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Supplementary material: Richtmyer—Meshkov instability when
a shock is reflected for fluids with arbitrary equation of state

M. Napieralski, F. Cobos, A.L. Velikovich, and C. Huete

S.1. Base-flow quilibrium conditions

To calculate the base flow equilibrium, it is necessary to solve the conservation equations
across the shocks along with the mechanical equilibrium condition at the interface. In the
absence of disturbances, the regions separated by each shock wave and the contact interface
are steady and uniform. The changes in flow variables across each shock are governed by the
Rankine-Hugoniot (RH) equations, which state:

[pul =0, [p+pu*] =0,

E+3+1u2] =0, (S.1.1)
p 2
for mass, momentum, and energy, respectively, where the square brackets [...] denote the
difference between the indicated quantities’ values ahead and behind the shock front. In
(S.1.1), p, u, p, and E represent density, velocity, pressure, and internal energy, respectively,
evaluated on both sides of each shock wave. The material velocity is measured in the
corresponding shock reference frame. The zero-order problem formulation is completed
after providing the equilibrium conditions that must be imposed at the planar interface:
p2: = par and Uz (x < 0) = Up(x > 0). The notation used here corresponds to the sketch in
Fig. 1 of the main text. Additionally, along with the isobaric condition, an extra parameter is
required to relate the initial thermodynamic states of the fluids on both sides of the interface.
The parameter typically used is the pre-interaction Atwood number, defined as
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0= (5.1.2)
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that is bounded by —1 < Ay < 1. The pressure continuity at the contact interface, py; = poy,
can be written as a function of the shock pressure jumps:

PP, =P, (S.1.3)

where P, = par/pir, Pi = Pir/Por, and Py = pos/por correspond to the pressure jump
functions across the reflected, incident and transmitted shocks, respectively. On the other
hand, the continuity in the streamwise velocity U, (x < 0) = U, (x > 0) renders

(1@l _ gy [k i -1y [k 1=
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that involves more parameters. The functions M, = (D, +U;)/c1,, Mi = D, /cor,and M, =
D, /co; stand for the reflected, incident and transmitted shock Mach numbers, respectively.
The ¢ functions identify the corresponding sound speeds, that must be computed upon
determination of the associated EoS. Equation (S.1.4) also depends on the corresponding
density jump functions, which read, R, = p2-/p1r» Ri = p1r/por, and Ry = par/po:.
Additionally, the associated sonic coefficients, that in the general case are state functions,
are defined as k = pc?/p, where, again, ¢ represents the speed of sound. Finally, the post
shock Mach numbers are defined as My, = (D, + Uz)/car, Maj = (D, — Uy)/c1y, and
Mot = (D, = Uz)/cos.
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S.2. Equilibrium conditions for Van der Waals equations of state

The Van der Waals (vdW) equation of state (EoS) provides a more accurate description of
real fluid behaviour than the ideal gas law. It takes into account the effect associated with
non-contact interaction between particles and the finite volume they occupy. In this case,
pressure and internal energy read as

R.T R,T
=Pl 0% and E———ap, (S.2.1)
1-bp

1
where R, is the gas constant and 7y is the adiabatic index. The parameters a and b have
positive values and are specific to each gas. With respect to the ideal gas EoS, the term
involving the constant a corrects for intermolecular attraction, while b represents the volume
occupied by the gas particles. The speed of sound and the internal energy are written as
functions of pressure and density

2 _ y(p + p*a) _9 d _ (p +p2a)(1 - bp) B
p(I-bp) —° E p(y—1)

It is readily seen that the (S.2.1) shifts to the ideal gas model when a and b approach
zero, namely p = pR,T and E = R,T/(7y — 1). Simple manipulation of (S.2.2) provides
2= YRT = yp/p as the square of the speed of sound for an ideal gas.

To compute the shock jump conditions across the shocks, the dimensionless constants
are conveniently reduced with preshock conditions, i.e., v, = arp(z)r /por and u, = b, por,
yielding the following RH curve for the incident shock:

Rilyr +1 =20, (v + 1) = 2v, (v, =21 = (yr = 1) + 2v, R (y, = 2+ 11, R;)
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(8.2.3)
where the pressure jump P; = p1,/por is expressed as function of the density jump R; =
o1/ por and the three parameters associated with the EoS: y,, v, and y,. Likewise, upon
definition of v, = a,p(z)t /por and p; = b;po, for the transmitted shock, and vy, = arp%r /P1r
and uy, = b, p1, for the reflected shock, the corresponding RH curves are:

Relye+1-2u(ve +1) =2vi(y: =2)] = (ys = 1) + 2Vz(R,2 (y: =2+ wRy)
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(8.2.4a)
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(S8.2.2)

Pi =
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(S.2.4b)

where the pressure jumps P, = pa/pir = Pr(Rr, Ve Ve itr) and Py = por/por
Pr(Rs, ve, Ve, 1) are explicit functions of the density jumps (R, = p2-/p1r and R, =
p2:/por) and the EoS parameters. Notice that the EoS parameters for the reflected shock are
in fact functions of the incident shock intensity and this relationship is explicitly established
through straightforward scaling: vy, = er? /Pi and uy, = u,R;.

It is found convenient to describe the dependence of the postshock flow with the
corresponding shock strengths, which can be deduced with the aid of the Rayleigh—-Michelson
relationships, i.e., from direct combination of mass and momentum conservation equations,
the corresponding shock Mach numbers can be derived:

Pi—-11 M2 P-11 MZ_P,—I 1

; —, (S.2.5)
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for the incident, transmitted and reflected shocks, respectively. In writing (S.2.5), we have
made use of the sonic coefficient k = pc?/p that takes the following form for each shock
wave:

1+v 1+v 1+
Kr = Yr L v, K=Y =2V, Kip =Yy == 2y, (S.2.6)
L= 1=y L=y
Likewise, the postshock Mach numbers are explicit functions of the previous relationships:
2
Mz':MiK_r 2:Mt2ﬁ 2:M%Kl (S.2.7)
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where the post-interaction reflected and transmitted sonic coefficients are:

1+v,R?/P, 1+v,R?/P,
1 —u,Ry 1 - R

Beyond the postshock Mach numbers (M,,, My;), and density jumps (R, R;), the linear
problem demands the knowledge of additional parameters for each transmitted and reflected
shocks. They are the corresponding shock ripple initial amplitudes &2 and &2, and the so-
called DK parameters, /; and &, that measures the slope of the RH curve in the post-shock
state. The latter are simply given by

K2 =Yy — 221, R Pr. K =i - 20 R P (S2.8)

AN M2 (0P, \7!
h, = —k, —~ , hy = —Ki, — 5 S.2.9
t Kt 73? (6R,) K1 R% (3Rr) ( )
while the initial amplitudes take the following form
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The initial amplitude of the interface is also required to compute the transient stage of
the RMI. Measured right after the two shocks detach, it differs from the pre-interaction
amplitude:

U M [k 1=A
0 2 -1 t t 0
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Finally, the g parameter is found useful in the linear problem formulation as it relates the

speeds of sound behind the transmitted and reflected shocks. A specific relationship for two
vdW gases reads as:

(S.2.11)

B =

cor _ MuRM, \/7’1‘ kir 1 = Ay _\/ Ri  Kkor (5.2.12)

. MyRMNR i 1+A; N RRi k2

An arbitrary example of the post-interaction equilibrium is presented in Fig.S.1, where
diagram pressure-velocity is computed for a shock moving with different intensities (M; =
1.235, 2, 3 and 4) and the interface is characterised by the Atwood number Ay = 2/3
and the EoS coefficients: y, = 31/30, v, = 0, u, = 0 (highly compressible ideal gas) and
v: =31/30, v, = 0.5, u, = 0.1 (moderate compressibility and non-negligible Coulomb and
covolume effects). Red (1), blue (T') and dashed-black (R) curves correspond to the associated
pressure-velocity curves of the incident, transmitted and reflected shocks, respectively. For
convenience, the axes are nondimensionalised with pg and c,, respectively. The red circles
are determined by the incident shock intensity, so that u1 /co, = (1-R; YM;and pi/po = Pi.
The blue circles, on the other hand, are given by the equilibrium condition, see (S.1.3) and
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Figure S.1: Solution of the base-flow interaction of a planar shock crossing an interface
separating a vdW gas (right side) and an ideal gas (left side). Conditions are computed for
M; = 1.253, as in Fig.2 c¢) of the main text, and 2, 3, 4. The Atwood number is Ay = 2/3.

(S.1.4), that finally determines the intensities of the transmitted and reflected shocks, along
with the postshock flow properties.

We want to emphasise that the linear theory developed in this study exclusively pertains to
the shock-reflected scenario. In order for this condition to hold, it is imperative that the blue
curve (T) be positioned above the red curve (/). Consequently, equilibrium, under a specified
incident shock intensity, can solely be achieved via compression, i.e., a reflected shock (R).
This might not be easy to anticipate when the EoS parameters describing the two fluids are
very different. For non-ideal EoS, the type of problem (reflected shock or rarefaction) might
be predicted numerically. There exists the possibility of neutral interactions. Such cases refer
to conditions where there is no reflected wave (or it takes the form of a simple acoustic wave
when the interface is distorted). It occurs when the blue (7)) and red (/) curves intersect:
P; = P, and U, = U,. For example, within the vdW EoS framework presented in this work,
neutral interactions may appear for a large variety of conditions. A general rule is that, for
vr > v;, neutral transmission occurs for positive values of Ay (the transmitted shock enters
in a higher density zone), while the opposite applies for y; > y,.

In Fig.2 c¢) of the main text, the evolution of the pressure perturbation at the shocks is
illustrated for a case involving two VAW gases under the conditions specified in Fig.S.1, with
an incident Mach number of M; = 1.235. In this scenario, the transmitted shock exhibits
Spontaneous Acoustic Emission (SAE), since the parameter /; exceeds the critical value h,;.
Given that this is a very specific case, it is essential to determine whether the SAE condition
persists when varying the initial conditions for the same gas configuration, i.e., modifying
the incident shock strength and the Atwood number. This analysis is presented in Fig.S.2
as contour plots of the function k., — h,, where the beige-coloured region indicates SAE
or non-decaying oscillations for the transmitted shock in the long-time regime. It is readily
seen that such neutrally stable condition is more sensitive to variations in shock strength M;
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Figure S.2: SAE regime through the function %.; — h;, for varying incident shock strengths
and preshock density jump ratios. The gases conditions correspond to those in Fig.S.1

than to changes in the pre-shock density jump Ry = (1 — Ap)/(1 + Ap). The triangle marker
represents conditions in Fig.2 ¢) of the main text.

S.3. Equilibrium conditions for condensed metals: aluminium and copper

To describe the RMI occurring when a shock crosses a perturbed planar interface separating
two condensed materials, the three-term equation of state (EoS) is utilised. This model,
consistent with the framework detailed in Chapter XI, § 6, of Zel’dovich & Raizer (2002) and
used as an example in Velikovich & Giuliani (2018); Huete ef al. (2021); Calvo-Rivera et al.
(2023) in accretion-shock and piston-driven shocks configurations, offers a fairly precise
description within pressure ranges extending to several Mbar. The pressure and specific
internal energy are delineated as aggregations of three distinct components:

p(p,T)=pc(p)+pi(p,T) +p.(p,T), (8.3.1)
E(p,T) =E:(p)+E(T) + E.(p,T), (8.3.2)

where the cold, or elastic, terms, p. and E, are related to the forces of interaction between
the atoms of the material at 7 = 0, and therefore they depend only on the material density p.
The thermal ion (lattice) terms, p; and E;, as well as the thermal electron terms, p. and E,,
are functions of both density and temperature.

For the cold metal, the repulsive forces between atoms due to their interactions do not
include thermal energy is present. We use Molodets’ analytical approximation (Molodets
1995) for the density dependence of the Griineisen coefficient

2 2
=24 2P0 (S.3.3)

3 ap—poa ’
where pg, is the density extrapolated to zero temperature and pressure and a is a dimen-
sionless constitutive parameter that must not be confused with the dimensional parameter
in the vdW EoS (S.2.1). With the aid of the Landau—Slater formula (Slater 1955; Landau
& Stanyukovich 1945) and the definition of cold energy p. = p>dE../dp, cold pressure and
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internal energies are expressed as explicit functions in the form:

3Koa L 4 5/3 3.2/3 2_-1/3 -4/3 1 -7/3 1 4
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24 ¢ 7% 70 70 (5.3.5)

where K, is the adiabatic bulk modulus extrapolated to zero temperature and pressure and
Z = p/poa is the normalised density. For the ion lattice (thermal) contributions to the pressure
and internal energy, which take into account the vibrations resulting from the changes in the
kinetic energy of the ions as the temperature varies, we have

3 3
PIT) = poa—2L(ksT.  EfT) = —KksT. (S.3.6)

where m, is the atom mass and kp is the Boltzmann constant. Finally, the electron
contributions are

1 1
pe(z,T) = §Boz‘/3T2, E.(z,T) = EBoz_mTz, (S.3.7)

where By is determined by the number of free electrons per unit mass of the material at 7 = 0
and p = pog. In deriving (S.3.7), the electronic Griineisen coefficient has taken to be 2/3,
then the density and temperature dependence would exactly correspond to a free electron gas
at a temperature well below the Fermi energy.

As done for the VAW EoS, the problem formulation calls for the definition of the sonic
coefficient k = pc?/p that take the following form

_PE_ YePe +VIPIL+ YePe

p Pe+ DI+ Pe

The corresponding values of y., y; and 7y, associated with cold, lattice and electronic
contributions are, respectively,

(S.3.8)
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To compute the adiabat curve, the energy conservation equation is conveniently written as

+I'+1, and y, =5/3. (8.3.9)

c
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a

Zu Zd
where H is defined as the Hugoniot relationship and the subscripts # and d denote the
variables right ahead of (upstream) and behind (downstream) the shock, respectively. The
Mach number squared associated with each shock is

(S.3.10)

2aj(paj = Puj)
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(S.3.11)

where the subscript j may refer to incident (i), transmitted (¢), or reflected () shock. This



| poa [fem’]  polelem®]  T(p=pos) a Koq [GPa] By [ergs/gK?]
Al [2.789414 271 1.798175 2767552 91.133 500
Cu [9.075238 8.93 2.421139 2.139944 146.16 110

Table S.1: Equation-of-state constants for Al and Cu, and parameters according to
Molodets (1995) and Al’Tshuler ez al. (1960a) for aluminium and copper.

relationship can be used to write R; = z4;/z,; as a function of the shock strength M.
Likewise, the postshock Mach number is My; = ¢, jM;/(ca;R;).

As commented before, along with the base-flow properties, the analysis of the perturbed
problem that leads to the RMI demands additional parameters. One of them is the DK
parameter that measures the post-shock RH slope, which reads as

b - Zuj(Pdj = Puj) [51%1]' _ Opaj (8Hj/aZdj)}_l
2dj(zaj = zuj) | 0zaj  0Taj \OH;/0Ty;

that involves the know of the Hugoniot function in (S.3.10).

The system of equations that provide the corresponding mechanical equilibrium at the
interface is similar to that described in (S.1.3) and (S.1.4), which can be used to provide the
associated dimensionless parameters that govern the linear system. In particular, the values
of the initial shocks and interface ripples are given by (S.2.10) and (S.2.11), respectively, and
the B parameter that characterises the acoustic coupling is specifically given by (S.2.12).

AsinFig.S.1, the relation between the shock pressure jumps and the fluid particle velocities
is provided in Fig.S.3 for a shock wave moving in aluminium and crossing a planar interface
separating it from copper material. The scale of pressure jump for M; < 2.5 behind the
reflected and transmitted shocks approaches the range of the Mbar for materials in preshock
in unstressed conditions. We examine the case of RMI in an Al-Cu system, similar to the
numerical results presented by Tahir ef al. (2011) (case II), which also correspond to the
cases shown in panels (e) and (f) of Fig.2 in the main text. The incident shock Mach numbers
associated with incident shock pressures p; = 0.28 Mbar and 2.9 Mbar are M; ~ 1.3 and
M; ~ 2.5, respectively, according to the three-term EoS model. Two other intermediate
conditions, M; = 1.5 and 2, are also computed.

Pre-shock pressure and speed-of-sound conditions are ad-hoc provided, namely py = 1
bar, co, = 6420 m/s, and co, = 4760 m/s, because the three-term EoS is less accurate
in low-pressure conditions. When comparing with Tahir e al. (2011) values, we find that
the presented EoS model, despite its simplicity, captures the density jumps fairly well. As
expected, for weak shocks (p; ~ 0.28 Mbar), our post-shock density values, po, = 3.5 g/cm?®
and py; = 10 g/cm?, slightly over-predict the post-shock values when compared with 3.1
and 9.9 obtained in the numerical simulations. On the other hand, for p; ~ 2.88 Mbar, we
find that p, = 6.2 g/cm® and p,; = 15.6 g/cm?, which compares better with 6.2 and 15.3 in
Tahir et al. (2011). However, the main advantages of the linear RMI model described in the
main text are that it is formulated to accommodate any EoS, so more elaborate models that
can provide a better fit for different materials can equally be computed to supply the required
values for the linear model

(S.3.12)
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Figure S.3: Solution of the base-flow interaction of a planar shock crossing an interface
separating copper (right side) and an aluminium (left side) at room temperature.
Equilibrium conditions are shown for incident Mach numbers M; = 1.3, 1.5, 2 and 2.5,
and for the Atwood number Ay = 0.53.
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