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1 Experimental Setup

Figure S1 shows the flow cell experimental setup, which consists of a 10 cm × 10 cm flow chamber, two
graphite electrodes, a thin layer of electrolytic solution (2% wt. KCl and 1% wt. NaCl aqueous solution) and
an array of permanent magnets beneath it. The polarities and positions of the magnets are generated by a
random number generator, with an average spacing of L = 6 mm. Each magnet has a diameter of 4.8 mm,
and a magnetic flux density 0.66 T. We impose a sinusoidal alternating current (AC) of 1.2 A and 0.2 Hz
through graphite electrodes. The induced Lorentz force of conducting ions in the solution creates spatially
disordered vortices.
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Fig. S1. (a) Schematic of the experimental setup of the flow cell apparatus. A thin layer of buffer solution or active
suspension is placed above an array of magnets of alternating polarity. A sinusoidal voltage imposed by the electrodes
induces Lorentz force in the fluid layer and drive the mixing. In dye mixing experiments, the right half of the fluid
layer is labeled with a fluorescent dye. (b) Schematic of the spatially disordered magnet array. The position of the
magnets are generated by random number generator. The colors of blue and red represent the north and south poles,
respectively.

2 Characterization of Velocity Fields

Figure S2 shows the velocity and vorticity fields of the magnetically controlled flow. Both fields are
measured at the first peak (t = T/4) of the time-periodic flow, where T = 5 s in the flow period. We
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Fig. S2. Velocity and vorticity fields measured from particle tracking velocimetry (PTV), for experiments at Reynolds
number Re = 7.2 and path length p = 1.0. Both fields are measured at the first peak of the time-periodic flow, t = T/4,
where T = 5 s is the flow period. The arrows are velocity vectors and the color codes are (a) the magnitude of the
velocity field |v|, and (b) the vorticity field, defined as the curl of velocity field ω = ∇ × v. Plotted here is the
out-of-plane component of the vorticity field, ωz.
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Fig. S3. (a) The two-dimensional divergence of velocity field, ∇2D · v = ∂u/∂x + ∂v/∂y. (b) The out-of-plane
component of the vorticity field, ωz = ∂v/∂x− ∂u/∂y. Both fields are measured at the first peak of the a sinusoidal
flow period (t = T/4).

characterize how two-dimensional (2D) our flow is by computing 2D divergence of the velocity field, ∇2D ·
v = ∂u/∂x + ∂v/∂y, where u and v are velocity components in the x- and y-direction, respectively. Due
to incompressibility, we know that ∇2D · v = −∂w/∂z, where w denotes the three-dimensional velocity
components in the z-direction. As a control, we also calculate the out-of-plane vorticity (ωz) that is defined
as: ωz = ∂v/∂x− ∂u/∂y. Figure S3 plots ∇2D · v and ωz in the same color code for comparison. We notice
that the 2D divergence is nearly zero everywhere except in certain small regions due to the measurement
noise. This suggests that our flow is essentially two-dimensional.

To further quantify the two-dimensionality, we calculate the root-mean-square (RMS) divergence and
vorticity, averaged for the whole flow field. Figure S4 plots the field-averaged RMS divergence, ⟨|∇2D ·v|2⟩1/2,
and RMS vorticity, ⟨ω2

z⟩1/2, as a function of time in one flow period, for both the buffer and the active
suspension. We find that the RMS divergence is approximately at O(10−2) of the RMS vorticity, for both
the buffer and the active cases. While this indicates good accuracy, small regions of non-zero divergence
(Fig. S3) may still cause passive particles to accumulate in the flow fields, especially for particle trajectories
integrated for longer times (> 50 periods). This small departure from an ideal two-dimensional (divergence-
free) velocity field likely causes the unwanted accumulation of passive particles observed in the simulations.
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Fig. S4. (a) The RMS divergence ⟨|∇2D · v|2⟩1/2 as a function of time for both the buffer and active cases. (b) the

RMS vorticity ⟨ω2
z⟩1/2 as a function of time for both the buffer and active cases.

3 Alignment of Active Particles

The alignment of the symmetric axis of the active particles, q, with tangent of the elliptic LCSs, t, is
examined by their inner product q · t, in Figure 4(b). We find a slight bias towards the positive peak,
q · t = +1, for active particles, and such bias is absent for passive particles. This suggests active particles
are more likely to align parallel to the tangent of elliptic LCSs (i.e., they prefer to swim in the direction of
the vortex circulation). We now further characterize this bias in the alignment by calculating the statistical
mean of the inner product, ⟨q · t⟩. Figure S5(a) shows ⟨q · t⟩ for both the passive and active particles. We
find that ⟨q · t⟩ > 0 is true for active particles, while ⟨q · t⟩ ≈ 0 at all times for passive particles. The
suggests active particles prefer to swim in the direction of the vortex circulation, while (non swimming)
passive particles do not have a preference in parallel/anti-parallel alignment.
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Fig. S5. (a) The inner product between particle orientation vector, q, and the tangent vector of the elliptic LCSs,
t, as a function of time for passive and active particles. (b) The ensemble average of the inner product, ⟨q · t⟩, as a
function of swimming speed, Vs. (c) The ensemble average of the absolute value of the inner product, ⟨|q · t|⟩, as a
function of Vs.
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We also investigate the bias in parallel/anti-parallel alignment for active particles of different swimming
speeds (Vs = 0, 5, 10, 20, 40, and 80 µm/s). Figure S5(b) plots ⟨q · t⟩ as a function of swimming speeds.
We find that active particles of lower swimming speed are more biased to align parallel to the tangent and
⟨q · t⟩ > 0, while active particles of higher swimming speed do not seem to have a preference between parallel
and anti-parallel alignment and ⟨q · t⟩ ≈ 0. Figure S5(c) characterizes the overall alignment (i.e., align vs.
not align) by calculating ⟨|q · t|⟩ for different swimming speeds. We find that the overall alignment of active
particles is quite similar for all swimming speeds. These results [Figures S5(b) and S5(c)] suggest that
the swimming speed does not seem to affect the overall alignment of active particles, but does affect their
preferred direction of alignment (parallel or anti-parallel).

4 Possibility of Ekman transport

Since the Lorentz force follows a similar equation as the Coriolis force, it is plausible Ekman transport
may exist in our system. However, below we will demonstrate that Ekman pumping is not present in our
flow system; or, if present, the effect is minimal. We begin by defining an Ekman number for the Lorentz
force. The classic Ekman number is the ratio between viscous force and Coriolis force, which is defined as:

Ek =
ν

2ΩH2
, (1)

where ν is the fluid kinematic viscosity, Ω is the angular velocity of the rotation of the reference frame,
and H is the characteristic depth of the flow system. Here, the force density of the Lorentz force is:
dFB/d V– = ρq (v ×B), compared to the force density of the Coriolis force: dFΩ/d V– = 2ρ (v ×Ω), where
v is fluid velocity, B is the strength of the magnetic field, and ρq and ρ are the charge density and mass
density of the fluid, respectively. By comparison, the corresponding Ekman number for the Lorentz force is:

EkB =
ν

(Bρq/ρ)H2
. (2)

For our buffer solution of 2% wt. KCl and 1% wt. NaCl, the total ion (K+, Na+, Cl−) concentration is 0.88
mol/L. Given that the charge of 1 mol of electrons is 96500 C, the charge density is ρq = 8.5 × 104 C/L.
The density of water is ρ = 1 kg/L. The magnetic flux density of our permanent magnets is B = 0.66 T =
0.66 kg/(C. s), and the thickness of our fluid layer is H = 2 mm. The kinematic viscosity of water is
ν = 1 mm2/s. These result in a magnetic Ekman number of:

EkB =
ν

(Bρq/ρ)H2
=

1 mm2/s× 1 kg/L

0.66 kg/(C.s)× 8.5× 104 C/L× 4 mm2
= 4.5× 10−6 (3)

The thickness of the Ekman layer can be estimated at EkB (d) ∼ 1, which yields that dB ∼
√
νρ/Bρq for

the Lorentz force. This estimates an Ekman layer thickness of:

dB =

√
νρ

Bρq
=

√
1 mm2/s× 1 kg/L

0.66 kg/(C.s)× 8.5× 104 C/L
= 0.004 mm, (4)

which is the thickness near the bottom no-slip boundary where the Ekman transport is significant. Compared
to our fluid layer thickness of H = 2 mm, the Ekman layer thickness is negligible. This result indicates that
the magnetic forcing is so strong that the flow profile is almost the same throughout the whole fluid layer
outside the Ekman layer (0.004 mm < d < 2 mm), despite the presence of a no-slip boundary. Furthermore,
the bottom surface is treated with a hydrophobic PDMS coating (water contact angle > 100◦) to reduce
friction. Thus, we believe that Ekman transport due to the Lorentz force is negligible in our system. As for
the Ekman transport due to Coriolis effect, we notice that the Coriolis force and the Lorentz force can be
combined into a single term in the momentum equation:

d (FB + FΩ)

d V–
= v × (ρqB+ 2ρΩ) . (5)

However, the strength of the Coriolis force is much weaker compared to the Lorentz force: |FΩ|/|FB | =
2ρΩ/ρqB = 2.8× 10−5, for a typical flow vorticity of ω = 2Ω = 2 s−1. This means that the Coriolis force is
too weak to modify the flow profile imposed by such a strong magnetic forcing. Therefore, we conclude that
Ekman pumping is not present in our system.



5

5 Movie Captions

Movie 1. Stroboscopic video of dye mixing experiments, for mixing in the buffer solution (left)
and a bacterial suspension of a volume fraction ϕb = 0.5% (right).

Movie 2. Real time video of the dye field (left column) and the TRA field (right column),
for mixing in the buffer solution (top row) and a bacterial suspension of a volume fraction
ϕb = 0.5% (bottom row).

Movie 3. Spatial distribution of passive particles (left) and active particles (right) in numerical
simulations. The particles are colored by their normalized local number density ρN/ρ0.

Movie 4. Stroboscopic trajectories of a passive particle (blue) and an active particle (orange)
within Lagrangian vortices. The color map is the TRA field. The swimming direction of
the active particle is illustrated by an arrow, while the (non-swimming) passive particle is
represented as a bar.


