio τmax/τmin is large, the transition modes throughout the network can be classified into three patterns56

based on the global Péclet number Pe, as shown in Figure 1. For simplicity, the characteristic length for Pe is defined57

as the length of the tube, i.e., ℓ = l. Furthermore, the average velocity is estimated by taking the mean of the58

maximum velocities within the pipes, namely, U = ⟨v⟩. We define Pec,1 and Pec,2 as the minimum Péclet numbers59

at which the conduit with τmax reaches modes I and II, respectively, and Pec,3 as the minimum Péclet number for60

the conduit with τmin as it reaches mode I. These critical Péclet numbers are derived as61

Pec,1 =
l2

R2
min

θ − 1

θ

(Rmax/Rmin)
2θ − 1

(Rmax/Rmin)2θ−2 − 1
, (S26)

62

Pec,2 =
θ − 1

θ

(Rmax/Rmin)
2θ − 1

(Rmax/Rmin)2θ−2 − 1
, (S27)

63

Pec,3 =
l2R2

min

R4
max

θ − 1

θ

(Rmax/Rmin)
2θ − 1

(Rmax/Rmin)2θ−2 − 1
, (S28)

if θ ̸= 1, and64

Pec,1 =
l2

R2
min

(Rmax/Rmin)
2 − 1

2 ln(Rmax/Rmin)
, (S29)

65

Pec,2 =
(Rmax/Rmin)

2 − 1

2 ln(Rmax/Rmin)
, (S30)

66

Pec,3 =
l2R2

min

R4
max

(Rmax/Rmin)
2 − 1

2 ln(Rmax/Rmin)
, (S31)

if θ = 1.67

When Pe > Pec,1, all conduits are in mode I. When Pec,2 < Pe < Pec,1, conduits with smaller τ are in mode I68

while those with larger τ are in mode II, separated by τ0. When Pec,3 < Pe < Pec,2, the conduits with the smallest69



4

to the largest τ are in mode I, II, and III, separated by τ0 and τD, respectively. Here, τ0 represents the advection time70

of the tube for which τ = τD,R.71

We first consider the scenario with a large ratio τmax/τmin and 0 < θ < 1. When Pe > Pec,1, the transition time72

PDF ψ(t) is expressed as:73

ψ(t) =

∫ τmax

τmin

2τ2t−3H(t− τ)H(τB − t)Cττ
−θ−2 dτ, (S32)

which gives74

ψ(t) =

{
2Cτ

−θ+1 t
−3

(
t−θ+1 − τ−θ+1

min

)
, t ∈ [τmin, τmax],

2Cτ

−θ+1 t
−3

(
τ−θ+1
max − τ−θ+1

min

)
, t ∈ (τmax, τB].

(S33)

Given 0 < θ < 1, it is evident that t−θ+1 ≫ τ−θ+1
min for t ∈ [τmin, τmax]. Thus, equation (S33) can be approximated as75

ψ(t) =

{
2Cτ

−θ+1 t
−θ−2, t ∈ [τmin, τmax],

2Cτ

−θ+1 t
−3

(
τ−θ+1
max − τ−θ+1

min

)
, t ∈ (τmax, τB].

(S34)

For Pec,2 < Pe < Pec,1, the transition time PDF ψ(t) is given by76

ψ(t) =

∫ τ0

τmin

2τ2t−3H(t− τ)H(τB − t)Cττ
−θ−2 dτ +

∫ τmax

τ0

δ(t− 2τ)Cττ
−θ−2 dτ, (S35)

which yields77

ψ(t) =



2Cτ

−θ+1 t
−3

(
t−θ+1 − τ−θ+1

min

)
, t ∈ [τmin, τ0],

2Cτ

−θ+1 t
−3

(
τ−θ+1
0 − τ−θ+1

min

)
, t ∈ (τ0, 2τ0],

2Cτ

−θ+1 t
−3

(
τ−θ+1
0 − τ−θ+1

min

)
+ 2θ+1Cτ t

−θ−2, t ∈ (2τ0, τB],

2θ+1Cτ t
−θ−2, t ∈ (τB, 2τmax].

(S36)

Given 0 < θ < 1, we obtain t−θ+1 ≫ τ−θ+1
min and t−θ−2 ≫ t−3. Since τ0 represents the maximum value of τ for tubes78

in mode I, thus, τB/τ0 is negligible compared to τmax/τmin. Consequently, within the range (τ0, τB], ψ(t) makes a79

negligible difference and can be approximated by 2θ+1Cτ t
−θ−2. Therefore, equation (S36) can be approximated by80

ψ(t) ≈


2Cτ

−θ+1 t
−θ−2, t ∈ [τmin, τ0],

2θ+1Cτ t
−θ−2, t ∈ (τ0, τB],

2θ+1Cτ t
−θ−2, t ∈ (τB, 2τmax].

(S37)

Since ψ(t) ∼ t−θ−2 consistently across the three subranges, equation (S37) can be further simplified to81

ψ(t) = Cτ,1t
−θ−2, t ∈ [τmin, 2τmax], (S38)

where Cτ,1 is a normalization constant. For Pec,3 < Pe < Pec,2, the transition time PDF ψ(t) is expressed as82

ψ(t) =

∫ τ0

τmin

2τ2t−3H(t− τ)H(τB − t)Cττ
−θ−2 dτ +

∫ τD

τ0

δ(t− 2τ)Cττ
−θ−2 dτ. (S39)

With similar derivations from equation (S36-S38), we obtain83

ψ(t) = Cτ,2t
−θ−2, t ∈ [τmin, τD], (S40)

where Cτ,2 is a normalization constant.84

For the scenario with the large ratio τmax/τmin and θ > 1, the derivation follows similarly to equations (S32-S40).85

However, it is crucial to note that t−θ+1 ≪ τ−θ+1
min and t−θ−2 ≪ t−3, which contrasts with the case where 0 < θ < 1.86

ψ(t) is derived as87

ψ(t) =
2Cτ

θ − 1

(
τ−θ+1
min − τ−θ+1

max

)
t−3, t ∈ [τmin, τB], (S41)

for Pe > Pec,1, and88

ψ(t) =

{
2Cτ

θ−1

(
τ−θ+1
min − τ−θ+1

0

)
t−3, t ∈ [τmin, τB],

2θ+1Cτ t
−θ−2, t ∈ (τB, 2τmax],

(S42)
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for Pec,2 < Pe < Pec,1, and89

ψ(t) =

{
2Cτ

θ−1

(
τ−θ+1
min − τ−θ+1

0

)
t−3, t ∈ [τmin, τB],

2θ+1Cτ t
−θ−2, t ∈ (τB, τD],

(S43)

for Pec,3 < Pe < Pec,2.90

For the case where τmax/τmin is large and θ = 1, ψ(t) is derived as91

ψ(t) =

{
2Cτ t

−3 ln (t/τmin) , t ∈ [τmin, τmax],

2Cτ t
−3 ln (τmax/τmin) , t ∈ (τmax, τB],

(S44)

for Pe > Pec,1, and92

ψ(t) =


2Cτ t

−3 ln (t/τmin) , t ∈ [τmin, τ0],

2Cτ t
−3 ln (τ0/τmin) + 4Cτ t

−3, t ∈ (τ0, τB],

4Cτ t
−3, t ∈ (τB, 2τmax],

(S45)

for Pec,2 < Pe < Pec,1, and93

ψ(t) =


2Cτ t

−3 ln (t/τmin) , t ∈ [τmin, τ0],

2Cτ t
−3 ln (τ0/τmin) + 4Cτ t

−3, t ∈ (τ0, τB],

4Cτ t
−3, t ∈ (τB, τD],

(S46)

for Pec,3 < Pe < Pec,2.94

To summarize, for a large ratio of τmax/τmin, when 0 < θ < 1, ψ̂τ (τ) dominates ψ(t) for t ≤ τmax, resulting in95

ψ(t) ∼ t−θ−2, while ψt(t|τ) dominates for τmax < t ≤ τB, leading to ψ(t) ∼ t−3. When θ > 1, ψt(t|τ) dominates ψ(t)96

for t ≤ τB, resulting in ψ(t) ∼ t−3, while ψ̂τ (τ) dominates for t > τB, leading to ψ(t) ∼ t−θ−2.97

In the scenario where τmax/τmin is small, ψ̂τ (τ) is closely approximated by δ(τ − τmin). Particle transitions within98

throats are almost the same and at mode I. Thus, ψ(t) is given by99

ψ(t) ≈ 2τ2mint
−3, t ∈ [τmin, τB]. (S47)

III. THE ASYMPTOTIC DISPERSION COEFFICIENT100

The first-order moment ⟨t⟩ and the second-order moment ⟨t2⟩ are determined from equation (S13). The leading-101

order behavior of ⟨t⟩ consistently follows ⟨t⟩ ∼ Pe−1, while the leading-order behaviors of ⟨t2⟩ vary, as summarized102

in Table 1 of the main text. The scaling relationships between the hydrodynamic dispersion coefficients DL and the103

Péclet number Pe derived from equation (S24) are presented in Table 2 of the main text.104

Specially, for the scenario characterized by a large ratio of τmax/τmin and 0 < θ < 1, the expression for ⟨t2⟩ when105

Pe > Pec,1 is given by106

⟨t2⟩ = 2Cτ

−θ + 1

(
τ−θ+1
max − τ−θ+1

min

)
(

1

−θ + 1
+ ln(

τB
τmax

)), (S48)

which leads to107

⟨t2⟩ ∼ τ2min(
1

−θ + 1
+ ln(

τB
τmax

)) ∼ Pe−2(
1

−θ + 1
+ ln(

√
Pet,min

8ηmax
), (S49)

where Pet,min and ηmax represent the local Péclet number and the aspect ratio of the tube with the radius of Rmin.108

When ln(
√

Pet,min

8ηmax
) ≫ 1

−θ+1 , equation (S49) follows109

⟨t2⟩ ∼ Pe−2 ln(Pe), (S50)

which subsequently leads to110

DL

Dm
∼ Pe ln(Pe). (S51)

Otherwise, it follows111

⟨t2⟩ ∼ Pe−2, (S52)
resulting in112
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(Ⅰ) flow:

(Ⅱ) dispersion:

𝑑𝒙

𝑑𝑡
= 𝑢 𝑟 + 2𝐷𝑚𝝃 𝑡



𝑗=1

𝑞𝑖𝑗 = 0, 𝑞𝑖𝑗 = 𝑔𝑖𝑗(𝑃𝑖 − 𝑃𝑗)

𝑣 = 2
𝑞𝑖𝑗

𝐴

𝑥

𝑢 •

𝑢 𝑟 = 𝑣 1 −
𝑟2

𝑅2

FIG. 2. Schematic of flow and transport between pores and throats in the network model.

DL

Dm
∼ Pe. (S53)

For a structure characterized by θ = 0.8 and a radius ratio Rmax/Rmin = 10, achieving logarithmic scaling requires113

a local Péclet number Pet,min > 106, which corresponds to a macroscopic Péclet number Pe > 109. However,114

this condition is unattainable under laminar flow, making the observation of logarithmic scaling exceedingly rare in115

scenarios with a large τmax/τmin ratio and 0 < θ < 1.116

IV. NETWORK MODEL FOR FLOW AND DISPERSION117

Flow and dispersion through porous media are simulated using network models. The details of the network model118

for flow and dispersion are outlined below. Figure 2 provides a schematic representation of flow and transport between119

pores and throats within the network model.120

1. Network model for flow121

The hydraulic conductance of an individual network element is calculated as122

g =
kχA2

µl
, (S54)

where A is the cross-sectional area, l is the hydraulic conduit length, and µ denotes the fluid viscosity. χ represents123

the shape factor, and k is a constant dependent on χ. In this study, we consider tubes with circular cross-sections124

only, where χ = 1/4π and k = 0.5. Neighboring pores are connected by three network elements, including the pores125

located at both ends and the throats between them. The conductance between two adjacent pores is determined by126

gij =
(
gi

−1 + gt
−1 + gj

−1
)−1

, (S55)

where t indicates the throat and i and j represent pores, respectively. The flow rate between pore i and pore j is given127

by128

qij = gij(Pi − Pj), (S56)
where Pi and Pj stand for the pressure in pore i and pore j, respectively. Given a pressure drop between the inlet and129

outlet of the network, the pressure in pores can be solved by applying mass conservation at each pore. Consider pore130

i, for instance:131 ∑
j

qij = 0. (S57)

Subsequently, the pore pressure is substituted into equation (S56) to determine the flow rate qij in each throat. The132

velocity profile u(r) within the conduit is determined by Poiseuille law:133

u(r) = v

(
1− r2

R2

)
, (S58)
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(a) (b)

FIG. 3. Illustration of the networks cropped to one-tenth along the longitudinal direction: (a) DN-0.8, a network extracted
from a monodisperse sphere pack, and (b) DN-0.5, an artificially generated network with a body-centered cubic (BCC) lattice
and varying pore sizes.

(b) (c)

(d) (e)

𝑡 s 𝑡 s

𝑡 s 𝑡 s

𝑓
𝑡

𝑓
𝑡

(a)

0.5𝛥𝐿

𝑓
𝑡

𝑓
𝑡

FIG. 4. (a) Illustration of the tube network for validation cases. Comparison of the first-passage time distribution f(t) as
predicted by the network model and direct numerical simulation (DNS) for (b) Pe = 100, (c) Pe = 500, (d) Pe = 1000, and
(e) Pe = 5000.

where r and R denote the radial position and the tube radius, respectively. v represents the maximum velocity within134

the tube, calculated as v = 2qij/A.135

2. Network model for dispersion136

The dispersion of a non-reactive tracer in porous media is modeled using a Lagrangian-based random walk network137

model. Within the conduits, particles move by advection and diffusion. The particle trajectory is described by the138

following equation [3]:139

dx

dt
= u(r) +

√
2Dm ξ(t), (S59)

where x denotes the particle position and ξ(t) is a unit Gaussian random variable. Here, bold and tilde symbols140

represent vectors in three-dimensional space.141

A bounce-back boundary condition is utilized for diffusion at the walls. In the network model, the redistribution of142

particles at pore nodes depends on the mechanism of their arrival: advection or diffusion [4]. When a particle enters143

a pore node during a diffusion step, it is assigned to a new throat based on area-weighted probabilities. Conversely,144
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when a particle enters a pore node during an advection step, it is assigned to a new throat based on flux-weighted145

probabilities. This approach contrasts with the theoretical model, which assumes that particle redistribution is146

exclusively proportional to the flux—a condition that applies only when advection dominates transport globally. To147

achieve an asymptotic dispersion regime, periodic boundary conditions are implemented, in which particles exiting148

through the outlet pores are reintroduced at randomly selected inlet pores. The longitudinal dispersion coefficient is149

determined by the mean square displacement σ2
L(t) with injection time t:150

DL =
1

2

dσ2
L(t)

dt
. (S60)

Four networks are utilized in the simulation, including three disordered networks (DN-0.5, DN-0.8, and DN-1.1),151

which have large ratios of τmax/τmin and corresponding θ values of 0.5, 0.8, and 1.1, respectively, and one ordered152

network (ON), characterized by a small ratio of τmax/τmin, as illustrated in Figure 3. DN-0.8 is extracted from a153

monodisperse sphere pack whereas the other networks are artificially generated with a body-centered cubic lattice154

structure and varying pore size distributions.155

3. Validations of the network model156

The network model for flow has been thoroughly validated in our previous work [5, 6]. Here we validate the network157

model for dispersion by examining the transport of solutes through a tube network as depicted in Figure 4(a). The158

tubes are aligned at an angle of 45° to the mainstream, which flows from left to right. The tubes have a uniform159

radius R of 0.001 m and an alignment spacing ∆L of 0.01 m.160

Various injection rates Q are applied, yielding distinct Péclet numbers defined as Pe = U∆L/Dm, where U =161

Q/4πR2 and Dm is the molecular diffusion coefficient with a value of 10−9 m2/s. A unit cloud of tracers is released162

instantaneously at the inlet. An absorbing condition is applied at the outlet, while reflecting conditions are adopted163

for the rest of the boundaries. The first-passage time distribution f(t) is determined from network simulations and164

compared with results from direct numerical simulation (DNS).165

In the DNS, the flow field is determined using SimpleFoam, a flow solver in OpenFOAM, upon which solute166

transport is simulated via random walk particle tracking. As shown in Figures 4.(b ∼ e), the network model aligns167

well with the DNS for Pe ranging from 100 to 5000, demonstrating its accuracy and reliability.168
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