Supplementary Material for "Frictional Effects on Shear-Induced Diffusion in Suspensions of Non-Brownian Particles"

Han Zhang, Dmitry I. Kopelevich, and Jason E. Butler

S1 Sensitivity to Model Parameters

Lubrication Range. To examine the effect of lubrication range on shear-induced diffusion, simulations of frictionless particles with different lubrication cut-off distance were performed. As shown in figure [S1,](#page-0-0) the lubrication range has a relatively small impact on diffusion of particles in a dense suspension.

Figure S1: Effect of the lubrication cut-off distance on particle diffusivity in a suspension with volume fraction $\phi = 0.45$.

Elastic Force Constant k_n . In the current work, the value of k_n is given by $k_n =$ $(2\delta)^{-3/2}$, where $\delta = 0.05\epsilon$. This value of δ is rather arbitrary. In section 3.1, we demonstrated that offsets in pairwise collisions of particles in a dilute suspension are not sensitive to the specific value of δ . Figure [S2](#page-1-0) shows that sensitivity of particle diffusivity in a dense suspension to δ is also weak. For frictionless particles as well as smooth ($\epsilon = 2 \cdot 10^{-3}$) frictional particles, the diffusivity is essentially independent of δ . For rough ($\epsilon = 2 \cdot 10^{-2}$) frictional particles the diffusivity exhibits a weak dependence on δ at small δ .

Note that only diffusivities for $\delta \leq 0.15\epsilon$ are computed, since increasing δ beyond 0.15ϵ leads to particle overlaps in dense suspensions. This is evident from the roughness deformation $\tilde{\epsilon} = 1 - h/2\epsilon$ shown in table [S1.](#page-1-1) While the average roughness deformation $\langle \tilde{\epsilon} \rangle$ remains

Figure S2: Effect of the elastic force constant k_n on particle diffusivity in a suspension of volume fraction $\phi = 0.45$. To facilitate comparison between particles of different roughness, the x-axis of the plot shows the parameter δ corresponding to $k_n = (2\delta)^{-3/2}$.

Table S1: Effect of δ on roughness deformation $\tilde{\epsilon} = 1 - h/2\epsilon$ in a dense $(\phi = 0.45)$ suspension of frictionless ($\mu = 0.0$) particles with two different values of roughness ϵ . Average and maximum roughness deformations, $\langle \tilde{\epsilon} \rangle$ and $\tilde{\epsilon}_{\text{max}}$, are shown.

δ/ϵ	$\tilde{\epsilon}$		$\epsilon_{\rm max}$	
	$\epsilon = 2 \cdot 10^{-3}$	$\epsilon = 2 \cdot 10^{-2}$	$\epsilon = 2 \cdot 10^{-3}$	$\epsilon = 2 \cdot 10^{-2}$
0.01	0.022	0.015	0.125	0.103
0.05	0.110	0.073	0.725	0.460
0.1	0.217	0.148	0.999	0.925
0.15	0.323	0.223	1.000	1.000

relatively small at $\delta = 0.15\epsilon$, the maximum deformation $\tilde{\epsilon}_{\text{max}}$ approaches 1, which indicates that further increase of δ will lead to particle overlap.

Tangential Spring Constant k_t . In the current work, we use the classical choice (Shäfer et al., [1996;](#page-4-0) [Silbert](#page-4-1) et al., [2001;](#page-4-1) [Gallier](#page-4-2) et al., [2014\)](#page-4-2) for the value of the tangential spring stiffness, $k_t = mk_n(2\delta)^{1/2}$ with $m = 2/7$. It is shown in section 3.2 that k_t has a negligible effect on particle offsets in pairwise collisions in a dilute suspension. Figure [S3](#page-2-0) shows that k_t also has a small effect on particle diffusivity in dense suspensions, as long as k_t is sufficiently large. Specifically, dependence of D_{yy} on k_t is weak for $m \geq 2/7$. On the other hand, diffusivity is sensitive to k_t for $m < 2/7$.

S2 Additional Information on Effects of Friction on Pairwise Collisions

Trajectories of pairwise collisions of frictional and frictionless particles are shown in figure [S4.](#page-2-1) It is evident that there is essentially no difference between the trajectories followed

Figure S3: Effect of the parameter m determining the tangential spring constant k_t = $mk_n(2\delta)^{1/2}$ on particle diffusivity in a suspension of volume fraction $\phi = 0.45$ and the elastic constant k_n corresponding to $\delta = 0.05\epsilon$.

by the particles (see figure [S4a](#page-2-1)) and a very small difference in the time required to complete the trajectory (see figure [S4b](#page-2-1)).

Figure S4: Examples of pairwise collisions of particles with and without friction: (a) particle trajectories; the dashed magenta line shows the border between reversible and irreversible segments of the trajectories; (b) dependence of the angle θ on the strain γ .

S3 Scaling of the Mean-Squared Displacement with Strain

To confirm that the particle dynamics is diffusive, the mean-squared displacement $\langle (\Delta y)^2 \rangle$ was fitted to the power law

$$
\langle (\Delta y)^2 \rangle \propto \gamma^{\alpha}.\tag{S1}
$$

Estimates of strains γ_0 required to reach the power law dependence, as well as the values of the exponent α are summarized in table [S2.](#page-3-0) The values of α are very close to 1, thus confirming diffusive behavior. We note that frictionless particles tend to take longer to reach diffusive behavior than fricional particles.

Table S2: Power law exponents α for the dependence of the mean square displacement $\langle (\Delta y)^2 \rangle$ on strain γ and the values γ_0 of strain at which $\langle (\Delta y)^2 \rangle$ is considered to have reached the power-law dependence on γ .

ϕ	ϵ	μ	α	γ_0
	$2 \cdot 10^{-3}$	0	0.97 ± 0.04	70
0.25	$2 \cdot 10^{-3}$	0.5	0.92 ± 0.02	30
	$2 \cdot 10^{-2}$	0	0.97 ± 0.07	70
	$2 \cdot 10^{-2}$	0.5	1.05 ± 0.04	30
	$2 \cdot 10^{-3}$	0	0.95 ± 0.03	30
0.35	$2 \cdot 10^{-3}$	0.5	0.94 ± 0.02	30
	$2 \cdot 10^{-2}$	$\overline{0}$	0.92 ± 0.05	70
	$2 \cdot 10^{-2}$	0.5	1.01 ± 0.03	30
	$2 \cdot 10^{-3}$	0.0	1.01 ± 0.03	30
	$2 \cdot 10^{-3}$	0.25	0.99 ± 0.02	30
	$2 \cdot 10^{-3}$	0.5	1.02 ± 0.03	30
0.45	$2 \cdot 10^{-3}$	1.0	1.01 ± 0.04	30
	$2 \cdot 10^{-3}$	1.5	1.01 ± 0.02	30
	$2 \cdot 10^{-2}$	0.0	0.99 ± 0.04	70
	$2 \cdot 10^{-2}$	0.25	1.02 ± 0.03	30
	$2 \cdot 10^{-2}$	0.5	1.00 ± 0.01	30
	$2 \cdot 10^{-2}$	1.0	0.98 ± 0.02	30
	$2 \cdot 10^{-2}$	1.5	1.01 ± 0.02	30

S4 Comparison with Simulations that Include Long-Range Hydrodynamic Interactions

The model considered in the current work neglects long-range hydrodynamic interactions. In this section, we test this assumption by comparing our simulations with Stokesian dynamics simulations of [Sierou & Brady](#page-4-3) [\(2004\)](#page-4-3), which include the long-range interactions To facilitate the comparison, simulations reported in this section neglect friction and utilize the same normal contact force model as was used by [Sierou & Brady](#page-4-3) [\(2004\)](#page-4-3),

$$
\boldsymbol{F}_{\alpha\beta}^{(C,n)} = \frac{e^{-\tau h_{\alpha\beta}}}{1 - e^{-\tau h_{\alpha\beta}}} \boldsymbol{n}_{\alpha\beta}.
$$
\n(S2)

Here, τ determines the range of the force and is set to 1000.

Diffusivities obtained from our simulations are compared with the Stokesian dynamics results of [Sierou & Brady](#page-4-3) [\(2004\)](#page-4-3) in figure [S5.](#page-4-4) It is evident that, for sufficiently high volume fractions ($\phi \geq 0.2$), contribution of long-range interactions to diffusivity is negligible.

Figure S5: Comparison of diffusivity of frictionless particles obtained from our simulations neglecting long-range interactions with the results of the Stokesian dynamics simulations of [\(Sierou & Brady, 2004\)](#page-4-3). Both sets of simulations use the contact force given by [\(S2\)](#page-3-1).

References

- GALLIER, S., LEMAIRE, E., PETERS, F. & LOBRY, L. 2014 Rheology of sheared suspensions of rough frictional particles. *J. Fluid Mech.* **757**, 514–549.
- SHÄFER, J., DIPPEL, S. & WOLF, D. 1996 Force schemes in simulations of granular materials. Journal de Physique I 6 (1), 5–20.
- Sierou, A. & Brady, J. F. 2004 Shear-induced self-diffusion in non-colloidal suspensions. J. Fluid Mech. 506, 285–314.
- SILBERT, L. E., ERTAŞ, D., GREST, G. S., HALSEY, T. C., LEVINE, D. & PLIMPTON, S. J. 2001 Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302.