Here we present some scaling and accuracy tests for our numerical method. All tests were carried out
using Matlab 2022b on an Intel Xeon Gold 6242 CPU. The Matlab file used to perform these tests is included
with the example scripts as supplementary material.

The error in K as a function of M:

Increasing the number of terms in the expansion, M, results in an increased accuracy for the eigenvalue
K. Here, we discuss the dependence of the error in K on the value of M using a case where the analytical
solution is known.

We take (U,a,3,R) = (1,1,0,00) in a 1-layer model. Here, the solution can be found analytically using
Bessel functions and has a value of K = j;; where j1; &~ 3.8317 is the first non-zero root of the Bessel
function J;. Fig. S1.(a) shows the error in our calculated value of K as a function of the number of terms,
M, used in the expansion. We observe that this error decreases exponentially with M before reaching a limit
set by the error in the numerical evaluation of the integrals Ay; and B;; and the root finding method used
to solve the eigenvalue problem. Here, M = 10 is sufficient to determine the value of K to 13 significant
figures.

Scaling for large N:

While the examples we show are for small values of N, our approach scales well with N and is viable for
models with N ~ O(100) layers. Here, we consider an N-layer model with random values of p and A\. We
vary N and determine the average time taken for the N-layer calculation, averaging over 5 runs with different
values of p and .

The two limiting step in our method are the numerical integration of Ay; and Bj; and the root finding
step to solve the eigenvalue problem. We evaluate N2M? integrals hence the integration step method is
expected to scale as O(N?). However, determining the integrals to a given level of accuracy taken longest
for the diagonal entries, which have the largest values. Therefore, this step often scales close to linearly
with V. Additionally, the calculation of Ay; and Bj, may be easily parallelised in j and k, significantly
reducing computation time. The root finding step uses the Matlab ‘fsolve’ function and is limited primarily
by the calculation of a Jacobian matrix. Since the Jacobian can be easily calculated analytically here, we
can significantly speed up calculation and increase accuracy by passing the analytical Jacobian to ‘fsolve’.
This step scales as N2M?2 however the runtime is dominated by the numerical integration for all cases we
consider. Fig. S1.(b) shows the average time taken to calculate a modon solution as a function of N. The
times taken for the two limiting steps are shown separately. The average is taken over 5 runs with different
parameters. The numerical integration step is parallelised across 32 processes though remains the longest
part even though the root finding is carried out on a single process.

10° T T T T 10 T

Numerical Integrations

T 9r Eigenvalue Root Finding 7]
2L 4
10
8r 7 b

K-
Runtime (s)
(4]

4t I g
1010k] 3l / |
2r e 1
12 e]
1012 F 3 T
T 1 */»/Jf’ - - q
/ -
1014 | | | | 0 ! |
2 4 6 8 10 12 0 20 40 60 80 100
M N

(a) Logarithmic plot of the error in calculation of K (b) Time taken to calculate the modon solution as
as a function of the number of terms used, M. a function of the number of layers, V.

Figure S1: Accuracy and scaling test results.

