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1. Numerical validation and convergence
To validate our code, we conducted comparisons with data from Deguchi (2017) pertaining
to isothermal TC flows. Encouragingly, our results exhibit a good agreement with theirs, as
summarised in table 1.
We have demonstrated the convergence of the eigenspectra to graphical accuracy in figure 2

of the main paper. Here, we additionally provide a mesh-independence study of the unstable
modes and list their eigenvalues in table 2 for further comparison. It is evident that the
eigenvalues converge well with increased spatial resolution 𝑁 , and numerical accuracy can
be achieved up to about 10 significant digits for 𝑁 > 21. Calculations at relatively extreme
parameters, such as those in section 4.3 of the main paper, can be computationally intensive
and require much higher resolutions up to 𝑁 = 401 to achieve good convergence.

2. Transformation required for the comparison with Deguchi (2017)
In section 1 of this document, we have validated our eigenvalue computation by com-
paring with the results in Deguchi (2017). Since these two studies use different non-
dimensionalisation methods, control parameters, and frame of references, transformation
is needed for the comparison. We derive the transformation formulae for this purpose as
follows.
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Deguchi (2017) The present
Growth rate 9.1339 9.133636
Frequency 259281.859 259281.85942

Table 1: Validation of the present code for the computation of the leading eigenvalue of
the isothermal Taylor-Couette flow at 𝜂 = 5/7, 𝑞 ≈ −17.9181, 𝑇𝑎 ≈ 3.09415 × 1014,
𝑚 = 2 and 𝑘 = 1.504. These parameters are transformed from those given in table I of
Deguchi (2017). Note that our direct computation in a rotating frame of reference yields
an eigenvalue of −0.783737509764 + 0.000000640898𝑖. This value, once transformed
back to the fixed frame of reference, corresponds to the entry shown in the table. The

transformation method is described in section 2 of this document.

𝑁 The leading eigenvalue The second eigenvalue
7 0 + 0.535463407121511𝑖 0 + 0.113639548363407𝑖
11 0 + 0.527625869174870𝑖 0 + 0.097706821117094𝑖
21 0 + 0.527583254541696𝑖 0 + 0.097656247419922𝑖
51 0 + 0.527583254484749𝑖 0 + 0.097656247384773𝑖
151 0 + 0.527583254487419𝑖 0 + 0.097656247405420𝑖

Table 2: Convergence of the eigenvalues of the two unstable modes shown in figure 2(𝑎)
of the main paper for the Keplerian case at 𝜂 = 0.3, 𝑃𝑟 = 0.7, 𝑅𝑖 = 0.1 and 𝑇𝑎 = 106; the
axial wavenumber is 𝑘 = 5 and the azimuthal wavenumber is 𝑚 = 0. Zero real parts of the
eigenvalues indicate stationary waves. For comparison, the eigenvalue of the most
unstable mode for (𝑘, 𝑚) = (0, 1) is 0.4881230309 + 0.1325868404𝑖; those for

(𝑘, 𝑚) = (5, 1) are 0.5637733964 + 0.3658303193𝑖 and 0.4038967359 + 0.1297377720𝑖.

The first step is to transform the parameters (𝑅𝑒𝑖 = 𝜔∗
𝑖
𝑟∗
𝑖
𝑑∗/𝜈∗, 𝑅𝑒𝑜 = 𝜔∗

𝑜𝑟
∗
𝑜𝑑

∗/𝜈∗) used
in Deguchi (2017) to our parameters (𝑇𝑎, 𝑞). Note that both of these two studies use the
cylinder gap (𝑑∗ = 𝑟∗𝑜 − 𝑟∗

𝑖
) as the characteristic length scale for non-dimensionalisation and

the definitions of the radius ratio 𝜂 are the same as well. Thus, no transformation is needed
for the wavenumbers (𝑚, 𝑘). For Taylor number,

𝑇𝑎 =
(1 + 𝜂)4
64𝜂2

𝑑∗2(𝑟∗
𝑖
+ 𝑟∗𝑜)2(𝜔∗

𝑖
− 𝜔∗

𝑜)2

𝜈∗2

=
(1 + 𝜂)4
64𝜂2

𝑑∗2(𝑟𝑖𝑑∗ + 𝑟𝑜𝑑
∗)2
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(𝑟𝑖 + 𝑟𝑜)2. (2.1)

Note that the non-dimensional 𝑟𝑖 and 𝑟𝑜 are given by 𝜂 in Eq. (2.2𝑏) of the main paper. For
the rotation exponent parameter,

𝜂𝑞 =
𝜔𝑜

𝜔𝑖

=
𝜔∗
𝑜

𝜔∗
𝑖

=
(𝑅𝑒𝑜𝜈∗)/(𝑟∗𝑜𝑑∗)
(𝑅𝑒𝑖𝜈∗)/(𝑟∗𝑖 𝑑∗)

=
𝑅𝑒𝑜𝜂

𝑅𝑒𝑖
. (2.2)

The second step is to transform the eigenvalue directly obtained from our code at
(𝑞, 𝑇𝑎, 𝑘, 𝑚), which is in a frame of reference rotating with the angular frequency of the
outer cylinder 𝜔∗

𝑜, to a fixed frame of reference as in Deguchi (2017). In the normal mode
assumption Eq. (2.8) of the main paper, the complex exponential under the rotating frame
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of reference is in the form of exp(−𝑖𝜔𝑡 + 𝑖𝑚𝜃) where we ignore the 𝑖𝑘𝑧 term as the rotating
frame of reference does not move in the 𝑧 direction. The complex exponential under a fixed
frame of reference takes the form of exp(−𝑖�̂�𝑡 + 𝑖𝑚𝜃). These two exponentials are related as

exp(−𝑖�̂�𝑡+𝑖𝑚𝜃) = exp[−𝑖�̂�𝑡+𝑖𝑚(𝜃+𝜔𝑜𝑡)] = exp[(−𝑖�̂�+𝑖𝑚𝜔𝑜)𝑡+𝑖𝑚𝜃] = exp(−𝑖𝜔𝑡+𝑖𝑚𝜃),
(2.3)

where the last equality is due to the fact that these two different exponentials represent the
same wave component viewed in different frame of references. Then we have

− 𝑖�̂� + 𝑖𝑚𝜔𝑜 = −𝑖𝜔 → �̂� = 𝜔 + 𝑚𝜔𝑜 . (2.4)

It should be noted that these derivations are for non-dimensional quantities. Here, the non-
dimensional angular frequency of the outer rotating cylinder can be calculated based on the
non-dimensionalisation described in section 2.1 of the main paper as

𝜔𝑜 =
𝑑∗

𝑈∗𝜔
∗
𝑜 =

𝑑∗𝜔∗
𝑜

|𝜔∗
𝑖
− 𝜔∗

𝑜 |𝑟∗𝑖
=
1
2𝑅𝑜

(2.5)

where Rossby number 𝑅𝑜 is a function of the radius ratio 𝜂 and the rotation exponent
parameter 𝑞 defined in Eq. (2.4) of the main paper.
The third step is to further transform the complex frequency �̂� in the fixed frame of

reference to the complex growth rate �̂� defined in Deguchi (2017). This transformation is
necessary because different non-dimensionalisation methods are used in these two studies.
Specifically, the time scale chosen by Deguchi (2017) is 𝑑∗2/𝜈∗. Therefore, to have the
dimensional quantities (marked with asterisk ∗) equal as

− 𝑖�̂�∗ = 𝜎∗, (2.6)

we should have

− 𝑖�̂�
𝑈∗

𝑑∗
= 𝜎

𝜈∗

𝑑∗2
→ 𝜎 = −𝑖�̂�

����𝑅𝑒𝑖𝑟𝑖
− 𝑅𝑒𝑜

𝑟𝑜

���� 𝑟𝑖 . (2.7)

3. Mode structure similarities between high and low Taylor numbers
The flow instability at high Taylor numbers 𝑇𝑎 is particularly relevant to accretion disks, for
which𝑇𝑎 can reach values estimated to be on the order of 1024 (Ji et al. 2006; Grossmann et al.
2016). However, achieving such high 𝑇𝑎 flows experimentally or numerically is currently
unfeasible. To address this challenge, one approach is to investigate potential flow similarities
between high 𝑇𝑎 and low 𝑇𝑎 regimes. Fortunately, we have observed such similarities in
the linear framework, as illustrated in figure 3 of the main paper, figures 1 and 2 in this
document. These figures depict the eigenvectors of the disturbance of the most unstable
axisymmetric and helical modes for 𝑇𝑎 = (106, 108, 1010). Notably, these patterns exhibits
robust similarities, primarily differing in length scales. We confirm that similar flow patterns
persist even at 𝑇𝑎 = 1016, though the corresponding length scale is much smaller. More
specifically, as 𝑇𝑎 increases, disturbances become more localised around the inner rotating
cylinder. These findings may be pertinent to accretion disk dynamics discussed in the main
text in subsection 4.1 of the main paper.

4. Mode patterns of the linear instabilities at high azimuthal wavenumbers
In the present study, our focus has primarily been on the axisymmetric mode 𝑚 = 0 and
the first few non-axisymmetric modes 𝑚 = 1, 2, as these modes consistently emerge at the
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(𝑎)

(𝑏)

Figure 1: Contours of the temperature corresponding to the most unstable mode
disturbance in the quasi-Keplerian flow at 𝜂 = 0.3, 𝑃𝑟 = 0.7 and 𝑅𝑖 = 0.1. Panel (𝑎) is for
the case at 𝑘 ≈ 17.21, 𝑚 = 0 and 𝑇𝑎 = 108. Panel (𝑏) is for the case at 𝑘 ≈ 47.62, 𝑚 = 0

and 𝑇𝑎 = 1010. Arrows visualise the velocity vector field.

(𝑎) (𝑏)

Figure 2: Contours of temperature corresponding to the most unstable non-axisymmetric
mode disturbance in the quasi-Keplerian flow at 𝜂 = 0.3, 𝑃𝑟 = 0.7 and 𝑅𝑖 = 0.1. Panel (𝑎)
is for the case at 𝑘 ≈ 19.81, 𝑚 = 1 and 𝑇𝑎 = 108. Panel (𝑏) is for the case at 𝑘 ≈ 55.03,

𝑚 = 1 and 𝑇𝑎 = 1010.

critical conditions for the linear instability. However, it is important to note that thermally-
driven linear instability can occur at much higher azimuthal wavenumbers as well. This
phenomenon is illustrated in figure 4 of the main paper. Remarkably, at (𝑞, 𝜂, 𝑃𝑟, 𝑅𝑖, 𝑇𝑎) =
(1.5, 0.3, 0.7, 0.1, 1010), up to 83 non-axisymmetric modes are found to be unstable. The
flow structures of these modes at selected parameters are depicted in figure 3. The azimuthal
wavenumber𝑚 corresponds to a radian period of 2𝜋/𝑚 in the azimuthal direction, indicating
the number of distorted counter-rotating vortex pairs aligned azimuthally. As 𝑚 increases,
more convective rolls develop with a reduction in the length scale of these structures. It is
noteworthy that disturbances tend to localise away from the inner cylinder wall, resulting
in an area near the inner region devoid of disturbances. This localisation around the outer
rotating cylinder suggests that these modes may not be relevant to accretion disk dynamics.
This is because observations indicate that thermal convection is unlikely to occur in outer disk
regions (Latter 2016). Indeed, the convective overstability discovered by Klahr & Hubbard
(2014) was found to probably only appear in inner regions of accretion disks (Latter 2016).

5. Linear instability in an extreme case at (𝜂, 𝑃𝑟, 𝑅𝑖)=(0.05, 10−7, 10−7)
In Section 4 of the main paper, we have demonstrated the prevalence of the linear instability
across a broad parameter space covering 𝑂 (0.01) 6 𝜂 6 𝑂 (0.1), 𝑂 (10−4) 6 𝑃𝑟 6 𝑂 (10),
and 𝑂 (10−3) 6 𝑅𝑖 6 𝑂 (1). Regarding the relevance of these parameters to accretion disks,
Latter (2016) noted that 𝑃𝑟 could be as low as 10−7 in certain inner radii regions of accretion
disks, and 𝑅𝑖 is generally much smaller than 1. In this appendix, we explore the persistence
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(𝑎) (𝑏) (𝑐) (𝑑)

Figure 3: Contours of velocity magnitude corresponding to different non-axisymmetric
mode disturbances in the quasi-Keplerian flow at 𝜂 = 0.3, 𝑃𝑟 = 0.7 and 𝑅𝑖 = 0.1. Panel

(𝑎) is for (𝑇𝑎, 𝑚, 𝑘) = (106, 4, 2.287). Panel (𝑏) is for (𝑇𝑎, 𝑚, 𝑘) = (108, 24, 0). Panel (𝑐)
is for (𝑇𝑎, 𝑚, 𝑘) = (1010, 83, 0) and panel (𝑑) shows an enlarged view of panel (𝑐) around
its right edge. The mode in panel (𝑎) is axial-dependent (𝑘 ≠ 0) and the figure shown here

is the 𝑟-𝜃 plane data at axial location 𝑧 = 0.

(𝑎) (𝑏) (𝑐) (𝑑)

Figure 4: Contours of the linear growth rate 𝜔𝑖 in the 𝑇𝑎-𝑘 plane for the quasi-Keplerian
flow at 𝜂 = 0.05, 𝑃𝑟 = 10−7, 𝑅𝑖 = 10−7: from left to right the panels are for 𝑚 = 0, 1, 2, 3,
respectively. The black curves are the neutral curves (𝜔𝑖 = 0). The linear critical condition
is attained at about (𝑇𝑎𝑐 , 𝑘𝑐 , 𝑚𝑐) = (3 × 1019, 4, 1), marked by the red star in panel (𝑏).

of linear instability at the extreme parameter setting of (𝜂, 𝑃𝑟, 𝑅𝑖) = (0.05, 10−7, 10−7)
when the Taylor number is raised to a high level of 𝑇𝑎 = 𝑂 (1019). To achieve numerical
convergence, the highest spatial resolution used in the present case is 𝑁 = 601.
Figure 4 depicts the corresponding neutral curves near the instability onset. The linear

critical condition is observed around (𝑇𝑎𝑐 , 𝑘𝑐 , 𝑚𝑐) = (3 × 1019, 4, 1), identifying the
first helical mode similar to that shown in figure 13 of the main paper for (𝜂, 𝑃𝑟, 𝑅𝑖) =

(0.05, 10−3, 10−3). The mode patterns at four critical points identified in figure 4 are
visualised in figure 5. These structures exhibit similarities to those in figure 14 of the
main paper for (𝜂, 𝑃𝑟, 𝑅𝑖) = (0.05, 10−3, 10−3).Two main differences are noticeable. Firstly,
the axisymmetric mode becomes more localised around the inner rotating cylinder, and the
vortices appear less inclined along the axial 𝑧 direction. The eigenvalues for this complex-
conjugate pair are ±0.309518053476 − 0.000000000006𝑖, indicating that these two modes
propagate axially. An enlarged view of the perturbation field around the inner cylinder does
reveal inclined vortices (not shown here). Secondly, the non-axisymmetric modes appear
less distorted by the circular base flow, lacking the pronounced “spiral structures” seen in
figure 14(𝑏) of the main paper. We infer that these “spiral structures” may exist only within
an extremely thin layer adjacent to the boundaries. When examining the modes 𝑚 = 1, 2, 3
in figure 5, one might initially think that the no-slip boundary condition is not being met.
To clarify, we have examined the implementation of the no-slip boundary condition and
can confirm that there is an extremely sharp gradient in the velocity field near the cylinder
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(𝑎)
𝑚 = 0 𝑚 = 0 𝑚 = 1 𝑚 = 2 𝑚 = 3

(𝑏)

Figure 5: Contours of the perturbation velocity magnitude at the four critical points
identified in figure 4. Panel (𝑎) shows the cross sections in the 𝑟-𝑧 plane at the azimuthal
angle 𝜃 = 0; panel (𝑏) shows the cross sections in the 𝑟-𝜃 plane at the axial position 𝑧 = 0.
From left to right, the first and second panels in each row correspond to a pair of complex
conjugate modes at 𝑚 = 0, the third to fifth panels are for 𝑚 = 1, 2, 3, respectively.

walls at this high 𝑇𝑎, ensuring that the no-slip boundary condition is indeed satisfied at the
boundary.
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