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I. CONTINUOUS TIME RANDOM WALK MODEL

The longitudinal dispersion coefficient is derived from the one-dimensional random walk of particles under Dirac-
Delta injection. Particles move between pores through connecting throats, with longitudinal displacement Az and
duration At which are random variables characterized by the probability density functions (PDF) w(z) and (t),
respectively. After n steps, the particle’s location and the evolution time are updated like

Tpy1 = Tp + Ay, thrr =ty + Aty (S1)

The continuous time random walk (CTRW) framework [1] provides the evolution equation of the particle distribution
in the form of a partial differential equation as

+oo t
R(z,t) = /_ dr' w(z — ') /0 dt' (t — " )R(x',t') + 6(x — 20)d(2), (S2)
p(x,t) :/0 dt' ¥ (t —t")R(z,t'), (S3)
W) =1 —/0 dt" ("), (S4)

where R(xz,t) denotes the probability density of a particle reaching location x at time ¢ and p(z,t) represents the
concentration. § denotes the Dirac delta function and xq denotes the initial position of particles.
The solution of the concentration in Fourier-Laplace space is given by [1]

-y 1
X I a(ker )

Pk, A) = (S5)

with Fourier and Laplace transforms defined by
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fo= [ e (56)
+oo
ro= [ e (s7)
0
Spatial moments mj(\) and m3(A) of the concentration plume in Laplace space are determined as
ciyy — g (R, ) iy 9Pk
mi(A) = —i ok o my(A) = ok o (S8)
Substituting equation (S5) into (S8) we obtain
mi(\) = voA2K* (), (S9)
mi(N) = 208 A3 [K* (V)] + 2D A 2K (N), (S10)
where we define o 0
HAP* (A
K*(\) = ——~=, S11
M =55 (s11)
and 2
{z) (x
=-—, Do=—-—"+ 12
T T 512
with the moments defined as
0= [t @)= v (513

and
22 w(z) dr. (S14)
0) are determined by expanding K*(\) at the

/
() = / ro(e)dr, (o%) = /
/

The moments mj(A) and m3(\) at the asymptotic limit (A
long-time limit [2],

o)~ K| A =1+ Koo, (S15)
A=0 dA x=o
(%) —2(t)°
Koo = ———7—. 1
50 (516)
Substituting equations (S15-S16) into (S9) and (S10), respectively, we get
mi(A) = veA " (1 + AKxo) (S17)
mi(A) = 202272 (1 + AKoo)® + 2DoA "2 (14 AK o) . (S18)
Inverse Laplace transforms of equations (S17) and (S18) give
mi(t) = vo(t + Koo), (S19)
ma(t) = v3(t + Koo)? + 2D (t + Koo) + 205K oot + v3K2 . (S20)

The mean square displacement of the concentration plume is
a2 (t) = ma(t) — (my(t))?* = 2Do(t + Kuo) + 205K oot + v3K2,. (S21)

Consequently, the asymptotic dispersion coefficient is calculated as

_ 1doi(t)
T2 dt

Substituting equation (S12) together with (S16) into (S22), we obtain

D, — <x2>> n <<J:>2 (t?) —2(t)* _ <x>2(<t2> — ()

Dy, = Do + 13K oo (S22)

). (S23)

Since 1)(t) generally exhibits a much broader distribution than w(z) in porous media implying “7;5”2 > <12(> 35296)2,

we approximate the longitudinal dispersion coefficient as
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Dy~ 2~ (1) (S24)

We define the global Péclet number as Pe = U{/D,,. U denotes the average velocity, which is calculated as the
Darcy velocity divided by porosity, and £ is the characteristic length, typically taken as the grain size. Equation (S24)
highlights the critical role of (t) in the scaling relationship between the dispersion coefficient Dy, and the Péclet
number Pe. The function ¥(t) characterizes the statistical properties of particle transition times and is influenced by
both intra-pore and inter-pore flow variabilies as well as molecular diffusion.

II. GLOBAL DISTRIBUTION OF TRANSITION TIMES

The global PDF 1(t) of transition times is obtained by marginalization of the joint PDF 1y (t|7)t, (),

vy = [ wtnd () (525)
N To |
= A .
o= E\N~T'0'2 o= NNT'M
To  Tom | Toir  Tor |

Pe

Pe.s Pe., Pec

Mode 1 Mode 11 Mode 111

FIG. 1. Schematic of particle transition patterns for networks with large ratios of Tmax/7Tmin. The subfigures of ¥, (7) are
presented in a log-log plot. 7 represents the advection time of the tube for which 7 = m r.

When the ratio Tmax/Tmin is large, the transition modes throughout the network can be classified into three patterns
based on the global Péclet number Pe, as shown in Figure 1. For simplicity, the characteristic length for Pe is defined
as the length of the tube, i.e., £ = [. Furthermore, the average velocity is estimated by taking the mean of the
maximum velocities within the pipes, namely, U = (v). We define Pe.; and Pe. s as the minimum Péclet numbers
at which the conduit with 7.« reaches modes I and II, respectively, and Pe. 3 as the minimum Péclet number for

the conduit with 7, as it reaches mode I. These critical Péclet numbers are derived as

l2 0 -1 (Rmax/Rmin)29 -1

Pe.q1 = ’ 9
ol Rrgnin ¢ (Rmax/Rmin)2072 —1 (S 6)
_ f-1 (RmaX/Rmin)ze -1
Pec;p = 0 (Rmax/Rumin)202 -1’ (S27)
PR%, 0 —1 (Rmax/Rmin)? —1
P6373 = R?nax 0 (RmaX/Rmin)29_2 1 (828)
if 0 # 1, and
I? (Rmax/Rmin)2 -1
Peey = , 29
col R12nin 2 1n<RmaX/Rmin) ( )
(Rmax/Rmin)2 -1
Pecs = ) S30
e 2 21H(Rmax/Rmin) ( )
lQREnin (Rmax/Rmin)2 -1
Pecs = RL . 2In(Rmax/Rmin) (S31)
if0=1.

When Pe > Peg, all conduits are in mode I. When Pe.s < Pe < Pe. 1, conduits with smaller 7 are in mode I
while those with larger 7 are in mode II, separated by 79. When Pe. 3 < Pe < Pe. 2, the conduits with the smallest
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to the largest 7 are in mode I, II, and III, separated by 7y and 1, respectively. Here, 7y represents the advection time
of the tube for which 7 = mp .

We first consider the scenario with a large ratio Tmax/Tmin and 0 < 8 < 1. When Pe > Pe, 1, the transition time
PDF 1 (t) is expressed as:

w(t) = / " R H (- Y H (g — H)Cor "2 dr, (S32)

which gives

2C; 4—3 (4—0+1 —6+1
_775 t ~ Tmin 5 te [Tmina Tme x])
w( ) _ { 0+1 ( ) a (833)

—_290_;115’3 (7’70+1 — 7'_0+1) , t € (Tmax, TB]-

Given 0 < 0 < 1, it is evident that t_0+1 > T_‘9+1 for t € [Tmirn Tmax]' Thus7 equation (833) can be approximated as

min

max min

() = {}?lré_g’ ! i T (S34)
T_;lt_3 (Tt = T;fn"’l) , t € (Tmax, TB)-
For Pe.s < Pe < Pe. 1, the transition time PDF 1 (t) is given by
To Tmax
o(t) = / 22 H(t — 1) H (7 — )Cor—"=2 dr + / 5t — 20)Cor =02 dr, (S35)
Tmin o
which yields
%t"g (t79+1 — Tr;ien+1) , t € [Timin, 70,
b(t) = 202;115*3 (T[ieﬂ _ T{]&H) : t € (9, 270), (336)
79;115_3 (7% o+1 _ Tmienﬂ) +20+1C 792t € (279, 78],
20+1C 1=0-2 t € (T8, 2Tmax)-

Given 0 < @ < 1, we obtain t=7+1 > T;ﬁenﬂ and t7972 > t=3. Since 7y represents the maximum value of 7 for tubes
in mode I, thus, 75/7¢ is negligible compared t0 Timax/Tmin- Consequently, within the range (79, 78], ¥(t) makes a
negligible difference and can be approximated by 2°71C,t=%~2. Therefore, equation (S36) can be approximated by

%t—Q—Z’ te [TminaTO]7
P(t) = 201 Crt =072, t e (70,78], (S37)

2041C 17972t € (1B, 2Tmax]-
Since v(t) ~ t~?~2 consistently across the three subranges, equation (S37) can be further simplified to
w(t) = CT,lt_0_27 t E [Tmiru 2Tmax]7 (338)

where C 1 is a normalization constant. For Pe. 3 < Pe < Pe. 2, the transition time PDF (t) is expressed as

To ™™D
W(t) = / 972 3 H(t —7)H(r — £)Cyr "2 dr + / 5(t — 27)Cyr 02 dr. (530)
T TO

With similar derivations from equation (S36-S38), we obtain
P(t) = Crot ™72, t € [Tmin, ™, (S40)

where C'; 2 is a normalization constant.

For the scenario with the large ratio Timax/7min and 6 > 1, the derivation follows similarly to equations (S32-S40).
However, it is crucial to note that t~ /1 « T;&H and t79~2 <« t=3, which contrasts with the case where 0 < 6 < 1.
(t) is derived as
(7’79+1 — 7_9+1) t73, t € [Tmin, 78], (S41)

min max

Y(t) = -1

for Pe > Pe., and

2C —0+1 —6+1 -3
= (T — T, t=°, t € |Tmin, B,
w( ) — {0—1 ( min 0 ) [ B] (842)

2010 t=0-2 t € (B, 2Tmax]s
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for Pes s < Pe < Peg, and

'l/)(t) _ 3?‘1 (T;ign-‘rl - TO_0+1) t737 t S [Tmin, TB]? (843)
29+1C‘rt7972a te (TBvTD]a
for Pe.3 < Pe < Pegp.
For the case where Tyax/Tmin 18 large and 6 = 1, (¢) is derived as
207—1573 In (t/Tmin) s te [Tminv Tm x]a
o= {20 "‘ 549
2C:t7° In (Tmax/Tmin) , ¢t € (Tmax, 78],
for Pe > Pe. 1, and
2CTt_3 In (t/Tmin) s te [Tmin7 TO]7
P(t) = < 2C 73 In (10/Tmin) + 4C-t=3, t € (70, T8B), (S45)
407—1573, te (TBy 27—max]7
for Pey o < Pe < Peg 1, and
2C 3 In (t/Tmin) » t € [Tumin, To],
P(t) =< 2C 73 In (1o/Tmin) + 4C-t3, t € (10, 78], (S46)
4073, t € (18, 0],

for Pey3 < Pe < Pegp.

To summarize, for a large ratio of Tmax/Tmin, when 0 < 6 < 1, 1@(7) dominates 1(t) for t < Tyax, resulting in
P(t) ~t=972 while 1 (t|7) dominates for Tya, < t < g, leading to 1(¢) ~ t~3. When 6 > 1, ¢ (t|7) dominates 1(t)
for t < 7p, resulting in () ~ t~3, while ¢, () dominates for ¢t > 7p, leading to ¢ (t) ~ t=0~2.

In the scenario where Tyax/Tmin 1S small, &T (1) is closely approximated by §(7 — Tiin). Particle transitions within
throats are almost the same and at mode I. Thus, ¥(t) is given by

Q/J(t) ~ QTrfxint_:‘? te [Tmina 7-B]- (847)

III. THE ASYMPTOTIC DISPERSION COEFFICIENT

The first-order moment (¢) and the second-order moment (t?) are determined from equation (S13). The leading-
order behavior of () consistently follows (t) ~ Pe™!, while the leading-order behaviors of (t?) vary, as summarized
in Table 1 of the main text. The scaling relationships between the hydrodynamic dispersion coefficients Dy, and the
Péclet number Pe derived from equation (S24) are presented in Table 2 of the main text.

Specially, for the scenario characterized by a large ratio of Tmax/Tmin and 0 < 6 < 1, the expression for (t2) when
Pe > Pe. is given by

2CT _ _ 1 B
() = =57 (! = 1) (g + (), (348)
max
which leads to
1 Peq mi
t2 ~ 2. 1 B ~P -2 1 t, min 4
() ~ mhin( g I ~ Pet (g 4y, (549)

where Pe; min and nmax represent the local Péclet number and the aspect ratio of the tube with the radius of Rpyin.
When In(y/2éminy 5 1 oquation (S49) follows

8Mmax —0+1°
(t?) ~ Pe~?In(Pe), (S50)
which subsequently leads to
D
]TL ~ Peln(Pe). (S51)
Otherwise, it follows "
(t?) ~ Pe™2, (S52)

resulting in
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(1) flow: Z qij = 0,qi; = 9ij(Pi — P))
=1

_ 9 _ r?
v=2-r u(r)-v(l—ﬁ>

(11) dispersion:

u

O u() + V203

FIG. 2. Schematic of flow and transport between pores and throats in the network model.

—— ~ Pe. (Sh3)

For a structure characterized by 8 = 0.8 and a radius ratio Ryax/Rmin = 10, achieving logarithmic scaling requires
a local Péclet number Peymin > 10%, which corresponds to a macroscopic Péclet number Pe > 10°. However,
this condition is unattainable under laminar flow, making the observation of logarithmic scaling exceedingly rare in
scenarios with a large Tax/Tmin ratio and 0 < 6 < 1.

IV. NETWORK MODEL FOR FLOW AND DISPERSION

Flow and dispersion through porous media are simulated using network models. The details of the network model
for flow and dispersion are outlined below. Figure 2 provides a schematic representation of flow and transport between
pores and throats within the network model.

1. Network model for flow

The hydraulic conductance of an individual network element is calculated as

kxA?
g =

i (S54)

where A is the cross-sectional area, [ is the hydraulic conduit length, and p denotes the fluid viscosity. x represents
the shape factor, and k is a constant dependent on y. In this study, we consider tubes with circular cross-sections
only, where x = 1/47 and k = 0.5. Neighboring pores are connected by three network elements, including the pores
located at both ends and the throats between them. The conductance between two adjacent pores is determined by

_ _ _1y—1
gi= (g "+a "ty . (S55)

where t indicates the throat and i and j represent pores, respectively. The flow rate between pore i and pore j is given
by

¢ = gij(P — Py), (S56)
where P, and P stand for the pressure in pore i and pore j, respectively. Given a pressure drop between the inlet and
outlet of the network, the pressure in pores can be solved by applying mass conservation at each pore. Consider pore
i, for instance:

Subsequently, the pore pressure is substituted into equation (S56) to determine the flow rate g;; in each throat. The
velocity profile u(r) within the conduit is determined by Poiseuille law:

u(r) = v (1 - ;2> , (S58)
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FIG. 3. Illustration of the networks cropped to one-tenth along the longitudinal direction: (a) DN-0.8, a network extracted
from a monodisperse sphere pack, and (b) DN-0.5, an artificially generated network with a body-centered cubic (BCC) lattice
and varying pore sizes.
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FIG. 4. (a) Ilustration of the tube network for validation cases. Comparison of the first-passage time distribution f(¢) as
predicted by the network model and direct numerical simulation (DNS) for (b) Pe = 100, (¢) Pe = 500, (d) Pe = 1000, and
(e) Pe = 5000.

where r and R denote the radial position and the tube radius, respectively. v represents the maximum velocity within
the tube, calculated as v = 2¢;;/A.

2. Network model for dispersion

The dispersion of a non-reactive tracer in porous media is modeled using a Lagrangian-based random walk network
model. Within the conduits, particles move by advection and diffusion. The particle trajectory is described by the
following equation [3]:

dx

= u(r) + V2D E(1), (559)
where & denotes the particle position and &€(¢) is a unit Gaussian random variable. Here, bold and tilde symbols
represent vectors in three-dimensional space.

A bounce-back boundary condition is utilized for diffusion at the walls. In the network model, the redistribution of
particles at pore nodes depends on the mechanism of their arrival: advection or diffusion [4]. When a particle enters
a pore node during a diffusion step, it is assigned to a new throat based on area-weighted probabilities. Conversely,
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when a particle enters a pore node during an advection step, it is assigned to a new throat based on flux-weighted
probabilities. This approach contrasts with the theoretical model, which assumes that particle redistribution is
exclusively proportional to the flux—a condition that applies only when advection dominates transport globally. To
achieve an asymptotic dispersion regime, periodic boundary conditions are implemented, in which particles exiting
through the outlet pores are reintroduced at randomly selected inlet pores. The longitudinal dispersion coefficient is
determined by the mean square displacement o (t) with injection time ¢:

_ 1do3 ()

Dr =
L= 9 ar

(S60)

Four networks are utilized in the simulation, including three disordered networks (DN-0.5, DN-0.8, and DN-1.1),
which have large ratios of Tynax/Tmin and corresponding 6 values of 0.5, 0.8, and 1.1, respectively, and one ordered
network (ON), characterized by a small ratio of Tiyax/Tmin, as illustrated in Figure 3. DN-0.8 is extracted from a
monodisperse sphere pack whereas the other networks are artificially generated with a body-centered cubic lattice
structure and varying pore size distributions.

3. Validations of the network model

The network model for flow has been thoroughly validated in our previous work [5, 6]. Here we validate the network
model for dispersion by examining the transport of solutes through a tube network as depicted in Figure 4(a). The
tubes are aligned at an angle of 45° to the mainstream, which flows from left to right. The tubes have a uniform
radius R of 0.001 m and an alignment spacing AL of 0.01 m.

Various injection rates @ are applied, yielding distinct Péclet numbers defined as Pe = UAL/D,,, where U =
Q/47R? and D, is the molecular diffusion coefficient with a value of 107°m?/s. A unit cloud of tracers is released
instantaneously at the inlet. An absorbing condition is applied at the outlet, while reflecting conditions are adopted
for the rest of the boundaries. The first-passage time distribution f(¢) is determined from network simulations and
compared with results from direct numerical simulation (DNS).

In the DNS, the flow field is determined using SimpleFoam, a flow solver in OpenFOAM, upon which solute
transport is simulated via random walk particle tracking. As shown in Figures 4.(b ~ e), the network model aligns
well with the DNS for Pe ranging from 100 to 5000, demonstrating its accuracy and reliability.
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