Supplementary material of 'Pore-scale study of CO₂ desublimation and sublimation in a packed bed during cryogenic carbon capture'

Timan Lei¹, Kai H. Luo^{1*}, Francisco E. Hernández Pérez², Geng Wang¹, Junyu Yang¹, Juan Restrepo Cano², Hong G. Im²
1 Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
2 CCRC, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

* Corresponding author: Email address: k.luo@ucl.ac.uk (Kai H. Luo)

1 Grid Convergence test

Grid-independence simulations have been conducted for CO₂ desublimation and sublimation in case Base (see Sec.4.1). The computational domain is covered by three different grids (320×320 , 640×640 , and 960×960). Temporal evolutions of two metrics are calculated and recorded in Fig. S1, namely the volume fraction of captured solid CO₂ (ϕ_c) and the averaged temperature of active boundaries (\overline{T}_a).

Fig. S1. Grid convergence test. Temporal evolutions of (a) volume fraction of the captured solid CO₂ (ϕ_c), (b) averaged temperature of active boundaries (\overline{T}_a), and (c) contours of solid CO₂, CO₂ mass fractions, and temperature at the time instant 20.79 s with three grid resolutions in case Base.

By comparing profiles of both ϕ_c and \overline{T}_a , it is evident that the simulation results for the 640 × 640 and 1024 × 1024 grids exhibit good agreement. The curves for the 384 × 384 coarser grid display a similar pattern to those for the finer grids (i.e., 640×640 and 1024×1024), but obvious discrepancies are absorbed between results for the coarser and finer grids. Specifically, the 384×384 coarser grid brings about the faster heating of the packing grain (\overline{T}_a) and subsequently the lower CO₂ capture performance (ϕ_c). In addition, the calculated distributions of solid CO₂, CO₂ mass fraction, and temperature at the time instant 20.79 s are shown in Fig. S1 (c). All these contours under different grid resolutions show a similar pattern, but the captured solid CO₂ for the 384×384 coarser grid is observed to be less than those for the other two finer grids (i.e., 640×640 and 1024×1024). These comparisons suggest that the 640×640 grid is sufficiently fine to capture the grid-independent properties CO₂ desublimation and sublimation processes.

2 Sensitivity tests of CO₂ mass fraction

This study focuses on evaluating effects of operating conditions, including the initial bed temperature (subcooling degree, ΔT_s), gas feed rate (Peclet number *Pe*), and bed porosity (ψ), while maintaining a constant inlet CO₂ mass fraction of $Y_0 = 1.0$. To verify the robustness of the present findings, the CO₂ desublimation and sublimation in a cryogenic packed bed are modelled for different CO₂ mass fractions. Through simulations and comparisons for both single-grain and packed-bed cases, the CO₂ capture process is found to exhibit the similar desublimation and sublimation properties as those discussed in Sec. 4. For illustration, results at $Y_0 = \{0.15, 0.5, 1.0\}, \Delta T_s = 0.185, Pe=15.57$ in a packed bed are provided in Fig. S2. That includes temporal evaluations of the captured solid CO₂ (v_c), position of the saturation front (l_{sat}), and overall mass fraction rate via desublimation and sublimation (m_r^*, m_{rd}^* and m_{rs}^*).

Fig. S2. Effects of CO₂ mass fraction. Temporal evolutions of (a) volume fraction of the captured solid CO₂ (ϕ_c), (b) position of the saturation front (l_{sat}), and (c-d) overall mass transfer rate via desublimation and sublimation (m_r^* , m_{rd}^* and m_{rs}^*).

Under each Y_0 value, the desublimation and sublimation processes show a similar tendency. The captured solid CO₂ (ϕ_c) exhibits an initial rapid increase followed by a gradual decline toward zero. This behavior is attributed to variations in mass transfer rates (m_r^* , m_{rd}^* and m_{rs}^*). Additionally, it is observed that the saturation front (l_{sat}) progresses toward the bed outlet as the CO₂ desublimation proceeds. The saturation time is earlier than the peak point of ϕ_c . In addition to these consistencies with the results in Sec 4.3, the effects of Y_0 are noted. With the increasing Y_0 , the maximum capacity of the packed bed (i.e., ϕ_{cm}), the operating time, and the capacity loss decreases. In this study, to efficiently demonstrate the desublimated CO₂, the value with the largest CO₂ capture capacity is selected, namely, $Y_0 = 1$.

3 Effects of sub-grid surface change

To consider changes in local sub-grid surface, the random pore model is applied to determine the specific surface per unit volume for CO_2 desublimation and sublimation as [1],

$$a_r = (1-x)a_{r0}\sqrt{1-\vartheta \ln(1-x)}.$$
 (S1)

Here a_{r0} is the initial specific surface, x is the solid CO₂ conversion rate, and ϑ is the structural parameter. Here, we set $a_{r0} = 1$ and $\vartheta = 10$ [1]. This calculation equation (S1) gives the maximum surface $a_r = 1.5a_{r0}$ at x = 0.33.

Fig. S3. Sensitivity tests of sub-grid CO₂ desublimation and sublimation. Temporal evolutions of (a) volume fraction of the captured solid CO₂ (ϕ_c), (b) position of the saturation front (l_{sat}), and (c-d) overall mass transfer rate via desublimation and sublimation (m_r^* , m_{rd}^* and m_{rs}^*).

To demonstrate the significance of including changes in sub-grid surface, the packed-bed test in Sec. 4.3 is simulated again by the present LB model but with a_r

being calculated as in Eq. (S1). The calculated CO₂ desublimation and sublimation properties are recorded versus time in Fig. S3, including volume fraction of the captured solid CO₂ (ϕ_c), position of the saturation front (l_{sat}), and overall mass transfer rate via desublimation and sublimation. For comparison, results of the test without sub-grid effects are included in Fig. S3. From the simulation results, it is obvious that the additionally introduced changes in sub-grid surface have limited impact on the CO₂ desublimation and sublimation properties. This is because, in a packed bed containing multiple grains, the desublimation rate is relatively stronger compared to the supply of CO₂ via the flue gas stream. Furthermore, the change in $a_r \in [0, 1.5a_{r0}]$ is relatively small. Considering the minimal effects of sub-grid surface change on the desublimation and sublimation of CO₂, this study uses a constant specific surface as $a_r = 1$.

References

[1] Q. Xu, X. Dai, J. Yang, Z. Liu, L. Shi. Image-based modelling of coke combustion in a multiscale porous medium using a micro-continuum framework, Journal of Fluid Mechanics 932 (2022) A51.