
Flagellum Pumping Efficiency in Shear-Thinning Viscoelastic Fluids –
Supplementary Material

1 Non-Dimensionalization of Equations

The coupled equations of motion are

𝜌
𝜕u(x, 𝑡)

𝜕𝑡
= 𝜇nΔu(x, 𝑡) − ∇𝑝(x, 𝑡) +

𝜇p
𝜆
∇ · C(x, 𝑡) + f (x, 𝑡), (1)

▽
C(x, 𝑡) = −1

𝜆
(C(x, 𝑡) − I) − 𝛼

𝜆
(C(x, 𝑡) − I)2, (2)

∇ · u(x, 𝑡) = 0, (3)

in which u(x, 𝑡) is the fluid velocity, C(x, 𝑡) is the conformation tensor associated with the Giesekus fluid, 𝑝(x, 𝑡) is the
pressure, 𝜌 the density, 𝜇n the viscosity of the solvent, 𝜇p the polymer viscosity, 𝜆 is the characteristic stress relaxation
time associated with the fluid, and 𝛼 is the Giesekus nonlinearity parameter that controls the degree of nonlinear
dependence of the shear stress on shear rate.1 The force density f (x, 𝑡) is generated by the elastic and approximately
inextensible rotating flagellum, which rotates with period 𝑇 . We model f (x, 𝑡) using the immersed boundary method,
whereby forces and torques generated by the flagellum are spread out into the fluid by convolving one-dimensional
Lagrangian force and torque densities against regularized delta functions. The resulting Eulerian force density f (x, 𝑡)
is given by

f (x, 𝑡) =
∫ ℓ

0

𝜕Frod(𝑠, 𝑡)
𝜕𝑠

𝛿𝑤(x − χ(𝑠, 𝑡)) d𝑠 + 1
2∇ ×

∫ ℓ

0

(
𝜕Nrod(𝑠, 𝑡)

𝜕𝑠
+

(
𝜕χ(𝑠, 𝑡)

𝜕𝑠
× Frod

))
𝛿𝑤(x − χ(𝑠, 𝑡)) d𝑠, (4)

in which χ(𝑠, 𝑡) is physical location of the centerline of the flagellum at time 𝑡 and ℓ is the length of the flagellum
in the reference configuration. We delay defining Frod(𝑠, 𝑡) and Nrod(𝑠, 𝑡) until later because we will first seek to
non-dimensionalize the Eulerian equations of motion, and then subsequently the Lagrangian equations which model
the elasticity and inextensibility of the flagellum.

To non-dimensionalize this system of equations, we start by noting that the conformation tensor C(x, 𝑡) is already
dimensionless. We choose to non-dimensionalize space, time, velocity, and pressure using the following rescalings

• 𝑡 → 𝑇𝑡,

• x → 𝐿x,

• u → 𝐿
𝑇
u,

• 𝑝 → 𝜇

𝑇
𝑝,
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in which 𝜇 = 𝜇n + 𝜇p is the total viscosity of the fluid and 𝐿 is a characteristic length scale. After applying the chain
rule and performing some algebraic manipulations, equation (1) may be rewritten as

𝜌𝐿2

𝑇𝜇

𝜕u(x, 𝑡)
𝜕𝑡

=
𝜇n
𝜇
Δu(x, 𝑡) − ∇𝑝 +

𝜇p𝑇

𝜇𝜆
∇ · C(x, 𝑡) + 𝐿𝑇

𝜇
f (x, 𝑡). (5)

We next identify dimensionless parameters: the Reynolds number Re, the Deborah number De, and the ratio of
polymeric viscosity to the total viscosity 𝛽. These are given by

• Re = 𝜌𝐿2

𝑇𝜇

• De = 𝜆
𝑇

• 𝛽 =
𝜇p
𝜇

After making these identifications, the dimensionless formulation of the fluid momentum equation is

Re𝜕u(x, 𝑡)
𝜕𝑡

= (1 − 𝛽)Δu(x, 𝑡) − ∇𝑝(x, 𝑡) + 𝛽

De∇ · C(x, 𝑡) + 𝐿𝑇

𝜇
f (x, 𝑡). (6)

The time, space, and velocity rescalings yield the following dimensionless formulation of the Giesekus equation

De
▽
C(x, 𝑡) = −(C(x, 𝑡) − I) − 𝛼(C(x, 𝑡) − I)2. (7)

Next, we consider the non-dimensionalization of the Eulerian force density f (x, 𝑡). Isolating 𝐿𝑇
𝜇
f (x, 𝑡) in equation (6),

we have
𝐿𝑇

𝜇
f (x, 𝑡) = 𝐿𝑇

𝜇

∫ ℓ

0

𝜕Frod

𝜕𝑠
𝛿𝑤 (𝐿x − χ(𝑠, 𝑡)) d𝑠 + 𝑇

𝜇
∇ ×

∫ ℓ

0

(
𝜕N(𝑠, 𝑡)

𝜕𝑠
+ 𝜕χ(𝑠, 𝑡)

𝜕𝑠
× Frod

)
𝛿𝑤 (𝐿x − χ(𝑠, 𝑡)) d𝑠, (8)

in which ℓ is the length of the flagellum. If we rescale the Lagrangian reference coordinate to 𝑠 → 𝐿𝑠, the physical
location of the centerline to χ(𝑠, 𝑡) → 𝐿χ(𝐿𝑠, 𝑡), and the width of the regularized delta function to 𝑤 → 𝐿𝑤, then the
right hand side of equation (8) becomes

𝑇

𝜇𝐿2

∫ ℓ/𝐿

0

𝜕Frod(𝑠, 𝑡)
𝜕𝑠

𝛿𝑤 (x − χ(𝑠, 𝑡)) d𝑠 + 𝑇

2𝜇𝐿3∇ ×
∫ ℓ/𝐿

0

(
𝜕Nrod(x, 𝑡)

𝜕𝑠

)
𝛿𝑤 (x − χ(𝑠, 𝑡)) d𝑠 (9)

+ 𝑇

2𝜇𝐿2∇ ×
∫ ℓ/𝐿

0

(
𝜕χ(𝑠, 𝑡)

𝜕𝑠
× Frod(𝑠, 𝑡)

)
𝛿𝑤(x − χ(𝑠, 𝑡)) d𝑠 (10)

To continue converting the equations into a dimensionless formulation, we next rescale the Lagrangian force Frod

and torque Nrod. To do this, we will need their definitions. Because we are using Kirchhoff rod theory to model, the
Lagrangian forces and torques are projected onto the set of unit (and dimensionless) director vectors {D𝑖 (𝑠, 𝑡)}3𝑖=1

Frod(𝑠, 𝑡) =
3∑︁
𝑖=1

𝐹rod𝑖 D𝑖 (𝑠, 𝑡), and Nrod(𝑠, 𝑡) =
3∑︁
𝑖=1

𝑁rod
𝑖 D𝑖 (𝑠, 𝑡).

The coefficients of each vector represented in this basis are given by

𝐹rod𝑖 = 𝑏𝑖

(
𝜕χ(𝑠, 𝑡)

𝜕𝑠
· D𝑖 (𝑠, 𝑡) − 𝛿3,𝑖

)
, 𝑖 = 1, 2, 3, (11)

𝑁rod
1 = 𝑎1 (Ω1(𝑠, 𝑡) − 𝜅1) , (12)

𝑁rod
2 = 𝑎2 (Ω2(𝑠, 𝑡) − 𝜅2) , (13)

𝑁rod
3 = 𝑎3 (Ω3(𝑠, 𝑡) − 𝜏1) (Ω3(𝑠, 𝑡) − 𝜏2)

(
Ω3(𝑠, 𝑡) −

𝜏1 + 𝜏2
2

)
− 𝛾2

𝐿2
𝜕2Ω3(𝑠, 𝑡)

𝜕𝑠2
. (14)

To nondimensionalize these forces and torques, we first nondimensionalize the Ω1, Ω2, and Ω3 vectors, which have
units of inverse length. We rescale Ω1 and Ω2 according to:
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• Ω1 → 𝜅1Ω1

• Ω2 → 𝜅2Ω2

The choice of rescaling for Ω3 is less obvious because there are multiple parameters that define the third component of
the torque 𝑁rod

3 . Assuming 𝜏1 = −𝜏2 so that the flagellum has equal but opposite intrinsic twists, the equation for 𝑁rod
3

becomes

𝑁rod
3 = 𝑎3 (Ω3(𝑠, 𝑡) + 𝜏) (Ω3(𝑠, 𝑡) − 𝜏) Ω3(𝑠, 𝑡) −

𝛾2

𝐿2
𝜕2Ω3(𝑠, 𝑡)

𝜕𝑠2
, (15)

in which 𝜏 = −𝜏1 = 𝜏2. Therefore, we decide to rescale Ω3 according to Ω3 → 𝜏Ω3. After applying these rescalings,
we choose to rescale the Lagrangian forces and torques by their respective coefficients.

• 𝐹rod1 → 𝑏1𝐹rod1

• 𝐹rod2 → 𝑏2𝐹rod2

• 𝐹rod3 → 𝑏3𝐹rod3

• 𝑁rod
1 → 𝑎1𝜅1𝑁rod

1

• 𝑁rod
2 → 𝑎2𝜅2𝑁rod

2

• 𝑁rod
3 → 𝑎3𝜏3𝑁rod

3

Using these rescalings, the dimensionless Eulerian force density 𝐿𝑇
𝜇𝑠
f (x, 𝑡) takes the form

𝐿𝑇

𝜇
f (x, 𝑡) = 𝑇

𝜇𝐿2

∫ ℓ/𝐿

0

3∑︁
𝑖=1

𝜕

𝜕𝑠

(
𝑏𝑖𝐹

rod
𝑖 D𝑖 (𝑠, 𝑡)

)
𝛿𝑤 (x − χ(𝑠, 𝑡)) d𝑠

+ ∇ × 𝑇

2𝜇𝐿3
∫ ℓ/𝐿

0

(
𝜅1𝑎1

𝜕

𝜕𝑠
𝑁rod
1 D1(𝑠, 𝑡) + 𝜅2𝑎2

𝜕

𝜕𝑠
𝑁rod
2 D2(𝑠, 𝑡) + 𝑎3𝜏

3 𝜕

𝜕𝑠
𝑁rod
3 D3(𝑠, 𝑡)

)
𝛿𝑤 (x − χ(𝑠, 𝑡)) d𝑠

+ ∇ × 𝑇

2𝜇𝐿2
∫ ℓ/𝐿

0

(
𝜕χ(𝑠, 𝑡)

𝜕𝑠
×

3∑︁
𝑖=1

𝑏𝑖𝐹
rod
𝑖 D𝑖 (𝑠, 𝑡)

)
𝛿𝑤 (x − χ(𝑠, 𝑡)) d𝑠. (16)

This dimensionless Eulerian force density enables us to identify several important dimensionless timescales. The
dimensionless timescales associated with the stretching forces take the form

𝑇

𝜇𝑠𝐿2𝑏−1𝑖

for 𝑖 = 1, 2, 3. (17)

The dimensionless timescales associated with the bending motion of the flagellum are
𝑇

2𝜇𝑠𝐿3(𝜅1𝑎1)−1
and 𝑇

2𝜇𝑠𝐿3(𝜅2𝑎2)−1
. (18)

The dimensionless timescales associated with the twisting motion of the flagellum is
𝑇

2𝜇𝑠𝐿3 (𝜏3𝑎3)−1
. (19)

These dimensionless timescales represent the ratio of the period of the flagellar motor rotation to the characteristic
stretching, bending, and twisting motions of the flagella’s filament. Note that these nondimensionless scalings assume
𝜅1 and 𝜅2 are constant along the length of the flagellum’s filament. If 𝜅1 and 𝜅2 are non-constant, we may choose to
rescale Ω1 and Ω2 as Ω1 → 1

𝐿
Ω1 and Ω2 → 1

𝐿
Ω2.
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For the parameters used in this study, we find the following dimensional time scales

𝑇stretch = 𝜇𝐿2𝑏−1 ≈ 2 × 10−7 s, (20)
𝑇bend = 2𝜇𝐿3(𝜅𝑎)−1 ≈ 3 × 10−5 s, (21)
𝑇 twist = 2𝜇𝐿3

(
𝜏3𝑎3

)
−1 ≈ 1 × 10−4 s, (22)

in which we have chosen the length scale to be the initial radius of the flagellum, 𝐿 = 𝑅0. When compared with the
rotation period of the motor, 𝑇s = 0.01 s, we find that the timescales of the flagellum are much shorter than that of the
motor, effectively making the flagellum a ‘stiff body’.2 The relaxation times of the fluid used in the following results
vary between 𝜆 = 1 × 10−4 s to 2 × 10−2 s, making the timescales of stretching and bending much shorter than the
elastic relaxation time of the fluid. The twisting timescale, however, can be on the same order as the relaxation time of
the fluid.

REFERENCES
1 S. A. Khan and R. G. Larson. Comparison of Simple Constitutive Equations for Polymer Melts in Shear and Biaxial
and Uniaxial Extensions. Journal of Rheology, 31(3):207–234, 04 1987.

2 Becca Thomases and Robert D. Guy. The role of body flexibility in stroke enhancements for finite-length undulatory
swimmers in viscoelastic fluids. Journal of Fluid Mechanics, 825:109–132, 2017.

4


	Non-Dimensionalization of Equations

